ON THE "WEIGHTED" SCHRÖDINGER OPERATOR WITH POINT δ-INTERACTIONS ${ }^{\dagger}$

Manaf Dzh. Manafov*

Received 02:07:2011 : Accepted 05:04:2012

Abstract

The number of negative eigenvalues of the "weighted" Schrödinger operator with point δ-interactions are found and by means of the Floquet theory, stability or instability of the solutions to periodic "weighted" equations with δ-interactions are determined.

Keywords: "Weighted" Schrödinger operator, Point δ-interactions, Negative eigenvalues.

2000 AMS Classification: 47 A 10, 47 E 05, 34L 05.

1. Introduction and main results

Problems on the study of the Schrödinger operator with short interaction potential (of δ-function type) have appeared in the physical literature. Mathematical investigations of appropriate physical models were initiated at the beginning of the sixties in the papers [2, 9]. This theme has developed intensively in the last three decades. There is a monograph [1] where one can be acquainted with details of the Berezin-Minlos-Faddeev theory in its contemporary state and other new directions arising from this theory. In the same place, one can find a wide bibliography.

We use the following notation: $\mathbb{C}^{(n)}(a, b)$ is the linear space of scalar complex-valued functions which are n-times continuously differentiable on $(a, b), L_{2}(a, b)$ is the linear space of scalar complex-valued functions on (a, b), which have square summable modules, m is in \mathbb{N} and fixed, $x_{0}=-\infty$, and $x_{m+1}=+\infty$.

The "weighted" one-dimensional Schrödinger operator $L_{\rho}^{q}\left(\right.$ or $\left.L_{X, \alpha}^{q}\right)$ with a point δ interaction on a finite set $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ with intensities $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ is defined by the differential expression

$$
\begin{equation*}
\ell_{\rho}^{q}[y] \equiv \frac{1}{\rho(x)} \frac{d}{d x}\left(\rho(x) \frac{d y}{d x}\right)+q(x) y \tag{1.1}
\end{equation*}
$$

[^0]on functions $y(x)$ that belong to the space $L_{2}(-\infty, \infty)$, where the "weighted" function $\rho(x)=1+\sum_{k=1}^{m} \alpha_{k} \delta\left(x-x_{k}\right)$ and $q(x)$ is a scalar real-valued nonnegative function on $(-\infty, \infty)$ such that
$$
\int_{-\infty}^{\infty}\left(1+x^{2}\right) q(x) d x<\infty .
$$

In this formula, $\alpha_{k}>0, x_{k}\left(x_{1}<x_{2}<\cdots<x_{m}\right)(k=1,2, m=\overline{1, m})$ are real numbers. Note that in $[8,5]$ the inverse problem of the operator $L_{\rho}^{0}(q(x) \equiv 0)$, with the function $\rho(x)=\rho_{1}^{2}(x)$ satisfying $\frac{\rho_{1}^{\prime}(x)}{\rho_{1}(x)} \in L_{2}(0,1)$ is investigated.

The operator L_{ρ}^{q} is self-adjoint on $L_{2}(-\infty, \infty)$.
Here, the approach is based on the idea of approximation of the generalized "weight" with smooth "weight"s.

Consider the differential expression

$$
\ell_{\rho_{\varepsilon}}^{q}[y] \equiv-\frac{1}{\rho_{\varepsilon}(x)} \frac{d}{d x}\left(\rho_{\varepsilon}(x) \frac{d y}{d x}\right)+q(x) y
$$

where the density function

$$
\rho_{\varepsilon}(x)=1+\frac{1}{\varepsilon} \sum_{k=1}^{m} \alpha_{k} \chi_{\varepsilon}\left(x-x_{k}\right)
$$

is defined using the characteristic function

$$
\chi_{\varepsilon}(x)=\left\{\begin{array}{ll}
1, & \text { for } x \in[0, \varepsilon], \\
0, & \text { for } x \notin[0, \varepsilon],
\end{array} \quad \varepsilon<\min _{i=\overline{2, m}}\left\{x_{i}-x_{i-1}\right\}\right.
$$

