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Abstract

We consider a geometric Lévy market model. Since these markets
are generally incomplete, we cannot find a unique martingale measure.
There are many ways to handle this problem. In this paper, we choose
the completion technique, firstly introduced in J.M. Corcuera, D. Nu-
alart and W. Schoutens (Completion of a Lévy market by power-jump
assets, Journal of Computational Finance, 7, 1–49, 2004), which em-
ploys special artificial assets called power-jump assets. The price pro-
cesses of power-jump assets are based on an orthogonalized family of
Teugel martingales. By using the Gram-Schmidt process and obtaining
the coefficients we express the price process of the power-jump assets
in terms of Teugel martingales. Afterwards, we derive pricing formulas
for European call options by using two methods: the martingale pricing
approach and the characteristic formula approach which is performed
via the fast Fourier transform (FFT). Throughout the pricing and ap-
plication to real market price data, jump sizes are assumed to have a
particular distribution.
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1. Introduction

During the past few decades financial analysts experienced significant success by using
simple diffusion models to approximate the returns of assets. The Black-Scholes (BS)
model [4], where the price dynamics are driven by the Wiener process, is the most
popular model in option pricing theory. However some well-known contradictions arising
in Black-Scholes revealed that a simple geometric Brownian motion (GBM) process fails
to represent some important features of the data. Assuming continuous paths for price
processes neglects unexpected movements. Also as Cont et. al. discuss in [7], various
empirical results show that sudden downward jumps have been observed in stock price
processes. To capture these essential characteristics and improve on the pricing and
hedging performance of the Black-Scholes model, recently the majority of the research
has been done on alternative pricing models such as the models where the jumps are
taken into account. Actually, it is possible to consider the models that incorporate
jumps in two separate classes. Processes that have almost surely a finite number of
jumps in every compact, and the processes with infinite jumps. In the first category,
called jump-diffusion models ([1] and [14]), the evolution of prices is given by a diffusion
process, intervened by jumps at random times where the jumps represent rare events.
It must contain a Brownian component and the distribution of jump sizes is known. In
this case the process is called a compound Poisson process with Brownian component.
Infinite activity models, which have infinitely many jumps in any finite time interval, fall
into the second category. For more detailed information on different types of geometric
Lévy models in finance see [7] and [12]. Because of the reasons we mentioned above,
we model the market by a geometric Lévy process. Due to the uncertainty of the jump
size distribution in the infinity activity models, we restrict ourselves to a jump-diffusion
model in pricing and application.

An important feature of the standard Black-Scholes model is that the market is com-
plete, that is, any contingent claim can be replicated by a self-financing portfolio. Incom-
pleteness arises in a market when the sources of randomness are more than the number
of assets traded. In this work, we model the market with a general Lévy process and
denote this process and the jump size at time t under equivalent martingale measure Q

as X̃t and △X̃s = X̃s − X̃s− for 0 ≤ t ≤ T respectively. Since the dynamics of the
market model is driven by a general Lévy process, the market becomes incomplete. In
the literature, there are different approaches towards the completion of a Lévy market.
We choose the completion technique, firstly introduced in Corcuera et. al. [9], where
the market is enlarged with special artificial assets called power-jump assets which will
be discussed in detail in Section 4. The orthogonalized price processes of power-jump

assets, H̄(i) = (H̄
(i)
t )0≤t≤T , are based on an orthogonalized family of Teugel martingales,

defined as follows:

H̄
(i)
t = e

rt
T̃

(i)
t , i ≥ 2.

Here r is the risk-free interest rate and the orthogonalized family of Teugel martingales

T̃ (i) = (T̃
(i)
t )0≤t≤T are derived by the following relation:

T̃
(i) = ai,iỸ

(i) + ai,i−1Ỹ
(i−1) + · · ·+ ai,1Ỹ

(1)
, i ≥ 1,

where an,k, k = 1, 2, . . . , n− 1, n = 2, 3, . . . are constant coefficients with ai,i = 1 for all

i ≥ 1. Here, Ỹ
(i)
t := X̃

(i)
t − IEQ[X̃

(i)
t ], 0 ≤ t ≤ T with X̃

(i)
t =

∑

0<s≤t
(△X̃s)

i are Teugel
martingales under the equivalent martingale measure Q. One of our main goals is to find
the coefficients an,k, k = 1, 2, . . . , n − 1, n = 2, 3, . . . explicitly, so that we acquire the
orthogonalized price processes of the power-jump assets. By its definition the power-jump
process of order two is just the quadratic variation process (see, e.g., [2] and [3]), and is
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closely linked with the so-called realized variance. Contracts on realized variance have
managed to get into OTC markets and are traded regularly. Higher order power-jump
processes have a similar relationship with realized skewness and realized kurtosis. Hence,
obtaining the coefficients plays an important role in pricing these assets.

