ON SOME NEW HADAMARD-TYPE INEQUALITIES FOR CO-ORDINATED QUASI-CONVEX FUNCTIONS

M. Emin Özdemir* Çetin Yıldız* and Ahmet Ocak Akdemir ${ }^{\ddagger}$

Received 29:06:2011 : Accepted 04:06:2012

Abstract

In this paper, we establish some Hadamard-type inequalities based on co-ordinated quasi-convexity. Also we define a new mapping associated with co-ordinated convexity and prove some properties of this mapping.

Keywords: Quasi-convex functions, Hölder Inequality, Power mean inequality, Coordinates, Lipschitzian function.

2000 AMS Classification: Primary: 26 A 51, 26 D 15.

1. Introduction

Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on the interval I of real numbers and $a, b \in I$ with $a<b$. The following double inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

is well-known in the literature as Hadamard's inequality. We recall some definitions;
1.1. Definition. (See [4]) A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be quasi-convex on $[a, b]$ if $f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\},(\mathrm{QC})$
holds for all $x, y \in[a, b]$ and $\lambda \in[0,1]$.
Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex. In [1], Dragomir defined convex functions on the co-ordinates as follows:

[^0]1.2. Definition. Let us consider the bidimensional interval $\Delta=[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b, c<d$. A function $f: \Delta \rightarrow \mathbb{R}$ will be called convex on the co-ordinates if the partial mappings $f_{y}:[a, b] \rightarrow \mathbb{R}, f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathbb{R}, f_{x}(v)=f(x, v)$ are convex where defined for all $y \in[c, d]$ and $x \in[a, b]$. Recall that the mapping $f: \Delta \rightarrow \mathbb{R}$ is convex on Δ if the following inequality holds,
$$
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \lambda f(x, y)+(1-\lambda) f(z, w)
$$
for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$.
In [1], Dragomir established the following inequalities of Hadamard's type for coordinated convex functions on a rectangle from the plane \mathbb{R}^{2}.
1.3. Theorem. Suppose that $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is convex on the co-ordinates on Δ. Then one has the inequalities;
\[

$$
\begin{align*}
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq & \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \\
& \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& \leq \frac{1}{4}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) d x\right. \tag{1.2}\\
& \left.+\frac{1}{d-c} \int_{c}^{d} f(a, y) d y+\frac{1}{d-c} \int_{c}^{d} f(b, y) d y\right] \\
& \leq \frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{4} .
\end{align*}
$$
\]

The above inequalities are sharp.
Similar results for co-ordinated m-convex and (α, m)-convex functions can be found in [3]. In [1], Dragomir considered a mapping closely connected with the above inequalities and established the main properties of this mapping as follows.

Now, for a mapping $f: \Delta:=[a, b] \times[c, d] \rightarrow \mathbb{R}$ convex on the co-ordinates on Δ, we can define the mapping $H:[0,1]^{2} \rightarrow \mathbb{R}$ by

$$
H(t, s)=\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(t x+(1-t) \frac{a+b}{2}, s y+(1-s) \frac{c+d}{2}\right) d x d y
$$

1.4. Theorem. Suppose that $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is convex on the co-ordinates on $\Delta=$ $[a, b] \times[c, d]$. Then:
(i) The mapping H is convex on the co-ordinates on $[0,1]^{2}$.
(ii) We have the bounds

$$
\begin{aligned}
\sup _{(t, s) \in[0,1]^{2}} H(t, s) & =\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y=H(1,1), \\
\inf _{(t, s) \in[0,1]^{2}} H(t, s) & =f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)=H(0,0) .
\end{aligned}
$$

(iii) The mapping H is monotonic nondecreasing on the co-ordinates.
1.5. Definition. Consider a function $f: V \rightarrow \mathbb{R}$ defined on a subset V of $\mathbb{R}_{n}, n \in \mathbb{N}$. Let $L=\left(L_{1}, L_{2}, \ldots, L_{n}\right)$ where $L_{i} \geq 0, i=1,2, \ldots, n$. We say that f is a L-Lipschitzian
function if

$$
|f(x)-f(y)| \leq \sum_{i=1}^{n} L\left|x_{i}-y_{i}\right|
$$

for all $x, y \in V$.
In [2], Özdemir et al. defined quasi-convex function on the co-ordinates as follows:
1.6. Definition. A function $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is said to be a quasi-convex function on the co-ordinates on Δ if the following inequality

