
Hacettepe Journal of Mathematics and Statistics
Volume 41 (5) (2012), 715 – 721

SOME OSCILLATION RESULTS

FOR SECOND-ORDER NEUTRAL

DYNAMIC EQUATIONS

Tongxing Li∗, Ravi P. Agarwal† and Martin Bohner‡§

Received 30 : 06 : 2011 : Accepted 24 : 05 : 2012

Abstract

This paper is concerned with the oscillation of certain second-order
neutral dynamic equations on a time scale. Four new oscillation criteria
are presented that supplement those results given in Arun K. Tripathy
(Some oscillation results for second order nonlinear dynamic equations

of neutral type, Nonlinear Anal. 71, 1727–1735, 2009).
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1. Introduction

In [15], the author studied the oscillatory behavior of second-order neutral dynamic
equations of the form

(1.1)
(

r(t)((x(t) + p(t)x(t− τ ))∆)α
)∆

+ q(t)xα(t− δ) = 0, t ∈ T,

where 0 ≤ p(t) ≤ p0 < ∞ and α > 0 is a quotient of odd positive integers. Here it is
assumed that τ, δ are such that t − τ, t − δ ∈ T for all t ∈ T, which is satisfied only for
certain time scales such as T = R, T = Z, or T = hZ for h > 0. Therefore, we will use
different methods to derive four new oscillation criteria on an arbitrary time scale T with
supT = ∞ for the second-order neutral dynamic equation

(1.2)
(

r(z∆)α
)∆

(t) + q(t)xα(δ(t)) = 0,

where we assume the following:

∗Shandong University, School of Control Science and Engineering, Jinan, Shandong 250061,
P.R. China. and University of Jinan, School of Mathematical Science, Jinan, Shandong 250022,
P.R. China. E-mail: litongx2007@163.com

†Texas A&M University-Kingsville, Department of Mathematics, 700 University Blvd.,
Kingsville, TX 78363-8202, USA. E-mail: agarwal@tamuk.edu

‡Missouri S&T, Department of Mathematics and Statistics, Rolla, MO 65409-0020, USA.
E-mail: bohner@mst.edu

§Corresponding Author.



716 T. Li, R. P. Agarwal, M. Bohner

(A1) The time scale T ⊂ R satisfies supT = ∞, α > 0 is the ratio of odd positive
integers, r, p, q ∈ Crd(T, (0,∞)), p(t) ≥ 1, p(t) 6≡ 1 eventually,

z(t) := x(t) + p(t)x(τ (t)),

τ, δ : T → T, τ is strictly increasing, and

lim
t→∞

τ (t) = lim
t→∞

δ(t) = ∞.

We define a time scale interval by [t0,∞)T := [t0,∞) ∩ T. By a solution of equation
(1.2) we mean a nontrivial function x ∈ Crd([Tx,∞),R), where Tx ∈ [t0,∞)T, which
satisfies (1.2) on [Tx,∞)T. We consider only those solutions x of (1.2) which satisfy
sup{|x(t)| : t ≥ T} > 0 for all T ∈ [Tx,∞)T. A solution of equation (1.2) is called
oscillatory if it has arbitrarily large zeros on [Tx,∞)T, and otherwise, it is said to be
nonoscillatory. Equation (1.2) is said to be oscillatory if all its solutions are oscillatory.

The analogue for (1.2) in case T = R has been studied in [12] (see also [4, 13]). Similar
results for T = Z are contained in [2]. For related results in the general time scales case,
we refer the reader to [1, 3, 5, 7, 10, 11, 14].

In the next section, we shall establish four new oscillation criteria for equation (1.2).
The last section contains some remarks concerning further study and some examples that
illustrate the main results. Throughout, we use the following notation.

(A2) τ−1 is the inverse function of τ ,

(η∆(t))+ := max{0, η∆(t)},

φ(t) :=
m(t)

m(σ(t))
, β(t) :=

{

φ(t) if α < 1,

φα(t) if α ≥ 1,

p∗(t) :=
1

p(τ−1(t))

(

1−
1

p(τ−1(τ−1(t)))

)

> 0,

p∗(t) :=
1

p(τ−1(t))

(

1−
1

p(τ−1(τ−1(t)))

m(τ−1(τ−1(t)))

m(τ−1(t))

)

> 0,

for all sufficiently large t, where m will be specified later.

