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Abstract

In this article, the concept of convexity is considered. Generalizations of
this concept, that were examined by different authors, are briefly given.
In this paper, a study of two forms of abstract convexity is undertaken:
one of which is B-convexity which was defined and analyzed byW. Briec
and C. Horvath, the other being B−1-convexity which is introduced and
examined by us.
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1. Introduction

Convexity is one of the most important topics in mathematics. It has many fields of
applications. Convex functions play a central role in many branches of applied mathe-
matics, especially optimization theory and the theory of inequalities. A large number of
optimization methods use properties of convex functions. However most real life problems
use a nonconvex mathematical model, since they represent the reality more accurately.
In many cases, in spite of the nonconvexity of these functions, they retain some of the
nice properties and characteristics of convex functions. This led to generalizations of the
concept of convexity. A lot of authors has given and examined different generalizations of
the classical concept of convexity (see [1]-[7] ,[10]-[12] and references therein). These gen-
eralizations has found important applications specially related to applied mathematics,
economics, etc.

In this paper, we refer to abstract convexity which is a generalization of convexity.
Abstract convexity is determined by two forms: Topological abstract convexity, which
based on the fulfilment of some conditions related to a family of functions on a given set
and its image set, Functional abstract convexity which is based on separability. In this
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work, B-convexity and B−1-convexity are considered. B-convexity, which was introduced
in [4] and studied in [4, 5, 6] by Briec W. and Horvath C., is one of these concepts. The
other one is B−1-convexity, that is defined and examined by us.

In section 2, some important definitions and theorems of classic convexity are given.
In section 3, in general, two ways of abstracting convexity are discussed. In the fourth
section, there are vital theorems and definitions associated with B-convexity. In section
5, the concept of B−1-convexity is defined and theorems for this concept are proved.

2. Classic convexity

Let X be a vector space and x1, . . . , xm ∈ X. A vector sum

λ1x1 + · · ·+ λmxm

is called a convex combination of x1, . . . , xm if the coefficients λi are any non-negative
real numbers and λ1 + · · ·+ λm = 1.

2.1. Definition. A subset of X is convex if it contains all the convex combinations of
its elements.

Let f be a function whose values are real or ±∞ and whose domain is a subset S of
X. The set

{(x,µ) : x ∈ S, µ ∈ R, µ ≥ f(x)}

is called the epigraph of f and is denoted by epi(f). f is defined to be a convex function
on S if epi(f) is convex as a subset of X × R.

2.2. Theorem. [9] Let f be a function from S to (−∞,+∞], where S is a convex subset
of X. Then f is convex on S if, and only if,

f ((1− λ)x+ λy) ≤ (1− λ) f(x) + λf(y), 0 < λ < 1,

for every x and y in S. �

2.3. Theorem. [9, Theorem 12.1] A closed convex function (i.e. epi(f) is a closed set
in R

n+1) f is the pointwise supremum of the collection of all affine functions h such that
h ≤ f . �

3. Abstractions of convexity

There are two large branches of abstract convexity: functional abstract convexity and
topological abstract convexity. Here, only a short description of these notions is given
(see [12] for the definition, details and examples).

Topological abstract convexity: Let C be a set. For each positive integer m ≥ 2, consider
a set Vm ⊂ R

m. Let a family of functions φm : Cm × Vm → C be given. It is assumed
that there are some links between Vm with different m and between φm with different
m. A set U ⊂ C is called abstract convex with respect to the family φm if

(x1, . . . , xm ∈ U, (α1, . . . , αm) ∈ Vm) =⇒ φm (x1, . . . , xm, α1, . . . , αm) ∈ U,

m = 2, 3, . . . .

Functional abstract convexity: Let C be a set and H a set of functions h : C → R. A set
U ⊂ C is called abstract convex with respect to H if each point x that does not belong
to U can be separated from U by a function from H , that is, there exist h ∈ H such
that h(x) > supu∈Uh(u). A function f is called abstract convex with respect to H if this
function can be represented as the upper envelope of a subset of H . The set H is called
a set of elementary functions in such a setting.



Generalizations of the Concept of Convexity 725

While defining the H-convexity of functions, the H-convexity of sets is used.

