ON SOME NEW HADAMARD-TYPE INEQUALITIES FOR CO-ORDINATED QUASI-CONVEX FUNCTIONS

M. Emin Özdemir^{*}, Çetin Yıldız^{*†} and Ahmet Ocak Akdemir[‡]

Received 29:06:2011 : Accepted 04:06:2012

Abstract

In this paper, we establish some Hadamard-type inequalities based on co-ordinated quasi-convexity. Also we define a new mapping associated with co-ordinated convexity and prove some properties of this mapping.

Keywords: Quasi-convex functions, Hölder Inequality, Power mean inequality, Coordinates, Lipschitzian function.

2000 AMS Classification: Primary: 26 A 51, 26 D 15.

1. Introduction

Let $f: I \subset \mathbb{R} \to \mathbb{R}$ be a convex function on the interval I of real numbers and $a, b \in I$ with a < b. The following double inequality

(1.1)
$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{f(a)+f(b)}{2}$$

is well-known in the literature as Hadamard's inequality. We recall some definitions;

1.1. Definition. (See [4]) A function $f : [a, b] \to \mathbb{R}$ is said to be quasi-convex on [a, b] if

$$f(\lambda x + (1 - \lambda)y) \le \max\left\{f(x), f(y)\right\}, \quad (QC)$$

holds for all $x, y \in [a, b]$ and $\lambda \in [0, 1]$.

Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex. In [1], Dragomir defined convex functions on the co-ordinates as follows:

^{*}Atatürk University, K. K. Education Faculty, Department of Mathematics, 25240, Kampus, Erzurum, Turkey.

E-mail: (M. E. Özdemir) emos@atauni.edu.tr (Ç. Yıldız) yildizc@atauni.edu.tr [†]Corresponding Author

[‡]Ağrı İbrahim Çeçen University, Faculty of Science and Arts, Department of Mathematics, 04100, Ağrı, Turkey. E-mail: ahmetakdemir@agri.edu.tr

1.2. Definition. Let us consider the bidimensional interval $\Delta = [a, b] \times [c, d]$ in \mathbb{R}^2 with a < b, c < d. A function $f : \Delta \to \mathbb{R}$ will be called *convex on the co-ordinates* if the partial mappings $f_y : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ and $f_x : [c, d] \to \mathbb{R}$, $f_x(v) = f(x, v)$ are convex where defined for all $y \in [c, d]$ and $x \in [a, b]$. Recall that the mapping $f : \Delta \to \mathbb{R}$ is convex on Δ if the following inequality holds,

$$f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \le \lambda f(x, y) + (1 - \lambda)f(z, w)$$

for all $(x, y), (z, w) \in \Delta$ and $\lambda \in [0, 1]$.

In [1], Dragomir established the following inequalities of Hadamard's type for coordinated convex functions on a rectangle from the plane \mathbb{R}^2 .

1.3. Theorem. Suppose that $f : \Delta = [a, b] \times [c, d] \rightarrow \mathbb{R}$ is convex on the co-ordinates on Δ . Then one has the inequalities;

$$f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy\right]$$

$$\leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

$$\leq \frac{1}{4} \left[\frac{1}{b-a} \int_{a}^{b} f(x, c) dx + \frac{1}{b-a} \int_{a}^{b} f(x, d) dx + \frac{1}{d-c} \int_{c}^{d} f(b, y) dy\right]$$

$$\leq \frac{f(a, c) + f(b, c) + f(a, d) + f(b, d)}{4}.$$

The above inequalities are sharp.

Similar results for co-ordinated *m*-convex and (α, m) -convex functions can be found in [3]. In [1], Dragomir considered a mapping closely connected with the above inequalities and established the main properties of this mapping as follows.