2. Oscillation criteria

All functional inequalities considered in this section are assumed to hold eventually,
i.e., they are satisfied for all t large enough.

Before stating the main results, we begin with the following lemma.

2.1. Lemma. Assume (A1) and let x be an eventually positive solution of (1.2). If

(2.1)

∫

∞

t0

r−
1
α (t)∆t = ∞,

then eventually

z > 0, z∆ > 0, (r(z∆)α)∆ < 0.

Proof. The proof is simple and so is omitted. �

2.2. Theorem. Assume (A1), (A2), (2.1), and let

τ (t) > t and τ (σ(t)) ≥ δ(t) for all t ∈ [t0,∞)T.
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If there exist functions η,m ∈ C1
rd([t0,∞)T, (0,∞)) such that

(2.2)
m(t)

r
1
α (t)

∫

t

t1
r−

1
α (s)∆s

−m∆(t) ≤ 0

for all sufficiently large t1, and for some t2 ∈ [t1,∞)T, one has

(2.3)

lim sup
t→∞

∫

t

t2

[

η(σ(s))q(s)(p∗(δ(s)))α
(

m(τ−1(δ(s)))

m(σ(s))

)α

−
1

(α+ 1)α+1

r(s)((η∆(s))+)
α+1

(η(σ(s))β(s))α

]

∆s = ∞,

then (1.2) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.2). Without loss of generality, we may
assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(τ (t)) > 0, and x(δ(t)) > 0
for t ∈ [t1,∞)T. Then z∆(t) > 0 for t ∈ [t1,∞)T due to Lemma 2.1. It follows (see also
[6, (8.6)]) that

x(t) =
1

p(τ−1(t))

(

z(τ−1(t))− x(τ−1(t))
)

=
z(τ−1(t))

p(τ−1(t))
−

1

p(τ−1(t))

(

z(τ−1(τ−1(t)))

p(τ−1(τ−1(t)))
−

x(τ−1(τ−1(t)))

p(τ−1(τ−1(t)))

)

≥
z(τ−1(t))

p(τ−1(t))
−

z(τ−1(τ−1(t)))

p(τ−1(t))p(τ−1(τ−1(t)))

≥
1

p(τ−1(t))

(

1−
1

p(τ−1(τ−1(t)))

)

z(τ−1(t))

= p∗(t)z(τ−1(t)).

From this and (1.2), we have

(2.4) (r(z∆)α)∆(t) + q(t)(p∗(δ(t)))α(z(τ−1(δ(t))))α ≤ 0.

Define

(2.5) ω(t) := η(t)
r(t)(z∆(t))α

zα(t)
, t ∈ [t1,∞)T.

Then ω(t) > 0 and, using the quotient rule, (2.4), and (2.5),

(2.6)

ω∆(t) = η∆(t)
r(t)(z∆(t))α

zα(t)
+ η(σ(t))

(

r(z∆)α

zα

)∆

(t)

= η∆(t)
r(t)(z∆(t))α

zα(t)

+ η(σ(t))
(r(z∆)α)∆(t)zα(t)− r(t)(z∆(t))α(zα)∆(t)

zα(t)zα(σ(t))

≤
(η∆(t))+

η(t)
ω(t)− η(σ(t))q(t)(p∗(δ(t)))α

(

z(τ−1(δ(t)))

z(σ(t))

)α

− η(σ(t))
r(t)(z∆(t))α(zα)∆(t)

zα(t)zα(σ(t))
.

On the other hand, we have

z(t) = z(t1) +

∫

t

t1

(

r(s)(z∆(s))α
) 1

α

r
1
α (s)

∆s ≥

(

r
1
α (t)

∫

t

t1

1

r
1
α (s)

∆s

)

z∆(t),
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which yields, using the quotient rule and (2.2),

( z

m

)∆

(t) =
z∆(t)m(t)− z(t)m∆(t)

m(t)m(σ(t))

≤
z(t)

m(t)m(σ(t))

(

m(t)

r
1
α (t)

∫

t

t1
r−

1
α (s)∆s

−m∆(t)

)

≤ 0,

and thus z/m is nonincreasing. Since τ−1(δ(t)) ≤ σ(t) and t ≤ σ(t), we obtain

(2.7)
z(τ−1(δ(t)))

z(σ(t))
≥

m(τ−1(δ(t)))

m(σ(t))
,

z(t)

z(σ(t))
≥

m(t)

m(σ(t))
.