The paper is organized as follows. The second section deals with some basic concepts
of Lévy processes. In Section 3, we introduce the framework of the geometric Lévy
market model. In Section 4, the market completion is examined under the conditions for
a unique equivalent martingale measure. In Section 5, we obtain the price of European
call options by the martingale pricing approach and the characteristic formula approach
which is performed via the fast Fourier transform (FFT). Finally, in Section 6 we conclude
with an application.

2. Lévy processes

In this section, we concisely recall some concepts of Lévy processes. For detailed
information, see [7] and [16]. We consider a filtered probability space (Ω,F, (Ft)t≥0,P)
where the filtration satisfies the following usual hypotheses:

(i) F0 contains all the the P-null sets of (Ft)t≥0,
(ii) Ft =

⋂

u>t
Fu, ∀t, 0 ≤ t ≤ ∞.

Throughout this study we will work on this complete filtered probability space. A real-
valued, adapted stochastic process X = (Xt)t≥0 with X0 = 0 a.s. is said to be a Lévy
process if it has independent, stationary increments and is stochastically continuous. A
Lévy process have a càdlàg modification [16] and throughout this paper, we only use the
càdlàg version. Let us denote the left limit process by Xt− , that is

Xt− = lim
s→t,s<t

Xs, for t > 0,

and the jump size at time t by △Xt = Xt − Xt− . It is known that the law of Xt is
infinitely divisible with characteristic function of the form

IE[exp(iθXt)] = (Φ(θ))t,

where Φ is the characteristic function ofX1. Moreover, Ψ = log(Φ) is called the character-
istic exponent. HereXt, t ∈ [0, T ] has a characteristic triplet (α, c2, ν). The characteristic
exponent that is given by the following expression, named the Lévy-Khintchine formula

Ψ(u) = iαu−
1

2
u
2
c
2 +

∫

R

(eiux − 1− iuxI{|x|<1}) ν(dx),

where α ∈ R, c ≥ 0, and the measure ν on R satisfies ν({0}) = 0 and
∫∞

−∞
(1∧x2) ν(dx) <

∞. Hence the characteristic triplet (α, c2, ν) defines the law of Xt. The measure ν on
R is called the Lévy measure of X. Its value for any A in the Borel sigma algebra, is
defined by

ν(A) = IE(#{t ∈ [0, 1] : △Xt 6= 0,△Xt ∈ A}).

3. The model

Let {Xt, t ≤ T} be a Lévy process satisfying the properties we mentioned in Section 2.
Our market consists of a risk-free asset (bank account process) denoted by Bt and a risky
asset denoted by St for t ∈ [0, T ]. We assume that the returns of the risk-free and the
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risky assets have the following dynamics, respectively:

dBt

Bt

= r dt,(3.1)

dSt

St−
= b dt+ dXt,(3.2)

with the initial conditions B0 = 1 and S0 ∈ R+. Here r is the constant risk-free interest
rate and b is the drift term. The solution to Equation (3.2) with initial condition S0 is
called the stochastic exponential of the process Xt + bt and is given by

ε(Xt + bt) = e
Xt+bt− 1

2
[Xc,Xc]t

∏

s≤t,△Xs 6=0

(1 +△Xs)e
−△Xs ,

where [Xc, Xc]t is the quadratic variation of the continuous part of the Lévy process.

By Lévy-Khintchine formula it can be showed that X has the following decomposition:

Xt = cWt + Lt,

where W = (Wt){0≤t≤T} is a Brownian motion and L = (Lt){0≤t≤T} is a pure jump
process which is independent ofW . By the Lévy-Itô decomposition, L can be decomposed
as follows:

(3.3) Lt = αt+

∫

(0,t]×{|x|<1}

x(N(ds, dx)− t ν(dx))) +

∫

(0,t]×{|x|≥1}

xN(ds, dx),

where N(dt, dx) is a Poisson random measure on (0,∞)×R− {0} with intensity dt× ν.
In the remainder of this study, we will assume that the Lévy measure satisfies, for some
ǫ > 0 and λ > 0,

∫

(−ε,ε)c
exp(λ | x |) ν(dx) <∞.

