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Abstract

The number of negative eigenvalues of the “weighted” Schrödinger op-
erator with point δ-interactions are found and by means of the Floquet
theory, stability or instability of the solutions to periodic “weighted”
equations with δ-interactions are determined.
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1. Introduction and main results

Problems on the study of the Schrödinger operator with short interaction potential (of
δ-function type) have appeared in the physical literature. Mathematical investigations of
appropriate physical models were initiated at the beginning of the sixties in the papers [2,
9]. This theme has developed intensively in the last three decades. There is a monograph
[1] where one can be acquainted with details of the Berezin-Minlos-Faddeev theory in its
contemporary state and other new directions arising from this theory. In the same place,
one can find a wide bibliography.

We use the following notation: C
(n)(a, b) is the linear space of scalar complex-valued

functions which are n-times continuously differentiable on (a, b), L2(a, b) is the linear
space of scalar complex-valued functions on (a, b), which have square summable modules,
m is in N and fixed, x0 = −∞, and xm+1 = +∞.

The “weighted” one-dimensional Schrödinger operator Lq
ρ( or Lq

X,α) with a point δ-

interaction on a finite set X = {x1, x2, . . . , xm} with intensities α = {α1, α2, . . . , αm} is
defined by the differential expression

(1.1) ℓqρ[y] ≡
1

ρ(x)

d

dx

(

ρ(x)
dy

dx

)

+ q(x)y
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on functions y(x) that belong to the space L2(−∞,∞), where the “weighted” function

ρ(x) = 1 +
m
∑

k=1

αkδ(x − xk) and q(x) is a scalar real-valued nonnegative function on

(−∞,∞) such that

∞
∫

−∞

(

1 + x2
)

q(x) dx <∞.

In this formula, αk > 0, xk(x1 < x2 < · · · < xm) (k = 1, 2, ,m = 1,m) are real numbers.
Note that in [8, 5] the inverse problem of the operator L0

ρ(q(x) ≡ 0), with the function

ρ(x) = ρ21(x) satisfying
ρ′1(x)

ρ1(x)
∈ L2(0, 1) is investigated.

The operator Lq
ρ is self-adjoint on L2(−∞,∞).

Here, the approach is based on the idea of approximation of the generalized “weight”
with smooth “weight”s.

Consider the differential expression

ℓqρε [y] ≡ −
1

ρε(x)

d

dx

(

ρε(x)
dy

dx

)

+ q(x)y,

where the density function

ρε(x) = 1 +
1

ε

m
∑

k=1

αkχε(x− xk),

is defined using the characteristic function

χε(x) =

{

1, for x ∈ [0, ε],

0, for x /∈ [0, ε],
ε < min

i=2,m
{xi − xi−1}.

Notice that the density function ρε(x) is chosen so that it converges to ρ(x) as ε → 0+

(see [12]). Therefore, the approximation equation is of the form:

(1.2) ℓqρε [y] = λy −∞ < x <∞.

Agree that the solution of equation (1.2) is any function y(x) determined on (−∞,∞)
for which the following conditions are fulfilled:

1) y(x) ∈ C
2(xk, xk + ε) ∩ C

2(xk + ε, xk+1) for k = 0, m;
2) −y′′(x) + q(x)y(x) = λy(x) x ∈ (xk, xk + ε) ∪ (xk + ε, xk+1), k = 0,m;
3) y(x+

k ) = y(x−
k ), (1 + αk

1
ε
)y′(x+

k ) = y′(x−
k ) for k = 1,m;

4) y((xk+ε)
+) = y((xk+ε)

−), y′((xk+ε)
+) = (1+αk

1
ε
)y′((xk+ε)

−) for k = 1,m.

These conditions guarantee that the functions y(x) and ρε(x)y
′(x) are continuous at the

points xk and xk + ε, (k = 1, m).

The paper comprises two sections. Section 2 determines the spectrum operator Lq
ρ.