Notice that the density function $\rho_{\varepsilon}(x)$ is chosen so that it converges to $\rho(x)$ as $\varepsilon \rightarrow 0^{+}$ (see [12]). Therefore, the approximation equation is of the form:

$$
\begin{equation*}
\ell_{\rho_{\varepsilon}}^{q}[y]=\lambda y-\infty<x<\infty . \tag{1.2}
\end{equation*}
$$

Agree that the solution of equation (1.2) is any function $y(x)$ determined on $(-\infty, \infty)$ for which the following conditions are fulfilled:

1) $y(x) \in \mathbb{C}^{2}\left(x_{k}, x_{k}+\varepsilon\right) \cap \mathbb{C}^{2}\left(x_{k}+\varepsilon, x_{k+1}\right)$ for $k=\overline{0, m}$;
2) $-y^{\prime \prime}(x)+q(x) y(x)=\lambda y(x) \quad x \in\left(x_{k}, x_{k}+\varepsilon\right) \cup\left(x_{k}+\varepsilon, x_{k+1}\right), k=\overline{0, m}$;
3) $y\left(x_{k}^{+}\right)=y\left(x_{k}^{-}\right),\left(1+\alpha_{k} \frac{1}{\varepsilon}\right) y^{\prime}\left(x_{k}^{+}\right)=y^{\prime}\left(x_{k}^{-}\right)$for $k=\overline{1, m}$;
4) $y\left(\left(x_{k}+\varepsilon\right)^{+}\right)=y\left(\left(x_{k}+\varepsilon\right)^{-}\right), y^{\prime}\left(\left(x_{k}+\varepsilon\right)^{+}\right)=\left(1+\alpha_{k} \frac{1}{\varepsilon}\right) y^{\prime}\left(\left(x_{k}+\varepsilon\right)^{-}\right)$for $k=\overline{1, m}$.

These conditions guarantee that the functions $y(x)$ and $\rho_{\varepsilon}(x) y^{\prime}(x)$ are continuous at the points x_{k} and $x_{k}+\varepsilon,(k=\overline{1, m})$.

The paper comprises two sections. Section 2 determines the spectrum operator L_{ρ}^{q}. Section 3 cover the basic Floquet theory, properties of the discriminant and the existence of the stability and instability intervals.

2. Nature of the spectrum of the operator $L_{\rho}^{\boldsymbol{q}}$

In connection with important applications to problems of Quantum Mechanics (see [1]) it is of interest to study the spectral characteristics of the operator L_{ρ}^{q}.

It is well-known (see [10]) that the equation

$$
-y^{\prime \prime}(x)+q(x) y(x)=\lambda y(x), x \in(-\infty, \infty)
$$

has two linear independent solutions $\varphi_{1}(x, \lambda), \varphi_{2}(x, \lambda)$, any solution of the equation $y(x, \lambda)$ has the following representation

$$
y(x, \lambda)=C_{1} \varphi_{1}(x, \lambda)+C_{2} \varphi_{2}(x, \lambda)
$$

where C_{1}, C_{2} are some numbers, moreover for $\operatorname{Im} \lambda \neq 0$ or $\lambda<0$

$$
\begin{aligned}
& \int_{-\infty}^{0}\left|\varphi_{2}(x, \lambda)\right|^{2} d x<\infty, \int_{0}^{\infty}\left|\varphi_{1}(x, \lambda)\right|^{2} d x<\infty \\
& \int_{-\infty}^{0}\left|\varphi_{1}(x, \lambda)\right|^{2} d x=\int_{0}^{\infty}\left|\varphi_{2}(x, \lambda)\right|^{2} d x=\infty
\end{aligned}
$$

Then we can write any solution of equation (1.2) in the form

$$
y^{\varepsilon}(x, \lambda)= \begin{cases}C_{1}^{\varepsilon} \varphi_{1}(x, \lambda)+C_{2}^{\varepsilon} \varphi_{2}(x, \lambda), & \text { if } x \in\left(-\infty, x_{1}\right), \\ C_{4 k-1}^{\varepsilon} \varphi_{1}(x, \lambda)+C_{4 k}^{\varepsilon} \varphi_{2}(x, \lambda), & \text { if } x \in\left(x_{k}, x_{k}+\varepsilon\right),(k=\overline{1, m}), \\ C_{4 k+1}^{\varepsilon} \varphi_{1}(x, \lambda)+C_{4 k+2}^{\varepsilon} \varphi_{2}(x, \lambda), & \text { if } x \in\left(x_{k}+\varepsilon, x_{k+1}\right),(k=\overline{1, m-1}), \\ C_{4 m+1}^{\varepsilon} \varphi_{1}(x, \lambda)+C_{4 m+2}^{\varepsilon} \varphi_{2}(x, \lambda), & \text { if } x \in\left(x_{m}+\varepsilon, \infty\right),\end{cases}
$$