Now, for a mapping $f : \Delta := [a, b] \times [c, d] \to \mathbb{R}$ convex on the co-ordinates on Δ , we can define the mapping $H : [0, 1]^2 \to \mathbb{R}$ by

$$H(t,s) = \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(tx + (1-t)\frac{a+b}{2}, sy + (1-s)\frac{c+d}{2}\right) dx dy$$

1.4. Theorem. Suppose that $f : \Delta \subset \mathbb{R}^2 \to \mathbb{R}$ is convex on the co-ordinates on $\Delta = [a,b] \times [c,d]$. Then:

- (i) The mapping H is convex on the co-ordinates on $[0,1]^2$.
- (ii) We have the bounds

$$\sup_{\substack{(t,s)\in[0,1]^2}} H(t,s) = \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x,y) \, dx \, dy = H(1,1),$$
$$\inf_{\substack{(t,s)\in[0,1]^2}} H(t,s) = f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) = H(0,0).$$

(iii) The mapping H is monotonic nondecreasing on the co-ordinates.

1.5. Definition. Consider a function $f: V \to \mathbb{R}$ defined on a subset V of \mathbb{R}_n , $n \in \mathbb{N}$. Let $L = (L_1, L_2, \ldots, L_n)$ where $L_i \ge 0$, $i = 1, 2, \ldots, n$. We say that f is a L-Lipschitzian function if

$$|f(x) - f(y)| \le \sum_{i=1}^{n} L |x_i - y_i|$$

for all $x, y \in V$.

In [2], Özdemir et al. defined quasi-convex function on the co-ordinates as follows:

1.6. Definition. A function $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is said to be a *quasi-convex* function on the co-ordinates on Δ if the following inequality

$$f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \le \max\{f(x, y), f(z, w)\}\$$

holds for all $(x, y), (z, w) \in \Delta$ and $\lambda \in [0, 1]$.

Let us consider a bidimensional interval $\Delta := [a, b] \times [c, d]$. Then $f : \Delta \to \mathbb{R}$ will be called *co-ordinated quasi-convex on the co-ordinates* if the partial mappings

$$f_y: [a,b] \to \mathbb{R}, f_y(u) = f(u,y)$$

and

$$f_x: [c,d] \to \mathbb{R}, f_x(v) = f(x,v)$$

are quasi-convex where defined for all $y \in [c, d]$ and $x \in [a, b]$. We denote by $QC(\Delta)$ the class of quasi-convex functions on the co-ordinates on Δ .

A formal definition of quasi-convex functions on the co-ordinates as follows:

1.7. Definition. A function $f : \Delta = [a,b] \times [c,d] \rightarrow \mathbb{R}$ is said to be a quasi-convex function on the co-ordinates on Δ if the following inequality

$$f(\lambda x + (1 - \lambda)y, \lambda u + (1 - \lambda)v) \le \max\{f(x, u), f(x, v), f(y, u), f(y, v)\}$$

holds for all (x, u), (x, v), (y, u), $(y, v) \in \Delta$ and $\lambda \in [0, 1]$.

In [5], Sarıkaya et~al. proved the following Lemma and established some inequalities for co-ordinated convex functions.

1.8. Lemma. Let $f : \Delta \subset \mathbb{R}^2 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta := [a, b] \times [c, d]$ in \mathbb{R}^2 with a < b and c < d. If $\frac{\partial^2 f}{\partial t \partial s} \in L(\Delta)$, then the following equality holds:

$$\frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$$
$$- \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} [f(x,c) + f(x,d)] \, dx + \frac{1}{d-c} \int_{c}^{d} [f(a,y) + f(b,y)] \, dy \right]$$
$$= \frac{(b-a)(d-c)}{4} \int_{0}^{1} \int_{0}^{1} (1-2t)(1-2s) \frac{\partial^{2} f}{\partial t \partial s} \left(ta + (1-t)b, sc + (1-s)d \right) \, dt \, ds$$

The main purpose of this paper is to obtain some inequalities for co-ordinated quasiconvex functions by using Lemma 1.8 and elementary analysis.