If α ≥ 1, then we get

(2.8) (zα)∆(t) ≥ αzα−1(t)z∆(t)

due to [8, Theorem 1.90]. By (2.5), (2.6), (2.7), and (2.8), we see that

(2.9)

ω∆(t) ≤ −η(σ(t))q(t)(p∗(δ(t)))α
(

m(τ−1(δ(t)))

m(σ(t))

)α

+
(η∆(t))+

η(t)
ω(t)

− α
η(σ(t))

r
1
α (t)η

α+1

α (t)

(

m(t)

m(σ(t))

)

α

ω
α+1

α (t).

If α < 1, then we have

(2.10) (zα)∆(t) ≥ αzα−1(σ(t))z∆(t)

due to [8, Theorem 1.90]. By (2.5), (2.6), (2.7), and (2.10), we see that

(2.11)

ω∆(t) ≤ −η(σ(t))q(t)(p∗(δ(t)))α
(

m(τ−1(δ(t)))

m(σ(t))

)α

+
(η∆(t))+

η(t)
ω(t)

− α
η(σ(t))

r
1
α (t)η

α+1

α (t)

m(t)

m(σ(t))
ω

α+1

α (t).

If follows from (2.9), (2.11), and the definition of β that

(2.12)

ω∆(t) ≤ −η(σ(t))q(t)(p∗(δ(t)))α
(

m(τ−1(δ(t)))

m(σ(t))

)α

+
(η∆(t))+

η(t)
ω(t)

− α
η(σ(t))

r
1
α (t)η

α+1

α (t)
β(t)ω

α+1

α (t)

holds when α > 0. Now set

y := ω(t), A := α
η(σ(t))

r
1
α (t)η

α+1

α (t)
β(t), B :=

(η∆(t))+
η(t)

.

Using the inequality

By − Ay
α+1

α ≤
αα

(α+ 1)α+1

Bα+1

Aα
,

we obtain

(η∆(t))+
η(t)

ω(t)− α
η(σ(t))

r
1
α (t)η

α+1

α (t)
β(t)ω

α+1

α (t) ≤
1

(α+ 1)α+1

r(t)((η∆(t))+)
α+1

(η(σ(t))β(t))α
.
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Hence by (2.12), we have

ω∆(t) ≤ −η(σ(t))q(t)(p∗(δ(t)))α
(

m(τ−1(δ(t)))

m(σ(t))

)α

+
1

(α+ 1)α+1

r(t)((η∆(t))+)
α+1

(η(σ(t))β(t))α
.

Integrating this inequality from t2 ∈ [t1,∞)T to t gives
∫

t

t2

[

η(σ(s))q(s)(p∗(δ(s)))α
(

m(τ−1(δ(s)))

m(σ(s))

)α

−
1

(α+ 1)α+1

r(s)((η∆(s))+)
α+1

(η(σ(s))β(s))α

]

∆s ≤ ω(t2),

which contradicts (2.3). This completes the proof. �

Similar to the proof of Theorem 2.2, we can get the following result.

2.3. Theorem. Assume (A1), (A2), (2.1), and let

τ (t) > t and τ (σ(t)) ≤ δ(t) for all t ∈ [t0,∞)T.

If there exist functions η,m ∈ C1
rd([t0,∞)T, (0,∞)) such that (2.2) holds for all suffi-

ciently large t1, and for some t2 ∈ [t1,∞)T, one has

(2.13) lim sup
t→∞

∫

t

t2

[

η(σ(s))q(s)(p∗(δ(s)))α −
1

(α+ 1)α+1

r(s)((η∆(s))+)
α+1

(η(σ(s))β(s))α

]

∆s = ∞,

then (1.2) is oscillatory. �

Note that Theorem 2.2 and Theorem 2.3 focus on the oscillation of equation (1.2)
under the assumption τ (t) > t. Now we will establish some oscillation results for (1.2)
under the assumption τ (t) < t.