where $C_{k}^{\varepsilon}(k=\overline{1,4 m+2})$ are some constant numbers such that for $y(x, \lambda)$ conditions 3$)$ and 4) are fulfilled.

Define the operator $L_{\rho_{\varepsilon}}^{q}$ generated in the Hilbert space $L_{2}(-\infty, \infty)$ by the differential expression $\ell_{\rho_{\varepsilon}}^{q}[y]$. The domain of definition of the operator $L_{\rho_{\varepsilon}}^{q}$ is the set of all functions belonging to $L_{2}(-\infty, \infty)$ and satisfying the conditions 1$\left.)-4\right)$.

Let $R_{\lambda}^{\varepsilon}$ be the resolvent of the operator $L_{\rho_{\varepsilon}}^{q}$, and R_{λ} the resolvent of the operator $L_{1}^{q}\left(\alpha_{k} \equiv 0, k=\overline{1, m}\right)$.
2.1. Theorem. Let $\operatorname{Im} \lambda \neq 0$, then $R_{\lambda}^{\varepsilon}-R_{\lambda}$ is a finite-dimensional operator whose rank doesn't exceed $2 m$.

Proof. We construct the resolvent of the operator $L_{\rho_{\varepsilon}}^{q}$ for $\operatorname{Im} \lambda \neq 0$. For that we solve in $L_{2}(-\infty, \infty)$ the problem

$$
\left\{\begin{array}{l}
-y^{\prime \prime}(x)+q(x) y(x)=\lambda y(x)+F(x), x \neq x_{k}, x_{k}+\varepsilon(k=\overline{1, m}) \tag{2.1}\\
y\left(x_{k}^{+}\right)=y\left(x_{k}^{-}\right),\left(1+\alpha_{k} \frac{1}{\varepsilon}\right) y^{\prime}\left(x_{k}^{+}\right)=y^{\prime}\left(x_{k}^{-}\right)(k=\overline{1, m}) \\
y\left(\left(x_{k}+\varepsilon\right)^{+}\right)=y\left(\left(x_{k}+\varepsilon\right)^{-}\right)(k=\overline{1, m}), \\
y^{\prime}\left(\left(x_{k}+\varepsilon\right)^{+}\right)=\left(1+\alpha_{k} \frac{1}{\varepsilon}\right) y^{\prime}\left(\left(x_{k}+\varepsilon\right)^{-}\right)(k=\overline{1, m}),
\end{array}\right.
$$

where $F(x)$ is an arbitrary function belonging to $L_{2}(-\infty, \infty)$.
By the Lagrange method (see [10]) the solution of problem (2.1) takes the form

$$
\begin{aligned}
& y^{\varepsilon}(x, \lambda) \\
& \quad=-\frac{1}{W\left[\varphi_{1}, \varphi_{2}\right]} \int_{-\infty}^{\infty} R(x, t ; \lambda) F(t) d t \\
& \\
& \quad-\frac{1}{W\left[\varphi_{1}, \varphi_{2}\right]} \begin{cases}b_{2}^{\varepsilon} \varphi_{2}(x, \lambda), & -\infty<x<x_{1} \\
b_{4 k-1}^{\varepsilon} \varphi_{1}(x, \lambda)+b_{4 k}^{\varepsilon} \varphi_{2}(x, \lambda), & x_{k}<x<x_{k}+\varepsilon,(k=\overline{1, m}) \\
b_{4 k+1}^{\varepsilon} \varphi_{1}(x, \lambda)+b_{4 k+2}^{\varepsilon} \varphi_{2}(x, \lambda), & x_{k}+\varepsilon<x<x_{k+1}, \quad(k=\overline{1, m-1}) \\
b_{4 m+1}^{\varepsilon} \varphi_{1}(x, \lambda), & x_{m}<x<\infty,\end{cases}
\end{aligned}
$$