3.1. Definition. Let H be a set of functions h : X ×R → R and f : X → R a function,
where X is a vector space. If the set of epi(f) = {(x,µ) : µ ≥ f(x), µ ∈ R} is convex
with respect to H , then f is called H-convex.

Using the Theorem 2.3, the concept of convexity of functions can be generalized as
follows:

3.2. Definition. [10] Let R = R ∪ {−∞} ∪ {+∞} and let H be a nonempty set of

functions h : X → R. A function f : X → R is called abstract convex with respect to H
(or H-convex) if there exists a set V ⊂ H such that f is the upper envelope of this set:

f(x) = sup {h(x) : h ∈ V }

for all x ∈ X.

The concept of convexity is generalized in other ways and they can be represented
as the above statements. In this sense, the concept of B-convexity, which is examined
by W. Briec and C. Horvath, and B−1-convexity, which is defined and analyzed by G.
Adilov and I. Yesilce, are given in detail below.

4. B-convexity

For all r ∈ N the map x 7→ ϕr(x) = x2r+1 is a homeomorphism from R to itself;
x = (x1, . . . , xn) 7→ Φr(x) = (ϕr(x1), . . . , ϕr(xn)) is a homeomorphism from R

n to itself.
For a finite nonempty set A = {x1, . . . , xm} ⊂ R

n , the r-convex hull of A, which is
denoted by Cor(A), is given by

Cor(A) =

{

Φ−1
r

(

m
∑

i=1

tiΦr(xi)

)

: ti ≥ 0,

m
∑

i=1

ti = 1

}

.

The structure of B-convex sets, shortly to be defined, will involve the order structure

with respect to the positive cone of R
n; denoted by

m
∨

i=1

xi, the least upper bound of

x1, . . . , xm ∈ R
n, that is:

m
∨

i=1

xi = (max {x1,1, . . . , xm,1} , . . . ,max {x1,n, . . . , xm,n}) .

The limit hull of a finite set A is defined as the Kuratowski–Painleve upper limit of the
sequence of sets {Cor(A)}

r∈N
(The Kuratowski–Painleve upper limit of the sequence of

sets {An} is
⋂

n

⋃

k

An+k; it is also the set of points p for which there exists an increasing

sequence {nk}k∈N
and points pnk

∈ Ank
such that p = limk→∞ pnk

) [8].

4.1. Definition. The Kuratowski–Painleve upper limit of the sequence of sets
(Cor(A))

r∈N
, where A is finite, will be denoted by Co∞(A), and Co∞(A) is called the

B-polytope of A.

It can be shown that in R
n
+ =

{

(x1, . . . , xn) : xi ≥ 0, i = 1, n
}

, the upper-limit is in
fact a limit and that elements of Co∞(A) have a simple analytic description:

4.2. Theorem. For all nonempty finite subset A = {x1, . . . , xm} ⊂ R
n
+ we have

Co∞(A) = Limr→∞Cor(A) =

{

m
∨

i=1

tixi : ti ∈ [0, 1], max
1≤i≤m

{ti} = 1

}

. �

4.3. Definition. A subset S of Rn is B-convex if for all finite subsets A ⊂ S the B-
polytope Co∞(A) is contained in S.
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The following theorem can be proved by using Theorem 4.2 (see [5]) and consequently,
for subsets of Rn

+, B-convexity can be defined in a different way.

4.4. Theorem. A subset S of Rn
+ is B-convex if, and only if, for all x1, x2 ∈ S and all

λ ∈ [0, 1] one has λx1 ∨ x2 ∈ S.

In the following, there are some properties of B-convex sets:

(1) The empty set, Rn, as well as all the singletons are B-convex;
(2) If {Sλ : λ ∈ Λ} is an arbitrary family of B-convex sets, then

⋂

λ
Sλ is B-convex;

(3) If {Sλ : λ ∈ Λ} is a family of B-convex sets such that ∀λ1, λ2 ∈ Λ,∃λ3 ∈ Λ such
that Sλ1

∪ Sλ2
⊂ Sλ3

, then
⋃

λ
Sλ is B-convex.

Given a set S ⊂ R
n, the intersection of all the B-convex subsets of Rn containing S is

called the B-convex hull of S. A large number of the theorems about the B-convex hull
have been proved in [4].