As g(x) = exp(λ | x |) is sub multiplicative, we deduce that L has a g-moment for every
t ∈ [0, T ], or equivalently the exponential moments IE(g(x)) exist by [16, Theorem 25.3].
Hence, this implies that

∫ ∞

−∞

| x |i ν(dx) <∞, i ≥ 2.

Since every Lévy process is a semi martingale, by the semi martingale decomposition
theorem L can be written as a sum of a martingale and a finite variation process as
follows:

Lt =Mt + at

Mt =

∫

(0,t]

∫

R

xN(ds, dx),

where N(dt, dx) is the compensated Poisson random measure defined as N(dt, dx) =
N(dt, dx)− dtν(dx). In the end, we have the following model for the returns of the risky
asset:

dSt

St−
= (a+ b)dt+ cdWt + dMt.

By applying the Itô formula for càdlàg semi martingales [7], the stock price process has
the following solution:

(3.4) St = S0 exp

(

cWt +Mt + (a+ b−
c2

2
)t

)

Π0<s≤t(1 +△Ms) exp(−△Ms).
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4. Equivalent Martingale measures

In this section, we investigate the structure preserving P-equivalent measures which
enable us to stay within an analytically tractable family of models. Under the structure-
preserving P-equivalent measures, X remains a Lévy process and the discounted stock
price S̃ = {S̃t = e−rtSt, 0 ≤ t ≤ T} is a martingale. Since we are working on a
market with finite horizon T , locally equivalence will be regarded as the equivalence.
The following theorem [16, Theorem 33.1. and 33.2] plays a very important role in
characterizing the triplets of X under the equivalent probability measure.

4.1. Theorem. Let X be a Lévy process with Lévy triplet (α, c2, ν) on the filtered com-
plete probability space (Ω,F, (Ft)t≥0,P). Then the following conditions are equivalent:

(i) There exists a probability measure Q, locally equivalent to P for any t ≥ 0, such
that X is a Q- Lévy process with triplet (α̃, c̃2, ν̃).

(ii) All of the following conditions hold:
(a) ν̃(dx) = H(x)ν(dx) where H : R → (0,∞) is a Borel function satisfying

the following:
∫ ∞

−∞

(1−
√

H(x))2ν(dx) <∞,

(b) α̃ = α+
∫∞

−∞
xI{|x|≤1}(H(x)− 1)ν(dx) +Gc for some G ∈ R,

(c) c̃ = c.

From now on, let us assume that a structure preserving the equivalent martingale
measure Q is given so that X remains a Lévy process. We know that under this measure
the discounted asset price process is a martingale and the process X̃ = {Xt+(b−r)t, 0 ≤
t ≤ T} is a Lévy process with the Lévy measure ν̃. Hence, we get the dynamics of a
risky asset under measure Q as follows:

dSt

St−
= r dt+ dX̃t.

Solving the above SDE, the discounted asset price process under Q denoted by S̃ is found
in the following form: (see [9])

S̃t = S0 exp

(

cW̃t + M̃t +

(

a+ b− r + cG−
c2

2

)

t

)

× exp

(

t

∫ ∞

−∞

x(H(x)− 1) ν(dx)

)

∏

0<s≤t

(1 +△M̃s) exp(−△M̃s).

Here, W̃ is the Brownian motion under structure preserving measure Q and

(4.1) M̃t =

∫

(0,t]

∫

R

xNQ(ds, dx),

where NQ(dt, dx) is the compensated Poisson random measure under Q, defined as

NQ(dt, dx) = NQ(dt, dx)− dtν̃(dx) and NQ(dt, dx) is the Poisson random measure under
Q.

The necessary and sufficient condition for S̃ to be a Q-martingale is the existence of
G and H(x) with the condition

∫∞

−∞
(1−

√

H(x))2 ν(dx) < ∞ such that

(4.2) cG + a+ b− r +

∫ ∞

−∞

x(H(x)− 1) ν(dx) = 0.
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4.1. The power-jump processes. Consider the process

(4.3) X̃
(i)
t =

∑

0<s≤t

(△X̃s)
i
, i ≥ 2,

where △X̃s = X̃s− X̃s− is just the jump size at time s under measure Q. Set X̃
(1)
t = X̃t.