where

$$
R(x,, t ; \lambda)= \begin{cases}\varphi_{1}(x, \lambda) \varphi_{2}(t, \lambda), & t \leq x \\ \varphi_{1}(t, \lambda) \varphi_{2}(x, \lambda), & t \geq x\end{cases}
$$

and $b_{j}^{\varepsilon}(j=\overline{2,4 m+1})$ are arbitrary numbers.
Write

$$
\begin{aligned}
& \varphi_{j, k}=\varphi_{j}\left(x_{k}, \lambda\right), \varphi_{j, k}^{\prime}=\varphi_{j}^{\prime}\left(x_{k}, \lambda\right), \varphi_{j, k+\varepsilon}^{\prime}=\varphi_{j}\left(x_{k}+\varepsilon, \lambda\right), \varphi_{j, k+\varepsilon}^{\prime}=\varphi_{j}^{\prime}\left(x_{k}+\varepsilon, \lambda\right) ; \\
& R_{h}^{\prime}(F)= \begin{cases}\int_{-\infty}^{\infty} R\left(x_{k},, t ; \lambda\right) F(t) d t, & \text { if } h=2 k-1, \\
\int_{-\infty}^{\infty} R\left(x_{k}+\varepsilon, t ; \lambda\right) F(t) d t, & \text { if } h=2 k,\end{cases} \\
& A_{h}=\left\{\begin{array}{ll}
-\alpha_{k}, & h=2 k-1, \quad(k=\overline{1, m}) ; \\
\alpha_{k}, & h=2 k,
\end{array}, D^{\varepsilon}(\lambda)=\operatorname{det}\left(M_{4 m}^{\varepsilon}(\lambda)\right),\right.
\end{aligned}
$$

where $M_{4 m}^{\varepsilon}(\lambda)=$

$$
\begin{aligned}
& \left.\left[\begin{array}{ccccc}
-\varphi_{2,1} & \varphi_{1,1} & \varphi_{2,1} & 0 & 0 \\
-\varphi_{2,1}^{\prime} & \left(1+\frac{\alpha_{1}}{\varepsilon}\right) \varphi_{1,1}^{\prime} & \left(1+\frac{\alpha_{1}}{\varepsilon}\right) \varphi_{2,1}^{\prime} & 0 & 0 \\
0 & -\varphi_{1,1+\varepsilon} & -\varphi_{2,1+\varepsilon} & \varphi_{1,1+\varepsilon} & \cdots \\
0 & -\left(1+\frac{\alpha_{1}}{\varepsilon}\right) \varphi_{1,1+\varepsilon}^{\prime} & -\left(1+\frac{\alpha_{1}}{\varepsilon}\right) \varphi_{2,1+\varepsilon}^{\prime} & \cdots & -\varphi_{1,1+\varepsilon}^{\prime} \\
\cdots & \cdots & -\varphi_{2, m} & \cdots & \varphi_{2,1+\varepsilon} \\
\cdots & -\varphi_{1, m} & -\varphi_{2, m}^{\prime} & \left(1+\frac{\alpha_{m}}{\varepsilon}\right) \varphi_{1, m}^{\prime} & \left(1+\frac{\alpha_{m}}{\varepsilon}\right) \varphi_{2, m}^{\prime} \\
\cdots & 0 & -\varphi_{1, m+\varepsilon} & \cdots \\
\cdots & -\varphi_{1, m}^{\prime} & 0 & -\left(1+\frac{\alpha_{m}}{\varepsilon}\right) \varphi_{1, m+\varepsilon}^{\prime} & -\left(1+\frac{\alpha_{m}}{\varepsilon}\right) \varphi_{2, m+\varepsilon}^{\prime} \\
\cdots & 0 & 0 & & \varphi_{1, m+\varepsilon}^{\prime}
\end{array}\right] .\right]
\end{aligned}
$$

Then for defining the number b_{j}^{ε}, from the conditions of problem (2.1) we get the sys$\operatorname{tem} M_{4 m}^{\varepsilon}(\lambda) B^{\varepsilon}=\frac{1}{\varepsilon} A R^{\prime}$, where $B^{\varepsilon}=\operatorname{col}\left(b_{2}^{\varepsilon}, b_{3}^{\varepsilon}, \ldots, b_{4 m+1}^{\varepsilon}\right) A R^{\prime}=\operatorname{col}\left(0, A_{1} R_{1}^{\prime}, 0, A_{2} R_{2}^{\prime}, \ldots\right.$, $\left.0, A_{2 m} R_{2 m}^{\prime}\right)$.