Furthermore, some topological properties of B-convex sets are studied in [4]:

4.5. Theorem. If S is a B-convex subset of R
n
+, then U∞(S, δ) = {x : ‖y − x‖∞ <

δ, y ∈ S} is also B-convex. �

It can be shown that the closure of a B-convex subset of Rn
+ is B-convex by using

Theorem 4.5. Also a theorem about the interior of a B-convex set is proved [4]:

4.6. Theorem. The interior of a B-convex subset of Rn
+ is B-convex.

5. B
−1-convexity

For r ∈ Z−, where Z− is the set of negative integers, the map x → ϕr(x) = x2r+1 is
a homeomorphism from K = R\ {0} to itself; likewise x = (x1, x2, . . . , xn) 7→ Φr(x) =
(ϕr(x1), ϕr(x2), . . . , ϕr(xn)) is homeomorphism from Kn to itself.

For a finite nonempty set A = {x1, x2, . . . , xm} ⊂ Kn, the Φr-convex hull (shortly,
r-convex hull) of A, which we denote by Cor(A) is given by

Cor(A) =

{

Φ−1
r

(

m
∑

i=1

tiΦr(xi)

)

: ti ≥ 0,
m
∑

i=1

ti = 1

}

.

We denote by
m
∧

i=1

xi the greatest lower bound of x1, x2, . . . , xm ∈ R
n, that is:

m
∧

i=1

xi = (min {x1,1, . . . , xm,1} , . . . ,min {x1,n, . . . , xm,n}) .

Now let us define the B−1-polytopes.

5.1. Definition. The Kuratowski-Painleve upper limit of the sequence of sets
{Cor(A)}

r∈Z− , where A is finite, will be denoted by Co−∞(A); that is the set of points
x ∈ Kn for which there exist a decreasing sequence {rk}k∈N

and points xrk ∈ Cork(A)

such that x = limk→∞ xrk . And Co−∞(A) is called the B−1-polytope of A.

For B−1-convexity, Theorem 4.2 has the following form.

5.2. Theorem. For all nonempty finite subsets A = {x1, . . . , xm} ⊂ R
n
++ we have

Co−∞(A) = lim
r→−∞

Cor(A) =

{

m
∧

i=1

tixi : ti ≥ 1, min
1≤i≤m

ti = 1

}

.

To prove this theorem, we use Lemma 5.3.
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5.3. Lemma.

a) For any decreasing sequence of negative integer numbers {rk}k∈N
and for any

a ∈ Km

lim
k→∞

(

m
∑

i=1

|ai|
rk

) 1
r
k

= min
i=1,...,m

|ai| .

b) If
{

a(k)
}

k∈N
is a sequence in Km which converges to a = (a1, a2, . . . , am) ∈ Km

and if {rk}k∈N
is a decreasing sequence of negative integers, then

lim
k→∞

(

m
∑

i=1

∣

∣

∣
a
(k)
i

∣

∣

∣

rk

) 1
r
k

= min
i=1,...,m

|ai| .

c) If x1, x2, . . . , xm ∈ R
n
++, then given a convergent sequence of positive real num-

bers {λk,i}k∈N
, i = 1, . . . ,m, whose limits are respectively λ1, λ2, . . . , λm and a

decreasing sequence of negative integers {rk}k∈N
,

lim
k→∞

(

λk,1x1

rk
+ λk,2x2

rk
+ · · ·

rk
+ λk,mxm

)

=
m
∧

i=1

λixi.

This lemma can be shown easily.

Proof of Theorem 5.2 First we show that
{

m
∧

i=1

tixi : ti ≥ 1, min
1≤i≤m

ti = 1

}

⊂ Lir→−∞Cor(A).

With λ1, λ2, . . . , λm ∈ [1,∞) and min1≤i≤m {λi} = 1, let x = λ1x1 ∧ λ2x2 ∧ · · · ∧ λmxm.
If

yr =
1

λ1

r

+ λ2

r

+ · · ·
r

+ λm

(

λ1
r
· x1

r

+ λ2
r
· x2

r

+ · · ·
r

+ λm

r
· xm

)

then yr ∈ Cor(A). Since x1, x2, . . . , xm ∈ R
n
++ and (see Lemma 5.3(a))

lim
r→−∞

(

λ1

r

+ λ2

r

+ · · ·
r

+ λm

)

= lim
r→−∞

(

m
∑

i=1

λ2r+1
i

) 1
2r+1

= min
1≤i≤m

λi

we obtain that (see Lemma 5.3(c))

lim
r→−∞

yr = lim
r→−∞

(

λ1
r
· x1

r

+ λ2
r
· x2

r

+ · · ·
r

+ λm

r
· xm

)

= λ1x1 ∧ λ2x2 ∧ · · · ∧ λmxm = x.