2. Main Results

2.1. Theorem. Let $f : \Delta \subset \mathbb{R}^2 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta := [a,b] \times [c,d]$ in \mathbb{R}^2 with a < b and c < d. If $\left| \frac{\partial^2 f}{\partial t \partial s} \right|$ is quasi-convex on the co-ordinates on Δ , then one has the inequality:

$$\left|\frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A\right|$$
$$\leq \frac{(b-a)(d-c)}{16} \max\left\{ \left|\frac{\partial^{2}f}{\partial t\partial s}(a,c)\right|, \left|\frac{\partial^{2}f}{\partial t\partial s}(a,d)\right|, \left|\frac{\partial^{2}f}{\partial t\partial s}(b,c)\right|, \left|\frac{\partial^{2}f}{\partial t\partial s}(b,d)\right| \right\}$$

where

$$A = \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} \left[f(x,c) + f(x,d) \right] \, dx + \frac{1}{d-c} \int_{c}^{d} \left[f(a,y) + f(b,y) \right] \, dy \right].$$

Proof. From Lemma 1.8, we can write

$$\begin{aligned} \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A \right| \\ &\leq \frac{(b-a)(d-c)}{4} \\ &\times \int_{0}^{1} \int_{0}^{1} \left| (1-2t)(1-2s) \right| \left| \frac{\partial^{2} f}{\partial t \partial s} \left(ta + (1-t)b, sc + (1-s)d \right) \right| \, dt \, ds. \end{aligned}$$

Since $\left|\frac{\partial^2 f}{\partial t \partial s}\right|$ is quasi-convex on the co-ordinates on Δ , we have

$$\begin{aligned} \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A \right| \\ &\leq \frac{(b-a)(d-c)}{4} \int_{0}^{1} \int_{0}^{1} \left| (1-2t)(1-2s) \right| \\ &\times \max\left\{ \left| \frac{\partial^{2} f}{\partial t \partial s}(a,c) \right|, \left| \frac{\partial^{2} f}{\partial t \partial s}(a,d) \right|, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,c) \right|, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,d) \right| \right\} \, dt \, ds. \end{aligned}$$

On the other hand, we have

$$\int_0^1 \int_0^1 |(1-2t)(1-2s)| \, dt \, ds = \frac{(b-a)(d-c)}{16}.$$

The proof is completed.

2.2. Theorem. Let $f : \Delta \subset \mathbb{R}^2 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta := [a,b] \times [c,d]$ in \mathbb{R}^2 with a < b and c < d. If $\left|\frac{\partial^2 f}{\partial t \partial s}\right|^q$, q > 1 is a quasi-convex function on the co-ordinates on Δ , then one has the inequality:

$$\frac{\left|\frac{f\left(a,c\right)+f\left(a,d\right)+f\left(b,c\right)+f\left(b,d\right)}{4}+\frac{1}{\left(b-a\right)\left(d-c\right)}\int_{a}^{b}\int_{c}^{d}f\left(x,y\right)\,dy\,dx-A\right|$$

$$\leq\frac{\left(b-a\right)\left(d-c\right)}{4\left(p+1\right)^{\frac{2}{p}}}\left(\max\left\{\left|\frac{\partial^{2}f}{\partial t\partial s}\left(a,c\right)\right|^{q},\left|\frac{\partial^{2}f}{\partial t\partial s}\left(a,d\right)\right|^{q},\left|\frac{\partial^{2}f}{\partial t\partial s}\left(b,c\right)\right|^{q},\left|\frac{\partial^{2}f}{\partial t\partial s}\left(b,d\right)\right|^{q}\right\}\right)^{\frac{1}{q}}$$

where

$$A = \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} \left[f(x,c) + f(x,d) \right] dx + \frac{1}{d-c} \int_{c}^{d} \left[f(a,y) + f(b,y) \right] dy \right]$$

and $\frac{1}{p} + \frac{1}{q} = 1$.

700

Proof. From Lemma 1.8 and using Hölder's inequality, we get

$$\begin{split} \left| \frac{f\left(a,c\right) + f\left(a,d\right) + f\left(b,c\right) + f\left(b,d\right)}{4} + \frac{1}{\left(b-a\right)\left(d-c\right)} \int_{a}^{b} \int_{c}^{d} f\left(x,y\right) \, dy \, dx - A \right| \\ &\leq \frac{\left(b-a\right)\left(d-c\right)}{4} \\ &\times \int_{0}^{1} \int_{0}^{1} \left| (1-2t)(1-2s) \right| \left| \frac{\partial^{2}f}{\partial t \partial s} \left(ta + (1-t)b, sc + (1-s)d\right) \right| \, dt \, ds \\ &\leq \frac{\left(b-a\right)\left(d-c\right)}{4} \left(\int_{0}^{1} \int_{0}^{1} \left| (1-2t)(1-2s) \right|^{p} \, dt ds \right)^{\frac{1}{p}} \\ &\times \left(\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}f}{\partial t \partial s} \left(ta + (1-t)b, sc + (1-s)d\right) \right|^{q} \, dt \, ds \right)^{\frac{1}{q}}. \end{split}$$