Section 3 cover the basic Floquet theory, properties of the discriminant and the existence
of the stability and instability intervals.

2. Nature of the spectrum of the operator Lq

ρ

In connection with important applications to problems of Quantum Mechanics (see
[1]) it is of interest to study the spectral characteristics of the operator Lq

ρ.

It is well-known (see [10]) that the equation

−y′′(x) + q(x)y(x) = λy(x), x ∈ (−∞,∞)
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has two linear independent solutions ϕ1(x, λ), ϕ2(x, λ), any solution of the equation
y(x, λ) has the following representation

y(x, λ) = C1ϕ1(x, λ) + C2ϕ2(x, λ),

where C1, C2 are some numbers, moreover for Imλ 6= 0 or λ < 0

0
∫

−∞

|ϕ2(x, λ)|
2 dx <∞,

∞
∫

0

|ϕ1(x, λ)|
2 dx <∞,

0
∫

−∞

|ϕ1(x, λ)|
2 dx =

∞
∫

0

|ϕ2(x, λ)|
2 dx = ∞.

Then we can write any solution of equation (1.2) in the form

yε(x, λ) =



















Cε
1ϕ1(x, λ) + Cε

2ϕ2(x, λ), if x ∈ (−∞, x1),

Cε
4k−1ϕ1(x, λ) + Cε

4kϕ2(x, λ), if x ∈ (xk, xk + ε), (k = 1,m),

Cε
4k+1ϕ1(x, λ) + Cε

4k+2ϕ2(x, λ), if x ∈ (xk + ε, xk+1), (k = 1,m− 1),

Cε
4m+1ϕ1(x, λ) + Cε

4m+2ϕ2(x, λ), if x ∈ (xm + ε,∞),

where Cε
k (k = 1, 4m+ 2) are some constant numbers such that for y(x, λ) conditions 3)

and 4) are fulfilled.

Define the operator Lq
ρε generated in the Hilbert space L2(−∞,∞) by the differential

expression ℓqρε [y]. The domain of definition of the operator Lq
ρε is the set of all functions

belonging to L2(−∞,∞) and satisfying the conditions 1)–4).

Let Rε
λ be the resolvent of the operator Lq

ρε , and Rλ the resolvent of the operator

Lq
1(αk ≡ 0, k = 1,m).

2.1. Theorem. Let Imλ 6= 0, then Rε
λ −Rλ is a finite-dimensional operator whose rank

doesn’t exceed 2m.

Proof. We construct the resolvent of the operator Lq
ρε for Imλ 6= 0. For that we solve in

L2(−∞,∞) the problem

(2.1)



















−y′′(x) + q(x)y(x) = λy(x) + F (x), x 6= xk, xk + ε
(

k = 1, m
)

y(x+
k ) = y(x−

k ), (1 + αk
1
ε
)y′(x+

k ) = y′(x−
k ) (k = 1, m)

y((xk + ε)+) = y((xk + ε)−)
(

k = 1, m
)

,

y′((xk + ε)+) = (1 + αk
1
ε
)y′((xk + ε)−)

(

k = 1,m
)

,

where F (x) is an arbitrary function belonging to L2(−∞,∞).

By the Lagrange method (see [10]) the solution of problem (2.1) takes the form

yε(x, λ)

= −
1

W [ϕ1, ϕ2]

∞
∫

−∞

R(x, t;λ)F (t)dt

−
1

W [ϕ1, ϕ2]



















bε2ϕ2(x, λ), −∞ < x < x1

bε4k−1ϕ1(x, λ) + bε4kϕ2(x, λ), xk < x < xk + ε,
(

k = 1, m
)

bε4k+1ϕ1(x, λ) + bε4k+2ϕ2(x, λ), xk + ε < x < xk+1,
(

k = 1, m− 1
)

bε4m+1ϕ1(x, λ), xm < x <∞,
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where

R(x, , t;λ) =

{

ϕ1(x, λ)ϕ2(t, λ), t ≤ x

ϕ1(t, λ)ϕ2(x, λ), t ≥ x

and bεj (j = 2, 4m+ 1) are arbitrary numbers.