Define the set $\Gamma=\left\{\lambda: \operatorname{Im} \lambda \neq 0, D^{\varepsilon}(\lambda)=0\right\}$. For $\lambda \notin \Gamma$ we have

$$
b_{j}^{\varepsilon}=\frac{1}{\varepsilon D^{\varepsilon}(\lambda)} \sum_{p=1}^{2 m} A_{p} R_{p}^{\prime} M_{4 m, 2 p, j}^{\varepsilon}(\lambda)
$$

where $M_{4 m, 2 p, j}^{\varepsilon}(\lambda)$ is an algebraic complement of the element $m_{i, j}$ of the matrix $M_{4 m}^{\varepsilon}(\lambda)=$ $\left(m_{i, j}\right)_{4 m \times 4 m}$. If we introduce the denotation

$$
X_{p}^{\varepsilon}(x, \lambda)=\left\{\begin{array}{cl}
A_{1} M_{4 m, 2 p, 1}^{\varepsilon}(\lambda) \varphi_{2}(x, \lambda), & x \in\left(-\infty, x_{1}\right), \\
A_{k}\left[M_{4 m, 2 p, 4 k-2}^{\varepsilon}(\lambda) \varphi_{1}(x, \lambda)\right. & x \in\left(x_{k}, x_{k}+\varepsilon\right)(n=\overline{1, m}), \\
\left.+M_{4 m, 2 p, 4 k-1}^{\varepsilon}(\lambda) \varphi_{2}(x, \lambda)\right], & \\
A_{k}\left[M_{4 m, 2 p, 4 k}^{\varepsilon}(\lambda) \varphi_{1}(x, \lambda)\right. & x \in\left(x_{k}+\varepsilon, x_{k+1}\right)(n=\overline{1, m-1}), \\
\left.+M_{4 m, 2 p, 4 k+1}^{\varepsilon}(\lambda) \varphi_{2}(x, \lambda)\right], & x \in\left(x_{m}+\varepsilon, \infty\right),
\end{array}\right.
$$

for $p=\overline{1, m}$, then the solution of problem (2.1) takes the form

$$
\begin{align*}
R_{\lambda}^{\varepsilon}(F) & \equiv y^{\varepsilon}(x, \lambda) \\
& =-\frac{1}{W\left[\varphi_{1}, \varphi_{2}\right]}\left[\int_{-\infty}^{\infty} R(x, t ; \lambda) F(t) d t+\frac{1}{\varepsilon D^{\varepsilon}(\lambda)} \sum_{p=1}^{2 m} X_{p}^{\varepsilon}(x, \lambda) R_{p}(F)\right] \tag{2.2}
\end{align*}
$$

where

$$
X_{p}^{\varepsilon}(., \lambda) \in L^{2}(-\infty, \infty)(p=\overline{1,2 m}), \operatorname{Im} \lambda \neq 0, \lambda \notin \Gamma
$$

as $\varepsilon \rightarrow 0^{+}$form expression (2.2) the finite-dimensionality of the operator $R_{\lambda}^{\varepsilon}-R_{\lambda}$ follows and its rank does not exceed $2 m$.

Since the operator L_{ρ}^{q} is self-adjoint, consequently its spectrum is real.
2.2. Theorem. Let all intensities of the δ-interactions $\alpha_{k}>0, k=\overline{1, m}$. Then the spectrum of the operator L_{ρ}^{q} consists of the absolutely continuous part $[0,+\infty)$ and has exactly m distinct eigenvalues on the negative half-line, that are determined as roots of the equation $D^{\varepsilon}(\lambda)=0,\left(\varepsilon \rightarrow 0^{+}\right)$.