Since $\left|\frac{\partial^2 f}{\partial t \partial s}\right|^q$ is quasi-convex on the co-ordinates on Δ , we have

$$\begin{aligned} \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A \right| \\ &\leq \frac{(b-a)(d-c)}{4} \left(\int_{0}^{1} \int_{0}^{1} |(1-2t)(1-2s)|^{p} \, dt \, ds \right)^{\frac{1}{p}} \\ &\qquad \times \left(\max\left\{ \left| \frac{\partial^{2} f}{\partial t \partial s}(a,c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(a,d) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,d) \right|^{q} \right\} \right)^{\frac{1}{q}} \\ &= \frac{(b-a)(d-c)}{4(p+1)^{\frac{2}{p}}} \\ &\qquad \times \left(\max\left\{ \left| \frac{\partial^{2} f}{\partial t \partial s}(a,c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(a,d) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,d) \right|^{q} \right\} \right)^{\frac{1}{q}} \\ & \text{ the proof is completed.} \end{aligned}$$

So, the proof is completed.

2.3. Corollary. Since $\frac{1}{4} < \frac{1}{(p+1)^{\frac{2}{p}}} < 1$, for p > 1 we have the following inequality; $\left|\frac{f\left(a,c\right)+f\left(a,d\right)+f\left(b,c\right)+f\left(b,d\right)}{4}+\frac{1}{\left(b-a\right)\left(d-c\right)}\int_{a}^{b}\int_{c}^{d}f\left(x,y\right)\,dy\,dx-A\right|$ $\leq \frac{(b-a)(d-c)}{4}$ $\times \left(\max\left\{ \left| \frac{\partial^2 f}{\partial t \partial s}(a,c) \right|^q, \left| \frac{\partial^2 f}{\partial t \partial s}(a,d) \right|^q, \left| \frac{\partial^2 f}{\partial t \partial s}(b,c) \right|^q, \left| \frac{\partial^2 f}{\partial t \partial s}(b,d) \right|^q \right\} \right)^{\frac{1}{q}}.$

2.4. Theorem. Let $f : \Delta \subset \mathbb{R}^2 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta := [a,b] \times [c,d]$ in \mathbb{R}^2 with a < b and c < d. If $\left| \frac{\partial^2 f}{\partial t \partial s} \right|^q$, $q \ge 1$, is a quasi-convex function on the co-ordinates on Δ , then one has the inequality:

$$\left|\frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A\right|$$

$$\leq \frac{(b-a)(d-c)}{16}$$

$$\left(\max\left\{ \left| \frac{\partial^{2} f}{\partial t \partial s}(a,c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(a,d) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,d) \right|^{q} \right\} \right)^{\frac{1}{q}}$$

where

$$A = \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} \left[f(x,c) + f(x,d) \right] dx + \frac{1}{d-c} \int_{c}^{d} \left[f(a,y) + f(b,y) \right] dy \right].$$

Proof. From Lemma 1.8 and using the Power Mean inequality, we can write

$$\begin{aligned} \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A \right| \\ &\leq \frac{(b-a)(d-c)}{4} \\ &\times \int_{0}^{1} \int_{0}^{1} |(1-2t)(1-2s)| \left| \frac{\partial^{2}f}{\partial t \partial s} \left(ta + (1-t)b, sc + (1-s)d \right) \right| \, dt \, ds \\ &\leq \frac{(b-a)(d-c)}{4} \left(\int_{0}^{1} \int_{0}^{1} |(1-2t)(1-2s)| \, dt \, ds \right)^{1-\frac{1}{q}} \\ &\times \left(\int_{0}^{1} \int_{0}^{1} |(1-2t)(1-2s)| \left| \frac{\partial^{2}f}{\partial t \partial s} \left(ta + (1-t)b, sc + (1-s)d \right) \right|^{q} \, dt \, ds \right)^{\frac{1}{q}}. \end{aligned}$$