Write

ϕj,k = ϕj(xk, λ), ϕ
′
j,k = ϕ′

j(xk, λ), ϕ
′
j,k+ε = ϕj(xk + ε, λ), ϕ′

j,k+ε = ϕ′
j(xk + ε, λ);

R′
h(F ) =















∞
∫

−∞

R(xk, , t;λ)F (t)dt, if h = 2k − 1,

∞
∫

−∞

R(xk + ε, t;λ)F (t) dt, if h = 2k,

Ah =

{

−αk, h = 2k − 1,

αk, h = 2k,

(

k = 1,m
)

; Dε(λ) = det(Mε
4m(λ)),

where Mε
4m(λ) =





















−ϕ2,1 ϕ1,1 ϕ2,1 0 0 · · ·

−ϕ
′

2,1 (1 +
α1
ε

)ϕ′

1,1 (1 +
α1
ε

)ϕ′

2,1 0 0 · · ·

0 −ϕ1,1+ε −ϕ2,1+ε ϕ1,1+ε ϕ2,1+ε · · ·

0 −(1 +
α1
ε

)ϕ′

1,1+ε
−(1 +

α1
ε

)ϕ′

2,1+ε
−ϕ

′

1,1+ε
ϕ2,1+ε · · ·

· · · · · · · · · · · · · · · · · ·

· · · −ϕ1,m −ϕ2,m ϕ1,m ϕ2,m 0
· · · −ϕ

′

1,m −ϕ
′

2,m (1 + αm

ε
)ϕ′

1,m (1 + αm

ε
)ϕ′

2,m 0
· · · 0 0 −ϕ1,m+ε

−ϕ2,m+ε
ϕ1,m+ε

· · · 0 0 −(1 + αm

ε
)ϕ′

1,m+ε
−(1 + αm

ε
)ϕ′

2,m+ε
ϕ

′

1,m+ε





















Then for defining the number bεj , from the conditions of problem (2.1) we get the sys-

temMε
4m(λ)Bε = 1

ε
AR′, where Bε = col(bε2, b

ε
3, . . . , b

ε
4m+1)AR

′ = col(0, A1R
′
1, 0, A2R

′
2, . . .,

0, A2mR
′
2m).

Define the set Γ = {λ : Imλ 6= 0, Dε(λ) = 0}. For λ /∈ Γ we have

bεj =
1

εDε(λ)

2m
∑

p=1

ApR
′
pM

ε
4m,2p,j(λ),

whereMε
4m,2p,j(λ) is an algebraic complement of the elementmi,j of the matrixMε

4m(λ) =
(mi,j)4m×4m. If we introduce the denotation

Xε
p (x, λ) =



































A1M
ε
4m,2p,1 (λ)ϕ2 (x, λ) , x ∈ (−∞, x1) ,

Ak

[

Mε
4m,2p,4k−2 (λ)ϕ1 (x, λ)

+Mε
4m,2p,4k−1 (λ)ϕ2 (x, λ)

]

,
x ∈ (xk, xk + ε)

(

n = 1, m
)

,

Ak

[

Mε
4m,2p,4k (λ)ϕ1 (x, λ)

+Mε
4m,2p,4k+1 (λ)ϕ2 (x, λ)

]

,
x ∈ (xk + ε, xk+1)

(

n = 1, m− 1
)

,

AmM
ε
4m,2p,4m (λ)ϕ1 (x, λ) , x ∈ (xm + ε,∞) ,

for p = 1, m, then the solution of problem (2.1) takes the form

(2.2)

Rε
λ (F ) ≡ yε (x, λ)

= −
1

W [ϕ1, ϕ2]





∞
∫

−∞

R (x, t;λ)F (t) dt+
1

εDε (λ)

2m
∑

p=1

Xε
p (x, λ)Rp (F )



 ,

where

Xε
p ( . , λ) ∈ L2 (−∞,∞)

(

p = 1, 2m
)

, Imλ 6= 0, λ /∈ Γ
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as ε→ 0+ form expression (2.2) the finite-dimensionality of the operator Rε
λ−Rλ follows

and its rank does not exceed 2m. �

Since the operator Lq
ρ is self-adjoint, consequently its spectrum is real.