$$
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \max \{f(x, y), f(z, w)\}
$$

holds for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$.
Let us consider a bidimensional interval $\Delta:=[a, b] \times[c, d]$. Then $f: \Delta \rightarrow \mathbb{R}$ will be called co-ordinated quasi-convex on the co-ordinates if the partial mappings

$$
f_{y}:[a, b] \rightarrow \mathbb{R}, f_{y}(u)=f(u, y)
$$

and

$$
f_{x}:[c, d] \rightarrow \mathbb{R}, f_{x}(v)=f(x, v)
$$

are quasi-convex where defined for all $y \in[c, d]$ and $x \in[a, b]$. We denote by $\mathrm{QC}(\Delta)$ the class of quasi-convex functions on the co-ordinates on Δ.

A formal definition of quasi-convex functions on the co-ordinates as follows:
1.7. Definition. A function $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is said to be a quasi-convex function on the co-ordinates on Δ if the following inequality

$$
f(\lambda x+(1-\lambda) y, \lambda u+(1-\lambda) v) \leq \max \{f(x, u), f(x, v), f(y, u), f(y, v)\}
$$

holds for all $(x, u),(x, v),(y, u),(y, v) \in \Delta$ and $\lambda \in[0,1]$.
In [5], Sarıkaya et al. proved the following Lemma and established some inequalities for co-ordinated convex functions.
1.8. Lemma. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta:=[a, b] \times$ $[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. If $\frac{\partial^{2} f}{\partial t \partial s} \in L(\Delta)$, then the following equality holds:

$$
\begin{aligned}
& \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& \quad-\frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b}[f(x, c)+f(x, d)] d x+\frac{1}{d-c} \int_{c}^{d}[f(a, y)+f(b, y)] d y\right] \\
& =\frac{(b-a)(d-c)}{4} \int_{0}^{1} \int_{0}^{1}(1-2 t)(1-2 s) \frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d) d t d s .
\end{aligned}
$$

The main purpose of this paper is to obtain some inequalities for co-ordinated quasiconvex functions by using Lemma 1.8 and elementary analysis.

2. Main Results

2.1. Theorem. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta:=$ $[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|$ is quasi-convex on the co-ordinates on Δ, then one has the inequality:

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
& \quad \leq \frac{(b-a)(d-c)}{16} \max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|,\left|\frac{\partial^{2} f}{\partial t \partial s}(a, d)\right|,\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|,\left|\frac{\partial^{2} f}{\partial t \partial s}(b, d)\right|\right\}
\end{aligned}
$$

where

$$
A=\frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b}[f(x, c)+f(x, d)] d x+\frac{1}{d-c} \int_{c}^{d}[f(a, y)+f(b, y)] d y\right] .
$$

Proof. From Lemma 1.8, we can write

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
& \quad \leq \frac{(b-a)(d-c)}{4} \\
& \quad \times \int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)|\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right| d t d s
\end{aligned}
$$

Since $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|$ is quasi-convex on the co-ordinates on Δ, we have

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
& \quad \leq \frac{(b-a)(d-c)}{4} \int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)| \\
& \quad \times \max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|,\left|\frac{\partial^{2} f}{\partial t \partial s}(a, d)\right|,\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|,\left|\frac{\partial^{2} f}{\partial t \partial s}(b, d)\right|\right\} d t d s
\end{aligned}
$$

On the other hand, we have

$$
\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)| d t d s=\frac{(b-a)(d-c)}{16} .
$$

The proof is completed.
2.2. Theorem. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta:=$ $[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}, q>1$ is a quasi-convex function on the co-ordinates on Δ, then one has the inequality:

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
& \leq \frac{(b-a)(d-c)}{4(p+1)^{\frac{2}{p}}}\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(a, d)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, d)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{aligned}
$$

where

$$
A=\frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b}[f(x, c)+f(x, d)] d x+\frac{1}{d-c} \int_{c}^{d}[f(a, y)+f(b, y)] d y\right]
$$

and $\frac{1}{p}+\frac{1}{q}=1$.