Since $\left|\frac{\partial^2 f}{\partial t \partial s}\right|^q$ is quasi-convex on the co-ordinates on Δ , we have

$$\begin{aligned} \left| \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx - A \right| \\ &\leq \frac{(b-a)(d-c)}{4} \\ &\times \left(\int_{0}^{1} \int_{0}^{1} \left| (1-2t)(1-2s) \right| \, dt \, ds \right)^{1-\frac{1}{q}} \left(\int_{0}^{1} \int_{0}^{1} \left| (1-2t)(1-2s) \right| \, dt \, ds \right)^{\frac{1}{q}} \\ &\quad \times \left(\max \left\{ \left| \frac{\partial^{2} f}{\partial t \partial s}(a,c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(a,d) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,d) \right|^{q} \right\} \right)^{\frac{1}{q}} \\ &= \frac{(b-a)(d-c)}{16} \\ &\quad \times \left(\max \left\{ \left| \frac{\partial^{2} f}{\partial t \partial s}(a,c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(a,d) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,d) \right|^{q} \right\} \right)^{\frac{1}{q}}, \end{aligned}$$

which completes the proof.

2.5. Remark. Since $\frac{1}{4} < \frac{1}{(p+1)^{\frac{2}{p}}} < 1$, for p > 1, the estimation in Theorem 2.4 is better than that in Theorem 2.2.

Now, for a mapping $f : \Delta := [a, b] \times [c, d] \to \mathbb{R}$ that is convex on the co-ordinates on Δ , we can define a mapping $G : [0, 1]^2 \to \mathbb{R}$ by

$$\begin{aligned} G(t,s) &:= \frac{1}{4} \left[f\left(ta + (1-t)\frac{a+b}{2}, sc + (1-s)\frac{c+d}{2} \right) \\ &+ f\left(tb + (1-t)\frac{a+b}{2}, sc + (1-s)\frac{c+d}{2} \right) \\ &+ f\left(ta + (1-t)\frac{a+b}{2}, sd + (1-s)\frac{c+d}{2} \right) \\ &+ f\left(tb + (1-t)\frac{a+b}{2}, sd + (1-s)\frac{c+d}{2} \right) \end{aligned}$$

We will now give the following theorem which contains some properties of this mapping.

2.6. Theorem. Suppose that $f : \Delta \subset \mathbb{R}^2 \to \mathbb{R}$ is convex on the co-ordinates on $\Delta = [a,b] \times [c,d]$. Then:

- (i) The mapping G is convex on the co-ordinates on $[0, 1]^2$.
- (ii) We have the bounds

$$\inf_{\substack{(t,s)\in[0,1]^2\\(t,s)\in[0,1]^2}} G(t,s) = f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) = G(0,0),$$
$$\sup_{\substack{(t,s)\in[0,1]^2\\4}} G(t,s) = \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} = G(1,1);$$

(iii) If f satisfies the Lipschitzian conditions, then the mapping G is L-Lipschitzian on $[0,1] \times [0,1]$;

(iv) The following inequality holds:

$$\begin{aligned} \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx \\ &\leq \frac{1}{4} \left[\frac{f(a,c) + f(b,c) + f(a,d) + f(b,d)}{4} \right. \\ &\left. + \frac{f\left(\frac{a+b}{2},c\right) + f\left(\frac{a+b}{2},d\right)}{2} + f\left(\frac{a+b}{2},\frac{c+d}{2}\right) \right]. \end{aligned}$$

