
Hacettepe Journal of Mathematics and Statistics
Volume 41 (5) (2012), 689 – 696

A GENERALIZATION OF REDUCED RINGS

Handan Kose∗†, Burcu Ungor‡ and Sait Halicioglu‡

Received 28 : 06 : 2011 : Accepted 01 : 03 : 2012

Abstract

Let R be a ring with identity. We introduce a class of rings which
is a generalization of reduced rings. A ring R is called central rigid
if for any a, b ∈ R, a2b = 0 implies ab belongs to the center of R.
Since every reduced ring is central rigid, we study sufficient conditions
for central rigid rings to be reduced. We prove that some results of
reduced rings can be extended to central rigid rings for this general
setting, in particular, it is shown that every reduced ring is central rigid,
every central rigid ring is central reversible, central semicommutative,
2-primal, abelian and so directly finite.
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commutative rings, Abelian rings.
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1. Introduction

Throughout this paper all rings are associative with identity unless otherwise stated.
A ring is reduced if it has no nonzero nilpotent elements. Recently the reduced ring
concept was extended to R-modules by Lee and Zhou in [13], that is, an R-module M
is called reduced if, for any m ∈ M and any a ∈ R, ma = 0 implies mR ∩ Ma = 0.
According to Cohn [9] a ring R is called reversible if for any a, b ∈ R, ab = 0 implies
ba = 0. A ring R is called central reversible if for any a, b ∈ R, ab = 0 implies ba belongs
to the center of R. A ring R is called semicommutative if for any a, b ∈ R, ab = 0 implies
aRb = 0, while the ring R is said to be central semicommutative [3] if for any a, b ∈ R,
ab = 0 implies arb is a central element of R for each r ∈ R. A ring R is called right (left)
principally quasi-Baer [8] if the right (left) annihilator of a principal right ideal of R is
generated by an idempotent. Finally, a ring R is called right (left) principally projective
if the right (left) annihilator of an element of R is generated by an idempotent [7]. For a
positive integer n, Zn denotes the ring of integers modulo n. We write R[x] and R[x, x−1]
for the polynomial ring and the Laurent polynomial ring, respectively.
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In this paper we introduce and study a class of rings, called central rigid rings, which
is a generalization of reduced rings. We prove that some results of reduced rings can be
extended to central rigid rings for this general setting. We supply some examples to show
that all central rigid rings need not be reduced. We show that the class of central rigid
rings lies strictly between classes of reduced rings and central reversible rings. Among
others we prove that if R is a right principally projective ring or a semiprime ring, then
R is reduced if and only if R is central rigid if and only if R is reversible if and only
if R is central reversible if and only if R is semicommutative if and only if R is central
semicommutative if and only if R is abelian. We also prove that a ring R is central rigid
if and only if the Dorroh extension of R is central rigid. Moreover, it is proven that if
R is a right principally projective ring, then R is central rigid if and only if R[x]/(xn) is
central Armendariz, where n ≥ 2 is a natural number and (xn) is the ideal generated by
xn. Finally, it is shown that the polynomial ring R[x] is central rigid if and only if the
Laurent polynomial ring R[x, x−1] is central rigid.

2. Central rigid rings

Let α be a homomorphism of a ring R. A ring R is called α-rigid if aα(a) = 0 implies
a = 0 for any a ∈ R (see [11]). Regarding a generalization of α-rigid rings as well as
a reduced module, recall that a module M is called α-rigid [1] if maα(a) = 0 implies
ma = 0 for any m ∈ M and a ∈ R. Hence M is rigid if, for any m ∈ M and a ∈ R,
ma2 = 0 implies ma = 0. It is easy to show that if M is a reduced module, then it is
rigid. For rings, R is said to be rigid if for any a, b ∈ R, a2b = 0 implies ab = 0. Then
we have the following.

2.1. Proposition. Let R be a ring. Then the following are equivalent.

(1) R is a reduced ring.
(2) RR is a reduced module.
(3) RR is a rigid module.
(4) R is a rigid ring.

Proof. Clear by the definitions. �

We now define central rigid rings as a generalization of reduced rings.

2.2. Definition. A ring R is called central rigid if for any a, b ∈ R, a2b = 0 implies ab
is central.

It is clear that commutative rings and reduced rings are central rigid. For the central
case Proposition 2.1 is not true in general as the following example shows.