2.4. Theorem. Assume (A1), (A2), (2.1), and let

τ (t) < t and τ (σ(t)) ≥ δ(t) for all t ∈ [t0,∞)T.

If there exist functions η,m ∈ C1
rd([t0,∞)T, (0,∞)) such that (2.2) holds for all suffi-

ciently large t1, and for some t2 ∈ [t1,∞)T, one has

(2.14)

lim sup
t→∞

∫

t

t2

[

η(σ(s))q(s)(p∗(δ(s)))
α

(

m(τ−1(δ(s)))

m(σ(s))

)α

−
1

(α+ 1)α+1

r(s)((η∆(s))+)
α+1

(η(σ(s))β(s))α

]

∆s = ∞,

then (1.2) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.2). Without loss of generality, we may
assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(τ (t)) > 0, and x(δ(t)) > 0
for t ∈ [t1,∞)T. Then z∆(t) > 0 for t ∈ [t1,∞)T due to Lemma 2.1. Similarly to the first
calculation of the proof of Theorem 2.2 (see also [6, (8.6)]), we have

(2.15)

x(t) =
1

p(τ−1(t))

(

z(τ−1(t))− x(τ−1(t))
)

≥
z(τ−1(t))

p(τ−1(t))
−

z(τ−1(τ−1(t)))

p(τ−1(t))p(τ−1(τ−1(t)))
.

From τ−1(τ−1(t)) ≥ τ−1(t), (1.2), and (2.15), we get

(2.16) (r(z∆)α)∆(t) + q(t)(p∗(δ(t)))
α(z(τ−1(δ(t))))α ≤ 0.



720 T. Li, R. P. Agarwal, M. Bohner

Similar to the proof of Theorem 2.2, we see that z/m is nonincreasing. The remainder
of the proof is similar to that of Theorem 2.2 and hence is omitted. This completes the
proof. �

Similar to the proof of Theorem 2.4, we can derive the following criterion.

2.5. Theorem. Assume (A1), (A2), (2.1), and let

τ (t) < t and τ (σ(t)) ≤ δ(t) for all t ∈ [t0,∞)T.

If there exist functions η,m ∈ C1
rd([t0,∞)T, (0,∞)) such that (2.2) holds for all suffi-

ciently large t1, and for some t2 ∈ [t1,∞)T, one has

(2.17) lim sup
t→∞

∫

t

t2

[

η(σ(s))q(s)(p∗(δ(s)))
α −

1

(α+ 1)α+1

r(s)((η∆(s))+)
α+1

(η(σ(s))β(s))α

]

∆s = ∞,

then (1.2) is oscillatory.

3. Examples and remarks

In this section, we give some remarks and two examples in order to illustrate the main
results.

3.1. Remark. From Theorem 2.2, Theorem 2.3, Theorem 2.4, and Theorem 2.5, we can
obtain various oscillation criteria for equation (1.2), e.g., by letting

m(t) =

∫

t

t1

1

r
1
α (s)

∆s and η(t) = t.

The details are left to the reader.

3.2. Remark. By employing methods given in this note, we can obtain Philos-type
oscillation criteria for equation (1.2). The details are left to the reader.

3.3. Example. Consider the equation

(3.1)
(

x(t) + 2x(τ (t))
)∆∆

+
σ(t)

t2
x(τ (t)) = 0, t ∈ [1,∞)T,

where τ is strictly increasing to ∞ and τ (t) > t. Let m(t) = t − t1 and η(t) = 1. Using
[9, Theorem 5.68], we can see that equation (3.1) is oscillatory due to Theorem 2.2.

3.4. Example. Consider the equation

(3.2)
(

x(t) + tx(τ (t))
)∆∆

+
σ(t)

t
x(τ (t)) = 0, t ∈ [1,∞)T,

where τ is strictly increasing to ∞ and τ (t) < t. Let m(t) = t − t1 and η(t) = 1. Using
[9, Theorem 5.68], we can verify that equation (3.2) is oscillatory due to Theorem 2.4.
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