Proof. By the conditions

$$
\int_{-\infty}^{\infty}\left(1+x^{2}\right) q(x) d x<\infty \text { and } q(x) \geq 0
$$

the spectrum of the operator $L_{1}^{q}\left(\alpha_{k} \equiv 0, k=\overline{1, m}\right)$ is absolutely continuous and coincides with the set $[0,+\infty)$. Since the operator $R_{\rho}^{q}-R_{1}^{q}$ is finite dimensional then according to the known results of $[3,6]$, the absolutely continuous part of the spectrum of the operator L_{ρ}^{q} coincides with the absolutely continuous part of the spectrum of the operator $L_{1}^{q}\left(\alpha_{k} \equiv 0, k=\overline{1, m}\right)$, i.e. with $[0,+\infty)$. According to [7], the spectrum of the operator L_{ρ}^{q} may differ from the spectrum of the operator $L_{1}^{q}\left(\alpha_{k} \equiv 0, k=\overline{1, m}\right)$ only by finitely many negative eigenvalues. Furthermore, the number of these eigenvalues is exactly m.

3. On Floquet's solutions for a periodic "weight" equation

In this section we will state the Floquet theory (see [4]) for the equation

$$
\begin{equation*}
\ell_{\rho}^{q}[y]=\lambda y,-\infty<x<\infty \tag{3.1}
\end{equation*}
$$

that clarifies the structure of the space of solutions of this equation for each complex value of the parameter λ. Notice that the "weight" function $\rho(x)=1+\alpha \sum_{n=-\infty}^{\infty} \delta(x-N n)$ and the coefficient $q(x)$ is a real valued periodic continuous function with a period equal to $N, \alpha \neq 0$ and $N \geq 1$ are real and natural numbers, respectively. The spectral analysis of this equation in the case $\alpha \equiv 0$ was stated in detail in [4, 11].
3.1. Definition. For the given real value of the parameter λ, equation (3.1) is said to be stable if all its solutions are bounded on the axis $(-\infty, \infty)$, instable if all its solutions are not bounded on the axis $(-\infty, \infty)$, conditionally stable if the has at least one non-trivial solution bounded on the whole of the axis $(-\infty, \infty)$.

Consider the differential expression

$$
\ell_{\rho_{\varepsilon}}^{q}[y] \equiv-\frac{1}{\rho_{\varepsilon}(x)} \frac{d}{d x}\left(\rho_{\varepsilon}(x) \frac{d y}{d x}\right)+q(x) y
$$

Here, the density of the function

$$
\rho_{\varepsilon}(x)=1+\frac{\alpha}{\varepsilon} \sum_{n=-\infty}^{\infty} \chi_{\varepsilon}(x-N n)
$$

is determined by means of the characteristic function

$$
\chi_{\varepsilon}(x)= \begin{cases}1, & \text { for } x \in[0, \varepsilon], \\ 0, & \text { for } x \notin[0, \varepsilon], \varepsilon \ll N .\end{cases}
$$

Notice that the density of the function $\rho_{\varepsilon}(x)$ is chosen so that as $\varepsilon \rightarrow 0^{+}$it approaches the function $\rho(x)$. The approximation equation is of the form:
(3.2) $\quad \ell_{\rho_{\varepsilon}}^{q}[y]=\lambda y,-\infty<x<\infty$.

Agree that a solution of equation (3.2) is any function $y(x, \lambda)$ determined on $(-\infty, \infty)$ for which the following conditions are fulfilled.
(1) $y(x) \in \mathbb{C}^{2}(N n, N n+\varepsilon) \cap \mathbb{C}^{2}(N n+\varepsilon, N(n+1))$ for $n \in \mathbb{Z}=\{\ldots,-1,0,1, \ldots\}$;
(2) $-y^{\prime \prime}(x)+q(x) y(x)=\lambda y(x)$ for $x \in(N n, N n+\varepsilon) \cup(N n+\varepsilon, N(n+1)), n \in \mathbb{Z}$;
(3) $y\left((N n)^{+}\right)=y\left((N n)^{-}\right),\left(1+\frac{\alpha}{\varepsilon}\right) y\left((N n)^{+}\right)=y\left((N n)^{-}\right)$for $n \in \mathbb{Z}$;
(4) $y\left((N n+\varepsilon)^{+}\right)=y\left((N n+\varepsilon)^{-}\right), y^{\prime}\left((N n+\varepsilon)^{+}\right)=\left(1+\frac{\alpha}{\varepsilon}\right) y^{\prime}\left((N n+\varepsilon)^{-}\right)$, for $n \in \mathbb{Z}$.
These conditions guarantee that $y(x)$ and $\rho_{\varepsilon}(x) y^{\prime}(x)$ are continuous functions at the points $N n$ and $N n+\varepsilon(n \in \mathbb{Z})$.