Proof. From Lemma 1.8 and using Hölder's inequality, we get

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
& \quad \leq \frac{(b-a)(d-c)}{4} \\
& \quad \times \int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)|\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right| d t d s \\
& \leq \frac{(b-a)(d-c)}{4}\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)|^{p} d t d s\right)^{\frac{1}{p}} \\
& \quad \times\left(\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right|^{q} d t d s\right)^{\frac{1}{q}} .
\end{aligned}
$$

Since $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}$ is quasi-convex on the co-ordinates on Δ, we have

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
& \leq \frac{(b-a)(d-c)}{4}\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)|^{p} d t d s\right)^{\frac{1}{p}} \\
& \quad \times\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(a, d)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, d)\right|^{q}\right\}\right)^{\frac{1}{q}} \\
& =\frac{(b-a)(d-c)}{4(p+1)^{\frac{2}{p}}} \\
& \quad \times\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(a, d)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, d)\right|^{q}\right\}\right)^{\frac{1}{q}} .
\end{aligned}
$$

So, the proof is completed.
2.3. Corollary. Since $\frac{1}{4}<\frac{1}{(p+1)^{\frac{2}{p}}}<1$, for $p>1$ we have the following inequality;

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
& \leq \frac{(b-a)(d-c)}{4} \\
& \quad \times\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(a, d)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, d)\right|^{q}\right\}\right)^{\frac{1}{q}} .
\end{aligned}
$$

2.4. Theorem. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta:=$ $[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}, q \geq 1$, is a quasi-convex function on the co-ordinates on Δ, then one has the inequality:

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
& \leq \frac{(b-a)(d-c)}{16} \\
& \quad\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(a, d)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, d)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{aligned}
$$

where

$$
A=\frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b}[f(x, c)+f(x, d)] d x+\frac{1}{d-c} \int_{c}^{d}[f(a, y)+f(b, y)] d y\right]
$$

Proof. From Lemma 1.8 and using the Power Mean inequality, we can write

$$
\begin{aligned}
&\left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
& \leq \frac{(b-a)(d-c)}{4} \\
& \times \int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)|\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right| d t d s \\
& \leq \frac{(b-a)(d-c)}{4}\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)| d t d s\right)^{1-\frac{1}{q}} \\
& \times\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)|\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right|^{q} d t d s\right)^{\frac{1}{q}}
\end{aligned}
$$

Since $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}$ is quasi-convex on the co-ordinates on Δ, we have

$$
\begin{aligned}
& \left\lvert\, \frac{f(a, c)+}{}+f(a, d)+f(b, c)+f(b, d)\right. \\
& 4 \left.+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A \right\rvert\, \\
& \leq \frac{(b-a)(d-c)}{4} \\
& \times\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)| d t d s\right)^{1-\frac{1}{q}}\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)| d t d s\right)^{\frac{1}{q}} \\
& \times\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(a, d)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, d)\right|^{q}\right\}\right)^{\frac{1}{q}} \\
&= \frac{(b-a)(d-c)}{16} \\
& \times\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(a, d)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(b, d)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{aligned}
$$

which completes the proof.
2.5. Remark. Since $\frac{1}{4}<\frac{1}{(p+1)^{\frac{2}{p}}}<1$, for $p>1$, the estimation in Theorem 2.4 is better than that in Theorem 2.2.

Now, for a mapping $f: \Delta:=[a, b] \times[c, d] \rightarrow \mathbb{R}$ that is convex on the co-ordinates on Δ, we can define a mapping $G:[0,1]^{2} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& G(t, s):=\frac{1}{4}\left[f\left(t a+(1-t) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right)\right. \\
&+f\left(t b+(1-t) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right) \\
&+f\left(t a+(1-t) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right) \\
&\left.+f\left(t b+(1-t) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right)\right]
\end{aligned}
$$

We will now give the following theorem which contains some properties of this mapping.
2.6. Theorem. Suppose that $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is convex on the co-ordinates on $\Delta=$ $[a, b] \times[c, d]$. Then:
(i) The mapping G is convex on the co-ordinates on $[0,1]^{2}$.
(ii) We have the bounds

$$
\begin{aligned}
\inf _{(t, s) \in[0,1]^{2}} G(t, s) & =f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)=G(0,0) \\
\sup _{(t, s) \in[0,1]^{2}} G(t, s) & =\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}=G(1,1)
\end{aligned}
$$

(iii) If f satisfies the Lipschitzian conditions, then the mapping G is L-Lipschitzian on $[0,1] \times[0,1]$;
(iv) The following inequality holds:

$$
\begin{aligned}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& \leq \frac{1}{4}\left[\frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{4}\right. \\
& \left.\quad+\frac{f\left(\frac{a+b}{2}, c\right)+f\left(\frac{a+b}{2}, d\right)}{2}+f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right] .
\end{aligned}
$$