Proof. (i) Let $s \in [0, 1]$. For all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$ and $t_1, t_2 \in [0, 1]$, then we have

$$\begin{split} G(\alpha t_1 + \beta t_2, s) \\ &= \frac{1}{4} \left[f\left((\alpha t_1 + \beta t_2) a + (1 - (\alpha t_1 + \beta t_2)) \frac{a+b}{2}, sc + (1-s) \frac{c+d}{2} \right) \\ &+ f\left((\alpha t_1 + \beta t_2) b + (1 - (\alpha t_1 + \beta t_2)) \frac{a+b}{2}, sc + (1-s) \frac{c+d}{2} \right) \\ &+ f\left((\alpha t_1 + \beta t_2) a + (1 - (\alpha t_1 + \beta t_2)) \frac{a+b}{2}, sd + (1-s) \frac{c+d}{2} \right) \right] \\ &+ f\left((\alpha t_1 + \beta t_2) b + (1 - (\alpha t_1 + \beta t_2)) \frac{a+b}{2}, sd + (1-s) \frac{c+d}{2} \right) \right] \\ &= \frac{1}{4} \left[f\left(\alpha \left(t_1 a + (1 - t_1) \frac{a+b}{2} \right) + \beta \left(t_2 a + (1 - t_2) \frac{a+b}{2} \right), sc + (1-s) \frac{c+d}{2} \right) \right. \\ &+ f\left(\alpha \left(t_1 b + (1 - t_1) \frac{a+b}{2} \right) + \beta \left(t_2 a + (1 - t_2) \frac{a+b}{2} \right), sc + (1-s) \frac{c+d}{2} \right) \\ &+ f\left(\alpha \left(t_1 a + (1 - t_1) \frac{a+b}{2} \right) + \beta \left(t_2 a + (1 - t_2) \frac{a+b}{2} \right), sd + (1 - s) \frac{c+d}{2} \right) \\ &+ f\left(\alpha \left(t_1 b + (1 - t_1) \frac{a+b}{2} \right) + \beta \left(t_2 a + (1 - t_2) \frac{a+b}{2} \right), sd + (1 - s) \frac{c+d}{2} \right) \\ &+ f\left(\alpha \left(t_1 b + (1 - t_1) \frac{a+b}{2} \right) + \beta \left(t_2 b + (1 - t_2) \frac{a+b}{2} \right), sd + (1 - s) \frac{c+d}{2} \right) \right]. \end{split}$$

Using the convexity of f, we obtain

$$\begin{aligned} G(\alpha t_1 + \beta t_2, s) &\leq \frac{1}{4} \left[\alpha \left(f \left(t_1 a + (1 - t_1) \frac{a + b}{2}, sc + (1 - s) \frac{c + d}{2} \right) \right. \\ &+ f \left(t_1 b + (1 - t_1) \frac{a + b}{2}, sc + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_1 a + (1 - t_1) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \right) \\ &+ f \left(t_1 b + (1 - t_1) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \right) \\ &+ \beta \left(f \left(t_2 a + (1 - t_2) \frac{a + b}{2}, sc + (1 - s) \frac{c + d}{2} \right) \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sc + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 a + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{a + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{c + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{c + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{c + b}{2}, sd + (1 - s) \frac{c + d}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{c + b}{2}, sd + (1 - s) \frac{c + b}{2} \right) \\ &+ f \left(t_2 b + (1 - t_2) \frac{c + b}{2} \right) \\ &+ f \left(t_2 b + t_2 \right) \\ &+ f \left(t_2 b + t_2 \right) \\ &+ f \left(t_2 b + t_2 \right) \right) \\ &+ f$$

if $s \in [0, 1]$. For all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$ and $s_1, s_2 \in [0, 1]$, then we also have

$$G(t, \alpha s_1 + \beta s_2) \le \alpha G(t, s_1) + \beta G(t, s_2),$$

and the statement is proved.

(ii) It is easy to see that by taking t = s = 0 and t = s = 1, respectively, in G, we have the bounds

$$\inf_{\substack{(t,s)\in[0,1]^2\\(t,s)\in[0,1]^2}} G(t,s) = f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) = G(0,0),$$

$$\sup_{\substack{(t,s)\in[0,1]^2\\4}} G(t,s) = \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} = G(1,1).$$