If $y(x)$ is a solution of equation (3.1), it follows from the periodicity of the functions $\rho(x)$ and $q(x)$ that $y(x+N)$ will be also a solution of this equation. However, generally speaking, $y(x) \neq y(x+N)$. We will show that there always exists a non-zero number $p=p(\lambda)$ and a non-trivial solution $\psi(x, \lambda)$ of equation (3.2), such that

$$
\begin{align*}
\psi(0, \lambda) & =p \psi(N, \lambda),\left(1+\frac{\alpha}{\varepsilon}\right) \psi^{\prime}(N, \lambda)=p \psi^{\prime}(N, \lambda) \\
\psi\left(\varepsilon^{+}, \lambda\right) & =\psi\left(\varepsilon^{-}, \lambda\right), \psi^{\prime}\left(\varepsilon^{+}, \lambda\right)=\left(1+\frac{\alpha}{\varepsilon}\right) \psi^{\prime}\left(\varepsilon^{-}, \lambda\right) \tag{3.3}
\end{align*}
$$

To this end, we consider a fundamental system of solutions $\theta(x, \lambda), \varphi(x, \lambda)$ of the equation $-y^{\prime \prime}+q(x) y=\lambda y$ that will be determined by means of the initial conditions:

$$
\begin{equation*}
\theta(0, \lambda)=\varphi^{\prime}(0, \lambda)=1, \theta^{\prime}(0, \lambda)=\varphi(0, \lambda)=0 \tag{3.4}
\end{equation*}
$$

The general solution of equation (3.2) will be of the form:

$$
\psi^{\varepsilon}(x, \lambda)= \begin{cases}c_{1}^{\varepsilon} \theta(x, \lambda)+c_{2}^{\varepsilon} \varphi(x, \lambda), & \text { for } 0<x<\varepsilon \tag{3.5}\\ c_{3}^{\varepsilon} \theta(x, \lambda)+c_{4}^{\varepsilon} \varphi(x, \lambda), & \text { for } \varepsilon<x<N\end{cases}
$$

Substituting (3.5) in (3.3), for the definition of the constants $C_{i}^{\varepsilon}, i=\overline{1,4}$ in (3.5) we get a homogeneous linear system of equations whose non-trivial solvability condition is the relation

$$
\left|\begin{array}{cccc}
1 & 0 & -p \theta(N, \lambda) & -p \varphi(N, \lambda) \tag{3.6}\\
0 & 1+\frac{\alpha}{\varepsilon} & -p \theta(N, \lambda) & -p \varphi^{\prime}(N, \lambda) \\
\theta(\varepsilon, \lambda) & \varphi(\varepsilon, \lambda) & -\theta(\varepsilon, \lambda) & -\varphi(\varepsilon, \lambda) \\
\left(1+\frac{\alpha}{\varepsilon}\right) \theta^{\prime}(\varepsilon, \lambda) & \left(1+\frac{\alpha}{\varepsilon}\right) \varphi^{\prime}(\varepsilon, \lambda) & -\theta(\varepsilon, \lambda) & -\varphi^{\prime}(\varepsilon, \lambda)
\end{array}\right|=0
$$

By (3.4) we have the identity

$$
\begin{equation*}
\theta(x, \lambda) \varphi^{\prime}(x, \lambda)-\theta^{\prime}(x, \lambda) \varphi(x, \lambda)=1 \tag{3.7}
\end{equation*}
$$

According to (3.7), as $\varepsilon \rightarrow 0^{+}$, equation (3.6) is arranged in the form

$$
\begin{equation*}
p^{2}-\left[\theta(N, \lambda)+\varphi^{\prime}(N, \lambda)-\alpha \lambda \varphi(N, \lambda)\right] p+1=0 \tag{3.8}
\end{equation*}
$$

Since, this equation has always the root p, and obviously its roots are non-zero, reduced reasoning proves the existence of a non-trivial solution $\psi(x, N)$ of equation (3.1) possessing the property $\psi(x, \lambda)=p \psi(x+N, \lambda)$.