Proof. (i) Let $s \in[0,1]$. For all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and $t_{1}, t_{2} \in[0,1]$, then we have

$$
\begin{aligned}
& G\left(\alpha t_{1}+\right.\left.\beta t_{2}, s\right) \\
&=\frac{1}{4} {\left[f\left(\left(\alpha t_{1}+\beta t_{2}\right) a+\left(1-\left(\alpha t_{1}+\beta t_{2}\right)\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right)\right.} \\
&+f\left(\left(\alpha t_{1}+\beta t_{2}\right) b+\left(1-\left(\alpha t_{1}+\beta t_{2}\right)\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right) \\
&+f\left(\left(\alpha t_{1}+\beta t_{2}\right) a+\left(1-\left(\alpha t_{1}+\beta t_{2}\right)\right) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right) \\
&\left.\quad+f\left(\left(\alpha t_{1}+\beta t_{2}\right) b+\left(1-\left(\alpha t_{1}+\beta t_{2}\right)\right) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right)\right] \\
&=\frac{1}{4}\left[f\left(\alpha\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}\right)+\beta\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}\right), s c+(1-s) \frac{c+d}{2}\right)\right. \\
&+ f\left(\alpha\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}\right)+\beta\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}\right), s c+(1-s) \frac{c+d}{2}\right) \\
&+ f\left(\alpha\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}\right)+\beta\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}\right), s d+(1-s) \frac{c+d}{2}\right) \\
&\left.+f\left(\alpha\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}\right)+\beta\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}\right), s d+(1-s) \frac{c+d}{2}\right)\right] .
\end{aligned}
$$

Using the convexity of f, we obtain

$$
\begin{aligned}
& G\left(\alpha t_{1}+\beta t_{2}, s\right) \leq \frac{1}{4}\left[\alpha \left(f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right)\right.\right. \\
&+ f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right) \\
&+f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right) \\
&\left.+f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right)\right) \\
&+\beta\left(f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right)\right. \\
&+f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right) \\
& \quad+f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right) \\
&=\alpha G\left(t_{1}, s\right)+\beta G\left(t_{2}, s\right)
\end{aligned}
$$

if $s \in[0,1]$. For all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and $s_{1}, s_{2} \in[0,1]$, then we also have

$$
G\left(t, \alpha s_{1}+\beta s_{2}\right) \leq \alpha G\left(t, s_{1}\right)+\beta G\left(t, s_{2}\right)
$$

and the statement is proved.
(ii) It is easy to see that by taking $t=s=0$ and $t=s=1$, respectively, in G, we have the bounds

$$
\begin{aligned}
\inf _{(t, s) \in[0,1]^{2}} G(t, s) & =f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)=G(0,0) \\
\sup _{(t, s) \in[0,1]^{2}} G(t, s) & =\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}=G(1,1) .
\end{aligned}
$$

(iii) Let $t_{1}, t_{2}, s_{1}, s_{2} \in[0,1]$. Then we have:

$$
\begin{aligned}
\mid G\left(t_{2}, s_{2}\right)- & G\left(t_{1}, s_{1}\right) \mid \\
= & \frac{1}{4} \left\lvert\, f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right)\right. \\
+ & f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right) \\
& +f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right) \\
& +f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right) \\
& \quad-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right) \\
& \quad-f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right) \\
& \left.\quad-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right) \right\rvert\, .
\end{aligned}
$$

By using the triangle inequality, we get

$$
\begin{aligned}
& \left|G\left(t_{2}, s_{2}\right)-G\left(t_{1}, s_{1}\right)\right| \\
& \qquad \begin{array}{l}
\leq \frac{1}{4} \left\lvert\, f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right)\right. \\
\left.-f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right) \right\rvert\, \\
+\left\lvert\, f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right)\right. \\
\left.\quad-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right) \right\rvert\, \\
+\left\lvert\, f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right)\right. \\
\left.\quad-f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right) \right\rvert\, \\
\quad+\left\lvert\, f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right)\right. \\
\\
\left.\quad-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right) \right\rvert\, .
\end{array}
\end{aligned}
$$