(iii) Let $t_1, t_2, s_1, s_2 \in [0, 1]$. Then we have:

$$\begin{aligned} |G(t_2, s_2) - G(t_1, s_1)| \\ &= \frac{1}{4} \left| f\left(t_2 a + (1 - t_2) \frac{a + b}{2}, s_2 c + (1 - s_2) \frac{c + d}{2} \right) \right. \\ &+ f\left(t_2 b + (1 - t_2) \frac{a + b}{2}, s_2 c + (1 - s_2) \frac{c + d}{2} \right) \\ &+ f\left(t_2 a + (1 - t_2) \frac{a + b}{2}, s_2 d + (1 - s_2) \frac{c + d}{2} \right) \\ &+ f\left(t_2 b + (1 - t_2) \frac{a + b}{2}, s_2 d + (1 - s_2) \frac{c + d}{2} \right) \end{aligned}$$

$$- f\left(t_1a + (1-t_1)\frac{a+b}{2}, s_1c + (1-s_1)\frac{c+d}{2}\right) - f\left(t_1b + (1-t_1)\frac{a+b}{2}, s_1c + (1-s_1)\frac{c+d}{2}\right) - f\left(t_1a + (1-t_1)\frac{a+b}{2}, s_1d + (1-s_1)\frac{c+d}{2}\right) - f\left(t_1b + (1-t_1)\frac{a+b}{2}, s_1d + (1-s_1)\frac{c+d}{2}\right) \right|.$$

By using the triangle inequality, we get

$$\begin{aligned} |G(t_2, s_2) - G(t_1, s_1)| \\ &\leq \frac{1}{4} \left| f\left(t_2 a + (1 - t_2) \frac{a + b}{2}, s_2 c + (1 - s_2) \frac{c + d}{2} \right) \right| \\ &- f\left(t_1 a + (1 - t_1) \frac{a + b}{2}, s_1 c + (1 - s_1) \frac{c + d}{2} \right) \right| \\ &+ \left| f\left(t_2 b + (1 - t_2) \frac{a + b}{2}, s_2 c + (1 - s_2) \frac{c + d}{2} \right) \right| \\ &- f\left(t_1 b + (1 - t_1) \frac{a + b}{2}, s_1 c + (1 - s_1) \frac{c + d}{2} \right) \right| \\ &+ \left| f\left(t_2 a + (1 - t_2) \frac{a + b}{2}, s_2 d + (1 - s_2) \frac{c + d}{2} \right) \right| \\ &- f\left(t_1 a + (1 - t_1) \frac{a + b}{2}, s_1 d + (1 - s_1) \frac{c + d}{2} \right) \right| \\ &+ \left| f\left(t_2 b + (1 - t_2) \frac{a + b}{2}, s_2 d + (1 - s_2) \frac{c + d}{2} \right) \right| \\ &- f\left(t_1 b + (1 - t_1) \frac{a + b}{2}, s_1 d + (1 - s_1) \frac{c + d}{2} \right) \right|. \end{aligned}$$

By using that f satisfies the Lipschitzian conditions, then we obtain

$$\begin{aligned} \frac{1}{4} \left| f\left(t_2 a + (1-t_2) \frac{a+b}{2}, s_2 c + (1-s_2) \frac{c+d}{2} \right) \right. \\ \left. - f\left(t_1 a + (1-t_1) \frac{a+b}{2}, s_1 c + (1-s_1) \frac{c+d}{2} \right) \right| \\ \left. + \left| f\left(t_2 b + (1-t_2) \frac{a+b}{2}, s_2 c + (1-s_2) \frac{c+d}{2} \right) \right| \\ \left. - f\left(t_1 b + (1-t_1) \frac{a+b}{2}, s_1 c + (1-s_1) \frac{c+d}{2} \right) \right| \\ \left. + \left| f\left(t_2 a + (1-t_2) \frac{a+b}{2}, s_2 d + (1-s_2) \frac{c+d}{2} \right) \right| \\ \left. - f\left(t_1 a + (1-t_1) \frac{a+b}{2}, s_1 d + (1-s_1) \frac{c+d}{2} \right) \right| \\ \left. + \left| f\left(t_2 b + (1-t_2) \frac{a+b}{2}, s_2 d + (1-s_2) \frac{c+d}{2} \right) \right| \\ \left. - f\left(t_1 b + (1-t_1) \frac{a+b}{2}, s_1 d + (1-s_1) \frac{c+d}{2} \right) \right| \end{aligned}$$