2.3. Example. Consider the ring R = Z3 ⊕ Z3, where multiplication is defined by
(a, b) ∗ (c, d) = (ac, ad+ bc) and addition is componentwise. The ring R is commutative
and has an identity (1, 0). Since R is commutative, it is central rigid. But (0, 1) is a
nonzero nilpotent element in R and so R is not reduced.

Recall that a ring R is semiprime if aRa = 0 implies a = 0 for a ∈ R. Our next
endeavor is to find conditions under which a central rigid ring is reduced.

2.4. Proposition. If R is a reduced ring, then R is central rigid. The converse holds if
R satisfies any of the following conditions.

(1) R is a semiprime ring.
(2) R is a right (left) principally projective ring.
(3) R is a right (left) principally quasi-Baer ring.
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Proof. The first statement is clear. Conversely,

(1) Let R be a semiprime ring and x ∈ R with x2 = 0. By hypothesis, x is central. We
have xRx = 0. Since R is semiprime, we have x = 0. Thus R is reduced.

(2) Let x ∈ R with x2 = 0. By hypothesis, x is central. Since R is a right principally
projective ring, there exists an idempotent e ∈ R such that x ∈ rR(x) = eR. It follows
that x = ex = xe = 0. Thus R is reduced.

(3) Similar to the proof of (2). �

2.5. Corollary. If R is a central rigid ring, then the following conditions are equivalent.

(1) R is a right principally projective ring.
(2) R is a left principally projective ring.
(3) R is a right principally quasi-Baer ring.
(4) R is a left principally quasi-Baer ring.

Proof. This follows from Proposition 2.4 since in either case R is reduced. �

Next we prove that central rigid rings are closed under finite direct sums.

2.6. Proposition. Let {Ri}i∈I be a class of rings for a finite index set I. Then Ri is
central rigid for all i ∈ I if and only if

⊕

i∈I

Ri is central rigid.

Proof. Clear from the definitions. �

The following result is a direct consequence of Proposition 2.6.

2.7. Corollary. Let R be a ring. Then eR and (1 − e)R are central rigid for some
idempotent e in R if and only if R is central rigid. �

The next example shows that for a ring R and an ideal I , if R/I is central rigid, then
R need not be central rigid.

2.8. Example. Let R =

[

F F
0 F

]

, where F is any field. Notice

[

0 0
1 0

]2 [

1 1
0 1

]

=

[

0 0
0 0

]

but for

[

1 1
0 1

]

∈ R we have,

[

0 0
1 0

] [

1 1
0 1

] [

1 1
0 1

]

6=

[

1 1
0 1

] [

0 0
1 0

] [

1 1
0 1

]

.

So R is not central rigid.

Consider the ideal I =

[

F F
0 0

]

of R. Hence R/I is central rigid because of R/I ∼= F .

2.9. Lemma. Let R be a ring. If R/I is a central rigid ring with a reduced ideal I, then
R is central rigid.

Proof. If a, b ∈ R with a2b = 0, then (a+ I)2(b+ I) = 0+ I . Since R/I is a central rigid
ring, arb− rab ∈ I for all r ∈ R, and so aba ∈ I . On the other hand (aba)2 = 0 and the
reducibility of I implies that aba = 0. Then abra ∈ I for all r ∈ R. Hence abra = 0, due
to (abra)2 = 0 for all r ∈ R. Thus (abr − rab)2 = 0 and by hypothesis abr = rab, for all
r ∈ R. This completes the proof. �
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Note that the homomorphic image of a central rigid ring need not be central rigid.
Consider the following example.

2.10. Example. Let D be a division ring, R = D[x, y] and I = 〈y2〉 where xy 6= yx.
Since R is a domain, R is central rigid. On the other hand, (yxy + I)2(x + I) = I but
(yxy + I)(x+ I) does not commute with y + I . Hence R/I is not central rigid.

It is well known that a ring is a domain if and only if it is prime and reduced. In
addition to this fact, we have the following proposition when we deal with the central
case.

2.11. Lemma. Let R be a ring. Then R is a prime and central rigid if and only if it is
a domain.

Proof. Let a, b ∈ R with ab = 0. Then (ba)2 = 0 and so ba is central. Thus (arb)2 = 0 for
all r ∈ R. We have arb is central for all r ∈ R. Hence we get (arb)R(arb) = R(arb)2 = 0.
Since R is prime, a = 0 or b = 0. The rest is clear. �

Recall that a ring R is called weakly semicommutative [14], if for any a, b ∈ R, ab = 0
implies arb is a nilpotent element for each r ∈ R. It is well known that every reduced
ring is semicommutative. For weakly semicommutative rings we have the following.