By using that f satisfies the Lipschitzian conditions, then we obtain

$$
\begin{aligned}
& \frac{1}{4} \left\lvert\, f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right)\right. \\
& \left.-f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right) \right\rvert\, \\
& +\left\lvert\, f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right)\right. \\
& \left.-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right) \right\rvert\, \\
& +\left\lvert\, f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right)\right. \\
& \left.\quad-f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right) \right\rvert\, \\
& \quad+\left\lvert\, f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right)\right. \\
& \left.\quad-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right) \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{1}{4} \\
& {\left[L_{1}(b-a)\left|t_{2}-t_{1}\right|+L_{2}(d-c)\left|s_{2}-s_{1}\right|\right.} \\
& \quad+L_{3}(b-a)\left|t_{2}-t_{1}\right|+L_{4}(d-c)\left|s_{2}-s_{1}\right| \\
& \quad+L_{5}(b-a)\left|t_{2}-t_{1}\right|+L_{6}(d-c)\left|s_{2}-s_{1}\right| \\
& \left.\quad+L_{7}(b-a)\left|t_{2}-t_{1}\right|+L_{8}(d-c)\left|s_{2}-s_{1}\right|\right] \\
& \quad \frac{1}{4}\left[\left(L_{1}+L_{2}+L_{3}+L_{4}\right)(b-a)\left|t_{2}-t_{1}\right|\right. \\
& \left.\quad+\left(L_{5}+L_{6}+L_{7}+L_{8}\right)(d-c)\left|s_{2}-s_{1}\right|\right]
\end{aligned}
$$

which implies that the mapping G is L-Lipschitzian on $[0,1] \times[0,1]$.
(iv) By using the convexity of G on $[0,1] \times[0,1]$, we have

$$
\begin{aligned}
& f\left(t a+(1-t) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right) \\
&+f\left(t b+(1-t) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right) \\
&+f\left(t a+(1-t) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right) \\
&\left.+f\left(t b+(1-t) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right)\right] \\
& \leq t s f(a, c)+t(1-s) f\left(a, \frac{c+d}{2}\right)+(1-t) s f\left(\frac{a+b}{2}, c\right) \\
&+(1-t)(1-s) f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)+t s f(b, c)+t(1-s) f\left(b, \frac{c+d}{2}\right) \\
& \quad+(1-t) s f\left(\frac{a+b}{2}, c\right)+(1-t)(1-s) f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \quad+t s f(a, d)+t(1-s) f\left(a, \frac{c+d}{2}\right)+(1-t) s f\left(\frac{a+b}{2}, d\right) \\
& \quad+(1-t)(1-s) f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)+t s f(b, d)+t(1-s) f\left(b, \frac{c+d}{2}\right) \\
& \quad+(1-t) s f\left(\frac{a+b}{2}, d\right)+(1-t)(1-s) f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) .
\end{aligned}
$$

By integrating both sides of the above inequality and taking into account the change of variables, we obtain

$$
\begin{aligned}
\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \leq & \frac{1}{4}\left[\frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{4}\right. \\
& \left.+\frac{f\left(\frac{a+b}{2}, c\right)+f\left(\frac{a+b}{2}, d\right)}{2}+f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right]
\end{aligned}
$$

This completes the proof.

References

[1] Dragomir, S.S. On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics 5 (4), 775-788, 2001.
[2] Özdemir, M.E., Akdemir, A. O. and Yıldız, Ç. On co-ordinated quasi-convex functions, Czechoslovak Mathematical Journal 62 (4), 889-900, 2012.
[3] Özdemir, M. E., Set, E. and Sarıkaya, M. Z. Some new Hadamard type inequalities for coordinated m-convex and (α, m)-convex functions, Hacet. J. Math. Stat. 40 (2), 219-229, 2011.
[4] Pečarić, J., Proschan, F. and Tong, Y. L. Convex Functions, Partial Orderings and Statistical Applications (Academic Press Inc., Boston, 1992).
[5] Sarıkaya, M. Z., Set, E., Özdemir, M. E. and Dragomir, S. S. New some Hadamard's type inequalities for co-ordinated convex functions, Tamsui Oxford Journal of Information and Mathematical Sciences 28 (2), 137-152, 2012.

[^0]: *Atatürk University, K. K. Education Faculty, Department of Mathematics, 25240, Kampus, Erzurum, Turkey.
 E-mail: (M. E. Özdemir) emos@atauni.edu.tr (Ç. Yıldız) yildizc@atauni.edu.tr
 ${ }^{\dagger}$ Corresponding Author
 ${ }^{\ddagger}$ Ağrı İbrahim Çeçen University, Faculty of Science and Arts, Department of Mathematics, 04100, Ağrı, Turkey. E-mail: ahmetakdemir@agri.edu.tr