M.E. Özdemir, Ç. Yıldız, A.O Akdemir

$$\leq \frac{1}{4} \left[L_1(b-a) |t_2 - t_1| + L_2(d-c) |s_2 - s_1| + L_3(b-a) |t_2 - t_1| + L_4(d-c) |s_2 - s_1| + L_5(b-a) |t_2 - t_1| + L_6(d-c) |s_2 - s_1| + L_7(b-a) |t_2 - t_1| + L_8(d-c) |s_2 - s_1| \right]$$

$$= \frac{1}{4} \left[(L_1 + L_2 + L_3 + L_4) (b-a) |t_2 - t_1| + (L_5 + L_6 + L_7 + L_8) (d-c) |s_2 - s_1| \right]$$

which implies that the mapping G is L-Lipschitzian on $[0, 1] \times [0, 1]$. (iv) By using the convexity of G on $[0, 1] \times [0, 1]$, we have

$$\begin{split} f\left(ta+(1-t)\frac{a+b}{2},sc+(1-s)\frac{c+d}{2}\right) \\ &+f\left(tb+(1-t)\frac{a+b}{2},sc+(1-s)\frac{c+d}{2}\right) \\ &+f\left(ta+(1-t)\frac{a+b}{2},sd+(1-s)\frac{c+d}{2}\right) \\ &+f\left(tb+(1-t)\frac{a+b}{2},sd+(1-s)\frac{c+d}{2}\right) \right] \\ &\leq tsf\left(a,c\right)+t(1-s)f\left(a,\frac{c+d}{2}\right)+(1-t)sf\left(\frac{a+b}{2},c\right) \\ &+(1-t)(1-s)f\left(\frac{a+b}{2},\frac{c+d}{2}\right)+tsf\left(b,c\right)+t(1-s)f\left(b,\frac{c+d}{2}\right) \\ &+(1-t)sf\left(\frac{a+b}{2},c\right)+(1-t)(1-s)f\left(\frac{a+b}{2},\frac{c+d}{2}\right) \\ &+tsf\left(a,d\right)+t(1-s)f\left(a,\frac{c+d}{2}\right)+(1-t)sf\left(\frac{a+b}{2},d\right) \\ &+(1-t)(1-s)f\left(\frac{a+b}{2},\frac{c+d}{2}\right)+tsf\left(b,d\right)+t(1-s)f\left(b,\frac{c+d}{2}\right) \\ &+(1-t)sf\left(\frac{a+b}{2},d\right)+(1-t)(1-s)f\left(\frac{a+b}{2},\frac{c+d}{2}\right). \end{split}$$

By integrating both sides of the above inequality and taking into account the change of variables, we obtain

$$\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx \le \frac{1}{4} \left[\frac{f(a,c) + f(b,c) + f(a,d) + f(b,d)}{4} + \frac{f\left(\frac{a+b}{2},c\right) + f\left(\frac{a+b}{2},d\right)}{2} + f\left(\frac{a+b}{2},\frac{c+d}{2}\right) \right].$$
completes the proof.

This completes the proof.

References

- [1] Dragomir, S.S. On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics 5 (4), 775–788, 2001.
- [2] Özdemir, M.E., Akdemir, A.O. and Yıldız, Ç. On co-ordinated quasi-convex functions, Czechoslovak Mathematical Journal 62 (4), 889–900, 2012.

- [3] Özdemir, M. E., Set, E. and Sarıkaya, M. Z. Some new Hadamard type inequalities for coordinated m-convex and (α, m)-convex functions, Hacet. J. Math. Stat. 40 (2), 219–229, 2011.
- [4] Pečarić, J., Proschan, F. and Tong, Y. L. Convex Functions, Partial Orderings and Statistical Applications (Academic Press Inc., Boston, 1992).
- [5] Sarıkaya, M.Z., Set, E., Özdemir, M.E. and Dragomir, S.S. New some Hadamard's type inequalities for co-ordinated convex functions, Tamsui Oxford Journal of Information and Mathematical Sciences 28 (2), 137–152, 2012.