Next, let us verify that

Lsr→−∞Cor(A) ⊂

{

∧

i=1,...,m

tixi : ti ∈ [1,∞), min
1≤i≤m

ti = 1

}

.

Take x ∈ Lsr→−∞Cor(A); there is a decreasing sequence {rk}k∈N
and a sequence

{pk}k∈N
of points such that pk ∈ Cork(A) and limk→∞ pk = x, therefore

pk = (pk,1, pk,2, . . . , pk,n) = λk,1
rk
· x1

rk
+ λk,2

rk
· x2

rk
+ · · ·

rk
+ λk,m

rk
· xm

=





[

m
∑

i=1

λ
2rk+1
k,i x

2rk+1
i,1

] 1
2r

k
+1

, . . . ,

[

m
∑

i=1

λ
2rk+1
k,i x

2rk+1
i,n

] 1
2r

k
+1



 .
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Since λk = (λk,1, λk,2, . . . , λk,m) ∈ [1,∞)m we can presume that the sequence {λk}k∈N

converges to a point λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
m) ∈ [1,∞)m. Furthermore

lim
k→∞

(

m
∑

i=1

λ2rk+1
k,i

) 1
2r

k
+1

= min
1≤i≤m

{λ∗
i }

and, from
m
∑

i=1

λ2rk+1
k,i = 1 we have

min
1≤i≤m

{λ∗
i } = 1.

Consequently, (see Lemma 5.3(b))

lim
k→∞

pk,j = lim
k→∞

(

m
∑

i=1

λ2rk+1
k,i x2rk+1

i,j

) 1
2r

k
+1

= min
1≤i≤m

{λ∗
i xi,j} ,

we have shown that x =
m
∧

i=1

λ∗
i xi, with min1≤i≤m {λ∗

i } = 1. Hence, we obtain that

Lsr→−∞Cor(A) ⊂

{

∧

i=1,..,m

tixi : ti ∈ [1,∞), min
1≤i≤m

ti = 1

}

⊂ Lir→−∞Cor(A).

Since Lir→−∞Cor(A) ⊂ Lsr→−∞Cor(A) is always valid, the theorem is proved. �

We can define B−1-convex sets as follows:

5.4. Definition. A subset S of Kn is called B−1-convex if for all finite subsets A ⊂ S
the B−1-polytope Co−∞(A) is contained in S.

By Theorem 5.2, we can reformulate the above definition for subsets of Rn
++ as follows:

5.5. Theorem. A subset S of Rn
++ is B−1-convex if, and only if, for all x1, x2 ∈ S and

all λ ∈ [1,∞) one has λx1 ∧ x2 ∈ S. �

The proofs of the following obvious, but nonetheless important propositions, are left
to the reader.

5.6. Theorem.

(a) The emptyset, Kn, as well as the singletons are B−1-convex;
(b) If {Sλ : λ ∈ Λ} is an arbitrary family of B−1-convex sets, then

⋂

λ Sλ is B−1-
convex;

(c) If {Sλ : λ ∈ Λ} is a family of B−1-convex sets such that ∀λ1, λ2 ∈ Λ, ∃λ3 ∈ Λ
such that Sλ1

⋃

Sλ2
⊂ Sλ3

, then
⋃

λ Sλ is B−1-convex. �

5.7. Definition. Given a set S ⊂ Kn, the intersection of all the B−1-convex subsets of
Kn containing S is called the B−1-convex hull of S and we denote it by B

−1[S].

The next theorem can be shown easily.