Introducing the function

$$
F(\lambda)=\frac{1}{2}\left[\theta(N, \lambda)+\varphi^{\prime}(N, \lambda)-\alpha \lambda \varphi(N, \lambda)\right]
$$

with parameter λ we rewrite equation (3.8) in the form

$$
\begin{equation*}
p^{2}-2 F(\lambda) p+1=0 \tag{3.9}
\end{equation*}
$$

The function $F(\lambda)$ is said to be a discriminant, the roots of the equation (3.9) the multiplicators of equation (3.1).

From Definition 3.1 and results in [4], we obtain the following theorem.
3.2. Theorem. For fixed $\lambda \in(-\infty, \infty)$, the equation (3.1) is instable if $|F(\lambda)|>1$ and stable if $|F(\lambda)|<1$ and also stable if $|F(\lambda)|=1$ and $\theta^{\prime}(N, \lambda)=2 \alpha \lambda, \varphi(N, \lambda)=0$. Finally if $|F(\lambda)|=1$ and $\theta^{\prime}(N, \lambda) \neq 2 \alpha \lambda$ or $\varphi(N, \lambda) \neq 0$ then (3.1) is conditionally stable.

Acknowledgement

This work was supported by Grant No. FEFBAP 2009/0013 of Adıyaman University, Research Project Coordination (ADYUBAP), Turkey.

References

[1] Albeverio, G., Gesztesy, F., Hoegh-Krohn, R. and Holden,H. Solvable Models in Quantum Mechanics (2nd edition) (AMS Chelsa Publishing, Providence, RI, 2005).
[2] Berezin, F. A. and Faddeev, L. D. Remarks on Schrödinger equation with singular potential, Dokl. Akad. Nauk. 137 (7), 1011-1014, 1961 (in Russian).
[3] Birman, M. Sh. and Solomyak, M. Z. Spectral Theory of Self-adjoint Operators in Hilbert Space (D. Reidel Pulb.Co., Dordrecht, Holland, 1987).
[4] Eastham, M. S. P. The Spectral Theory of Periodic Differential Equations (Scottish Academic Press, Edinburgh, London, 1973).
[5] Hryniv, R. O. Analyticity and uniform stability in the inverse spectral problem for impedanse Sturm-Lioville operators, Carpatian Mathematical Publications 2 (1), 35-58, 2010.
[6] Kato, T. Theory of Perturbation of Linear Operators (M.:Mir, 1972).
[7] Knyazev, P. N. On the use of minimax properties in perturbation theory, Russian Mathematics (İzvestiya VUZ. Matematika) 2, 94-100, 1959.
[8] Korotyaev, E. Inverse problem for periodic "weighted" operators, J. Functional Analysis 170, 188-218, 2000.
[9] Minlos, R. A. and Faddeev, L. D. On pointwise interaction for a system of three particles in Quantum Mechannics, Dokl. Akad. Nauk. 141 (6), 1335-1338, 1961 (in Russian).
[10] Naimark, M. A. Linear Differential Operators (Frederick Ungar Publ. Co., New York, 1968).
[11] Titchmarsh, E. C. Eigenfunction Expansions Associated with Second Order Differential Equations, Part II. 2nd Ed. (Clarendon Press, Oxford, 1962).
[12] Vladimirov, V.S. Generalized Functions in Mathematical Physics (M.: Nauka, 1976) (in Russian).

[^0]: ${ }^{\dagger}$ Dedicated to the memory of M. G. Gasymov.
 *Adıyaman University, Faculty of Arts and Sciences, Department of Mathematics, Adıyaman, Turkey. E-mail: mmanafov@adiyaman.edu.tr