2.12. Lemma. If R is central rigid, then R is weakly semicommutative.

Proof. Let ab = 0 with a, b ∈ R. Since R is central rigid, we have ba is central. It follows
that (arb)2 = 0. That is R is weakly semicommutative. �

The following example shows that there is a weakly semicommutative ring which is
not central rigid.

2.13. Example. Let S be a division ring and consider the ring

R =











a b c
0 a d
0 0 a



 | a, b, c, d ∈ S







Then R is weakly semicommutative. If A =





0 1 0
0 0 0
0 0 0



, then A2 = 0. If B =





0 0 0
0 0 1
0 0 0



, then BA = 0, but AB =





0 0 1
0 0 0
0 0 0



 6= 0. So, R is not central rigid.

2.14. Lemma. Let R be a central rigid ring. Then R is abelian.

Proof. Let e2 = e ∈ R. For any r ∈ R, (re − ere)2 = 0 and so re − ere is central.
Commuting re − ere by e we have ere = re. Similarly for any r ∈ R, (er − ere)2 = 0
implies ere = er. Thus R is abelian. �

The converse of Lemma 2.14 is not true in general, that is, every abelian ring need
not be central rigid, as the following example shows.

2.15. Example. Consider the ring

R =

{[

a b
c d

]

| a ≡ d (mod 2), b ≡ c ≡ 0 (mod 2)

}
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Since

[

0 0
0 0

]

and

[

1 0
0 1

]

are the only idempotents of R, R is abelian. On the other

hand,

[

0 2
0 0

] [

0 2
0 0

] [

1 0
0 1

]

=

[

0 0
0 0

]

but

[

0 2
0 0

]

is not central. Hence R is not central

rigid.

In the sequel, we give relations between reduced, central rigid, reversible, central
reversible, semicommutative, central semicommutative and abelian rings by using right
principally projective rings and semiprime rings.

2.16. Theorem. Let R be a right principally projective ring. Then the following are
equivalent.

(1) R is reduced.
(2) R is central rigid.
(3) R is reversible.
(4) R is central reversible.
(5) R is semicommutative.
(6) R is central semicommutative.
(7) R is abelian.

Proof. Note first that xR is a projective right ideal for any x ∈ R. The isomorphism
xR ∼= R/rR(x) implies rR(x) is a direct summand of R so that there exists an idempotent
e2 = e ∈ R such that rR(x) = eR. Also if R is a right principally projective ring, then
every idempotent is central.

(3) =⇒ (4), (5) =⇒ (6), (6) =⇒ (7) and (7) =⇒ (1) Clear.

(1) ⇐⇒ (2) Proposition 2.4.

(2) =⇒ (3) Let x, y ∈ R with xy = 0. Then y ∈ rR(x) = eR for some e2 = e ∈ R. So
y = ey and xe = 0. On the other hand (yx)2 = 0 and R is central rigid, we have yx is
central. So yx = eyx = yxe = 0. Thus R is reversible.

(4) =⇒ (5) Let x, y ∈ R with xy = 0. Then y ∈ rR(x) = eR for some e2 = e ∈ R. So
y = ey and xe = 0. Hence xry = xr(ey) = xery = 0 for all r ∈ R and so (5) holds. �

2.17. Theorem. Let R be a semiprime ring. Then the following are equivalent.

(1) R is reduced.
(2) R is central rigid.
(3) R is reversible.
(4) R is central reversible.
(5) R is semicommutative.
(6) R is central semicommutative.

Proof. (1) ⇐⇒ (2) Proposition 2.4.

(2) =⇒ (4) Let a, b ∈ R with ab = 0. Then (ba)2 = baba = 0 and so ba is central.

(4) =⇒ (2) Suppose now R is a central reversible and semiprime ring. Let a, b ∈ R with
a2b = 0. Since R is central reversible, aba is central. Hence we have (aba)R(aba) = 0
and by assumption aRab is in the center of R. Thus (abrab)R(abrab)=0 for all r ∈ R.
Since R is semiprime, we have abRab = 0 and so ab is central.