2.2. Theorem. Let all intensities of the δ-interactions αk > 0, k = 1, m. Then the
spectrum of the operator Lq

ρ consists of the absolutely continuous part [0,+∞) and has
exactly m distinct eigenvalues on the negative half-line, that are determined as roots of
the equation Dε (λ) = 0,

(

ε→ 0+
)

.

Proof. By the conditions

∞
∫

−∞

(

1 + x2
)

q (x) dx <∞ and q (x) ≥ 0,

the spectrum of the operator Lq
1

(

αk ≡ 0, k = 1,m
)

is absolutely continuous and co-
incides with the set [0,+∞). Since the operator Rq

ρ − Rq
1 is finite dimensional then

according to the known results of [3, 6], the absolutely continuous part of the spectrum
of the operator Lq

ρ coincides with the absolutely continuous part of the spectrum of the

operator Lq
1

(

αk ≡ 0, k = 1, m
)

, i.e. with [0,+∞). According to [7], the spectrum of

the operator Lq
ρ may differ from the spectrum of the operator Lq

1

(

αk ≡ 0, k = 1, m
)

only
by finitely many negative eigenvalues. Furthermore, the number of these eigenvalues is
exactly m. �

3. On Floquet’s solutions for a periodic “weight” equation

In this section we will state the Floquet theory (see [4]) for the equation

(3.1) ℓqρ [y] = λy, −∞ < x <∞

that clarifies the structure of the space of solutions of this equation for each complex value
of the parameter λ. Notice that the “weight” function ρ (x) = 1 + α

∑∞

n=−∞
δ (x−Nn)

and the coefficient q (x) is a real valued periodic continuous function with a period equal
to N , α 6= 0 and N ≥ 1 are real and natural numbers, respectively. The spectral analysis
of this equation in the case α ≡ 0 was stated in detail in [4, 11].

3.1. Definition. For the given real value of the parameter λ, equation (3.1) is said to be
stable if all its solutions are bounded on the axis (−∞,∞), instable if all its solutions are
not bounded on the axis (−∞,∞), conditionally stable if the has at least one non-trivial
solution bounded on the whole of the axis (−∞,∞).

Consider the differential expression

ℓqρε [y] ≡ −
1

ρε (x)

d

dx

(

ρε (x)
dy

dx

)

+ q (x) y.

Here, the density of the function

ρε (x) = 1 +
α

ε

∞
∑

n=−∞

χε (x−Nn)

is determined by means of the characteristic function

χε (x) =

{

1, for x ∈ [0, ε] ,

0, for x /∈ [0, ε] , ε≪ N.
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Notice that the density of the function ρε (x) is chosen so that as ε → 0+ it approaches
the function ρ (x). The approximation equation is of the form:

(3.2) ℓqρε [y] = λy,−∞ < x <∞.

Agree that a solution of equation (3.2) is any function y (x, λ) determined on (−∞,∞)
for which the following conditions are fulfilled.

(1) y (x) ∈ C
2 (Nn,Nn+ ε) ∩ C

2(Nn+ ε,N(n+ 1)) for n ∈ Z = {. . . ,−1, 0, 1, . . .};
(2) −y′′ (x)+q (x) y (x) = λy (x) for x ∈ (Nn,Nn+ ε)∪(Nn+ ε,N(n+ 1)) , n ∈ Z;

(3) y
(

(Nn)+
)

= y
(

(Nn)−
)

,
(

1 + α
ε

)

y
(

(Nn)+
)

= y
(

(Nn)−
)

for n ∈ Z;

(4) y
(

(Nn+ ε)+
)

= y
(

(Nn+ ε)−
)

, y′
(

(Nn+ ε)+
)

=
(

1 + α
ε

)

y′
(

(Nn+ ε)−
)

, for
n ∈ Z.