5.8. Theorem. The following properties hold:

(a) B
−1[∅] = ∅, B−1[Kn] = Kn for all x ∈ Kn, B−1[{x}] = {x};

(b) For all S ⊂ Kn, S ⊂ B
−1[S] and B

−1
[

B
−1[S]

]

= B
−1[S];

(c) For all S1, S2 ⊂ Kn, if S1 ⊂ S2 then B
−1[S1] ⊂ B

−1[S2];
(d) For all S ⊂ Kn, B−1[S] =

⋃
{

B
−1[A] : A is a finite subset of S

}

;

(e) A subset S ⊂ Kn is B−1-convex if, and only if, for all finite subsets A of S,
B

−1[A] ⊂ S. �
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We show some topological properties of B−1-convex sets:

If S is B-convex, then all δ neighborhoods U∞(S, δ) of S are B-convex (Theorem 4.5).
This theorem does not hold for B−1-convexity. That is, the δ neighborhood U∞(S, δ)
of a B−1-convex set S ⊂ R

n
++ need not be a B−1-convex set, as can be seen from the

following example:

5.9. Example. Let S ⊂ R
2
++ be the line segment between (2, 2) and (5, 5) and U∞(S, δ)

the δ neighborhood of S for δ = 1.1. Then, S is B−1-convex set but U∞(S, δ) is not a
B−1-convex set. Indeed, x = (1, 3) ∈ U∞(S, δ) and y = (4, 6) ∈ U∞(S, δ); however for
λ = 2, z = λx ∧ y = (2, 6) ∧ (4, 6) = (2, 6) /∈ U∞(S, δ).

5.10. Theorem. The closure of a B−1-convex subset of Rn
++ is B−1-convex.

Proof. Let S be a B−1-convex subset of R
n
++ and let S̄ be the closure of S. If x =

limk→∞ xk and y = limk→∞ yk with xk, yk ∈ S for all k ∈ N , then, since (x, y) 7→ λx∧ y
is continuous, for all λ ∈ [1,∞), λx ∧ y = limk→∞ λxk ∧ yk ∈ S̄. �

5.11. Theorem. The interior of a B−1-convex subset of Rn
++ is B−1-convex.

Proof. Let S be a B−1-convex subset of Rn
++ with nonempty interior; if x1, x2 are in

int(S) there are open sets W1,W2 of Rn
++ such that xi ∈ Wi ⊂ S, i = 1, 2. Fix ρ1, ρ2 ∈

[1,∞) such that min {ρ1, ρ2} = 1 and let

ρ1W1 ∧ ρ2W2 = {ρ1z1 ∧ ρ2z2 : z1 ∈ W1, z2 ∈ W2} .

We have ρ1x1 ∧ ρ2x2 ∈ ρ1W1 ∧ ρ2W2 ⊂ S; we show that ρ1W1 ∧ ρ2W2 is open.

ρ1W1 and ρ2W2 are open, since x 7→ ρix, i = 1, 2 are homeomorphisms of Rn
++ onto

themselves, let ρ1W1 = U and ρ2W2 = V . We have reduced the general proof to the
proof of the following statement: if U and V are open subsets of Rn

++ then U ∧ V is also
open in R

n
++. Let us show that this is the case. Let x = y ∧ z with y ∈ U and z ∈ V ;

there exists δ > 0 such that U∞ (y, δ) ⊂ U and U∞ (z, δ) ⊂ V ; we have to find ǫ > 0 such
that U∞ (x, ǫ) ⊂ U ∧ V .

For all i = 1, . . . , n we have xi = min {yi, zi}; we distinguish two cases (three by
symmetry):

(1) xi = yi = zi. If |x′
i − xi| < δ we can find y′

i and z′i such that |y′
i − yi| < δ,

|z′i − zi| < δ and x′
i = min {y′

i, z
′
i}; simply take x′

i = y′
i = z′i.

(2) xi = yi < zi. If |x′
i − xi| < min

{

δ, 2−1 (zi − yi)
}

, then with y′
i = x′

i and z′i = zi
we have x′

i = min {y′
i, z

′
i}, |y

′
i − yi| < δ and |z′i − zi| < δ.

Put I (y) = {i : yi < zi} , I (z) = {i : zi < yi} and

ǫ = min{δ, 2−1 (zi − yi) , 2
−1 (yj − zj) : (i, j) ∈ I(y)× I(z)};

we have shown that U∞ (x, ǫ) ⊂ U∞ (y, δ) ∧ U∞ (z, δ) ⊂ U ∧ V . �
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