(2) =⇒ (6) Let a, b ∈ R with ab = 0. Then ba is central. (arb)2 = 0 for all r ∈ R. Since
R is central rigid, arb is central for all r ∈ R. Hence R is central semicommutative.
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(6) =⇒ (2) Let a, b ∈ R with ab = 0. Then (ba)2 = 0 and so ba is central. (arb)2 = 0
for all r ∈ R. Thus we have (arb)R(arb) = 0 for all r ∈ R. Since R is semiprime, R is
semicommutative.

(3) =⇒ (4) Clear.

(4) =⇒ (3) Assume that R is a central reversible ring and a, b ∈ R with ab = 0. Then ba
is central. Since R is a semiprime ring, baRba = 0 implies ba = 0.

(5) =⇒ (6) Clear.

(6) =⇒ (5) Let a,b ∈ R with ab = 0. Then for any r ∈ R, arb is a central element and so
a2rb, arb2 are central. For any r ∈ R, b(arb)a = ba(arb) = b(a2rb) = a2rb2 = a(arb)b =
ab(arb) = 0. Hence baRba = 0. By hypothesis ba = 0, so aRb = 0. �

Let P (R) denote the prime radical and N(R) the set of all nilpotent elements of the
ring R. The ring R is called 2-primal if P (R) = N(R) (See namely [10] and [12]). In [17,
Theorem 1.5] it is proved that every semicommutative ring is 2-primal. In this direction
we obtain the following result.

2.18. Theorem. If R is a central rigid ring, then it is 2-primal. The converse holds for
semiprime rings.

Proof. Let R be a central rigid ring. We always have P (R) ⊆ N(R), since P (R) is a nil
ideal of R.

For the converse inclusion, let a ∈ N(R) with an = 0 for some positive integer n.
Assume that a /∈ Q for a prime ideal Q. Since R is central rigid, a is central. For any
rn−1, rn−2, . . . , r2, r1 ∈ R, we have arn−1arn−2a · · · ar2ar1a = rn−1rn−2 · · · r2r1a

n = 0.
For all prime ideals P , we have aR(arn−2a · · · ar2ar1a) ⊆ P . Since a /∈ Q,
arn−2a · · · ar2ar1a ∈ P for all prime ideals P and rn−2, . . . , r2, r1 ∈ R. Hence
aR(arn−3a · · · ar2ar1a) ⊆ P for all prime ideals P and rn−3, . . . , r2, r1 ∈ R. By a similar
reasoning, aR(arn−4a · · · ar2ar1a) ⊆ P , arn−4a · · · ar2ar1a ∈ P for all prime ideals P and
for all rn−4, . . . , r2, r1 ∈ R. By doing a downward induction, we may reach aRa ⊆ P for
all prime ideals P . Hence a ∈ P for all prime ideals P . This is the required contradiction.
Thus if a is nilpotent, then a ∈ P (R) and so N(R) ⊆ P (R).

Conversely, let R be a semiprime and 2-primal ring. Then P (R) = 0 and so N(R) = 0.
Hence R is reduced and so central rigid. This completes the proof. �

2.19. Corollary. Let R be a central rigid ring. Then the ring R/P (R) is central rigid.
�

A module M has the summand intersection property if the intersection of two direct
summands is again a direct summand of M . A ring R is said to have the summand
intersection property if the right R-module R has the summand intersection property.
A module M has the summand sum property if the sum of two direct summands is a
direct summand of M and a ring R is said to have the summand sum property if the right
R-module R has the summand sum property.

2.20. Proposition. Let R be a central rigid ring. Then we have

(1) R has the summand intersection property.
(2) R has the summand sum property.

Proof. (1) Let e and f be idempotents of R. By Lemma 2.14, e and f are central, we
have eR ∩ fR = efR = feR and (ef)2 = ef . This completes the proof.
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(2) Let eR and fR be right ideals of R with e2 = e, f2 = f ∈ R. Then e+ f − ef is an
idempotent of R. Since R is abelian, it is easy to check that eR + fR = (e+ f − ef)R.
So eR + fR is a direct summand of R. �

The Dorroh extension D(R,Z) = {(r, n) | r ∈ R, n ∈ Z} of a ring R is a ring with
operations (r1, n1) + (r2, n2) = (r1 + r2, n1 + n2) and (r1, n1)(r2, n2) = (r1r2 + n1r2 +
n2r1, n1n2). Obviously R is isomorphic to the ideal {(r, 0) | r ∈ R} of D(R,Z). Then we
have the following.