These conditions guarantee that y (x) and ρε (x) y
′ (x) are continuous functions at the

points Nn and Nn+ ε (n ∈ Z).

If y (x) is a solution of equation (3.1), it follows from the periodicity of the functions
ρ (x) and q (x) that y (x+N) will be also a solution of this equation. However, generally
speaking, y (x) 6= y (x+N). We will show that there always exists a non-zero number
p = p (λ) and a non-trivial solution ψ (x, λ) of equation (3.2), such that

(3.3)
ψ (0, λ) = pψ (N,λ) ,

(

1 +
α

ε

)

ψ′ (N,λ) = pψ′ (N, λ)

ψ
(

ε+, λ
)

= ψ
(

ε−, λ
)

, ψ′
(

ε+, λ
)

=
(

1 +
α

ε

)

ψ′
(

ε−, λ
)

.

To this end, we consider a fundamental system of solutions θ (x, λ) , ϕ (x, λ) of the equa-
tion −y′′ + q (x) y = λy that will be determined by means of the initial conditions:

(3.4) θ (0, λ) = ϕ′ (0, λ) = 1, θ′ (0, λ) = ϕ (0, λ) = 0

The general solution of equation (3.2) will be of the form:

(3.5) ψε (x, λ) =

{

cε1θ (x, λ) + cε2ϕ (x, λ) , for 0 < x < ε,

cε3θ (x, λ) + cε4ϕ (x, λ) , for ε < x < N.

Substituting (3.5) in (3.3), for the definition of the constants Cε
i , i = 1, 4 in (3.5) we get

a homogeneous linear system of equations whose non-trivial solvability condition is the
relation

(3.6)

∣

∣

∣

∣

∣

∣

∣

∣

1 0 −pθ (N,λ) −pϕ (N, λ)
0 1 + α

ε
−pθ (N,λ) −pϕ′ (N,λ)

θ (ε, λ) ϕ (ε, λ) −θ (ε, λ) −ϕ (ε, λ)
(

1 + α
ε

)

θ′ (ε, λ)
(

1 + α
ε

)

ϕ′ (ε, λ) −θ (ε, λ) −ϕ′ (ε, λ)

∣

∣

∣

∣

∣

∣

∣

∣

= 0

By (3.4) we have the identity

(3.7) θ (x, λ)ϕ′ (x, λ)− θ′ (x, λ)ϕ (x, λ) = 1

According to (3.7), as ε→ 0+, equation (3.6) is arranged in the form

(3.8) p2 −
[

θ (N,λ) + ϕ′ (N,λ)− αλϕ (N,λ)
]

p+ 1 = 0

Since, this equation has always the root p, and obviously its roots are non-zero, re-
duced reasoning proves the existence of a non-trivial solution ψ (x,N) of equation (3.1)
possessing the property ψ (x, λ) = pψ (x+N,λ).

Introducing the function

F (λ) =
1

2

[

θ (N,λ) + ϕ′ (N,λ)− αλϕ (N, λ)
]

with parameter λ we rewrite equation (3.8) in the form

(3.9) p2 − 2F (λ) p+ 1 = 0
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The function F (λ) is said to be a discriminant, the roots of the equation (3.9) the
multiplicators of equation (3.1).

From Definition 3.1 and results in [4], we obtain the following theorem.

3.2. Theorem. For fixed λ ∈ (−∞,∞), the equation (3.1) is instable if |F (λ)| > 1 and
stable if |F (λ)| < 1 and also stable if |F (λ)| = 1 and θ′ (N, λ) = 2αλ, ϕ (N,λ) = 0.
Finally if |F (λ)| = 1 and θ′ (N,λ) 6= 2αλ or ϕ (N,λ) 6= 0 then (3.1) is conditionally
stable. �
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