2.21. Proposition. A ring R is central rigid if and only if the Dorroh extension D(R,Z)
of R is central rigid.

Proof. Let R be a central rigid ring and (r, n), (s,m) ∈ D(R,Z) with (r, n)2(s,m) = 0.
Since n2m = 0, it follows that n = 0 or m = 0. Assume that n = 0, so r2s +mr2 = 0.
Thus r(s + m1R) is central. Then (r, n)(s,m)(u, t) = (u, t)(r, n)(s,m) for any (u, t) ∈
D(R,Z). Therefore D(R,Z) is central rigid.

The converse is clear. �

Let R be a ring and M an (R,R)-bimodule. Recall that the trivial extension of
R by M is defined to be ring T (R,M) = R ⊕ M with the usual addition and the
multiplication (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This ring is isomorphic to the

ring

{[

r m
0 r

]

| r ∈ R, m ∈ M

}

with the usual matrix operations and isomorphic to

R[x]/(x2), where (x2) is the ideal generated by x2. The trivial extension of R by M need
not be a central rigid ring, as the following example shows.

2.22. Example. Let H be the division ring of quaternions over the real numbers. Then

H is a reduced ring but not commutative. Consider the nilpotent element

[

0 j
0 0

]

of

T (H,H). Since

[

0 j
0 0

] [

i 0
0 i

]

6=

[

i 0
0 i

] [

0 j
0 0

]

, T (H,H) is not central rigid.

Let R be a ring and f(x) =
n
∑

i=0

aix
i, g(x) =

m
∑

j=0

bjx
j ∈ R[x]. Rege and Chhawchharia

[16] introduce the notion of an Armendariz ring, that is, a ring R is called Armendariz
if f(x)g(x) = 0 implies aibj = 0 for all i and j. The name of the ring was given due
to Armendariz who proved that reduced rings satisfied this condition [6]. The interest
of this notion lies in its natural and useful role in understanding the relation between
the annihilators of the ring R and the annihilators of the polynomial ring R[x]. So
far, Armendariz rings have been generalized in different ways. A ring R is called weak
Armendariz [15], if wheneverf(x)g(x) = 0, then aibj is a nilpotent element of R for each
i and j, while a ring R is called nil-Armendariz [5], if whenever f(x)g(x) has nilpotent
coefficients, then aibj is nilpotent for 0 ≤ i ≤ n, 0 ≤ j ≤ s. Clearly every nil-Armendariz
ring is weak Armendariz. According to Harmanci et al. [2], a ring R is called central
Armendariz, if f(x)g(x) = 0 implies that aibj is a central element of R for all i and j.
In [4, Theorem 5], Anderson and Camillo proved that for a ring R and n ≥ 2 a natural
number, R[x]/(xn) is Armendariz if and only if R is reduced. For central rigid rings, we
obtain the following result.

2.23. Theorem. Let R be a right principally projective ring and n ≥ 2 a natural number.
Then R is central rigid if and only if R[x]/(xn) is central Armendariz.

Proof. Suppose R is a central rigid ring. By Proposition 2.4, R is a reduced ring. From
[4, Theorem 5], R[x]/(xn) is Armendariz and so central Armendariz.
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Conversely, assume that R[x]/(xn) is central Armendariz. By hypothesis and [2,
Theorem 2.5], R[x]/(xn) is Armendariz. It follows from [4, Theorem 5] that R is reduced
and so central rigid. �

We end the paper with some observations.

2.24. Theorem. If R is a central rigid ring, then R is nil-Armendariz.

Proof. If R is central rigid, then it is 2-primal by Theorem 2.18 and so N(R) is an ideal
of R. [5, Proposition 2.1] states that in a ring in which the set of all nilpotent elements
forms an ideal, then the ring is nil-Armendariz. �

2.25. Corollary. If R is a central rigid ring, then R[x]/(xn) is nil-Armendariz, where
n ≥ 2 is a natural number and (xn) is the ideal generated by xn.

Proof. If R is central rigid, then it is nil-Armendariz by Theorem 2.24. From [5, Propo-
sition 4.1], R[x]/(xn) is nil-Armendariz. �
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