Notice that, △X̃t = △L̃t since the two processes jump at the same point. We denote
the compensated power jump process of order i ≥ 1 as follows:

(4.4) Ỹ
(i)
t := X̃

(i)
t − IEQ[X̃

(i)
t ],

where

IEQ[X̃
(i)
t ] = IEQ





∑

0<s≤t

(△X̃s)
i



 = t

∫ ∞

−∞

x
i
ν̃(dx) = mit.

Here Ỹ (i) is a normal martingale specifically called a Teugel martingale, which are firstly
introduced in [15].

We are looking for a set of pairwise strongly orthogonal martingales {T̃ (i), i ≥ 1} such

that T̃ (i) is a linear combination of Ỹ (j) for j = 1, 2, . . . , i.

4.2. Theorem. Let Ỹ (i), i ≥ 1 be a Teugel martingale under measure Q described above.
Set

T̃
(i) = ai,iỸ

(i) + ai,i−1Ỹ
(i−1) + · · ·+ ai,1Ỹ

(1)
, i ≥ 1.

Then the coefficients in the Gram-Schmidt process are as follows:

(4.5) an,k = −
n−1
∑

i=k

〈Ỹ n, T̃ (i)〉2

〈T̃ (i), T̃ (i)〉2
ai,k,

for k = 1, 2, . . . , n− 1 and n = 2, 3, . . . with ai,i = 1 for all i ≥ 1. Here

〈Ỹ n
, T̃

(i)〉2 = IE
(

[Ỹ (n)
T̃

(i)]1
)

= mi+n + ai,i−1mi+n−1 + · · ·+ ai,1mn+1 + ai,1c̃
2
I{n=1}

and

〈T̃ (i)
, T̃

(i)〉2 = IE([T̃ (i)
T̃

(i)]1) =
i
∑

l=1

i
∑

l
′
=1

ai,lai,l′ml+l
′ + a

2
i,1c̃

2
.

Proof. We give a sketch of the proof. Let

T̃
(1) = Ỹ

(1)
.

By the Gram-Schmidt process,

(4.6) T̃
(2) = Ỹ

(2) −
〈Ỹ (2), Ỹ (1)〉2

〈Ỹ (1), Ỹ (1)〉2
Ỹ

(1)
.

Here 〈Ỹ (1), Ỹ (1)〉2 = m2 + c2 and 〈Ỹ (2), Ỹ (1)〉2 = m3. By induction, one can deduce the
above formula. �

The completeness of the market is proved in [9] using the Martingale Representation
Property (MRP), obtained in [15]. MRP allows any square integrable Q-martingale to
be represented as an orthogonal sum of stochastic integrals with respect to the orthog-

onalized martingales T̃ (i) = (T̃
(i)
t )0≤t≤T and implies that in the market enlarged with

the i-th power-jump assets, every square-integrable contingent claim can be replicated
by a sequence of self-financing portfolios. The following theorem, which is proved in [9],
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shows that the market enlarged with the i-th power-jump assets H(i) = {H
(i)
t , t ≥ 0}, is

complete, where

H
(i)
t = e

rt
Ỹ

(i)
t

and Ỹ (i) is the Teugel martingale defined in Equation (4.4).

4.3. Theorem. The Lévy market model enlarged with the i-th power-jump assets is
complete in the sense that any square integrable contingent claim X can be replicated,
that is, the final values of the self-financing portfolios will converge to X in the L2(Q)
sense. �

Since the market is complete by Theorem 4.3 and the completion is basically based
on the drift term, we can take H ≡ 1 in Theorem 4.2. We conclude that

ν̃(dx) = ν(dx),(4.7)

α̃ = α+ r − a− b,(4.8)

c̃ = c.(4.9)

Hence, under the unique martingale measure Q, one can define the Teugel martingales
as follows:

(4.10) Ỹ
(i)
t := X̃

(i)
t − IEQ[X̃

(i)
t ] = X̃

(i)
t − t

∫ ∞

−∞

x
i
ν(dx).

In practice, once we make the necessary assumptions on the distribution of the jump
sizes, we can calculate the Teugel martingales. Moreover, by Theorem 4.2, we get the
orthogonalized family of Teugel martingales T̃ . Note that, the completion technique
applied in this paper results in an arbitrage-free market as shown in [9].

5. Pricing

In this section we discuss two predominant methods for pricing European options on
assets driven by Lévy processes. We obtain the explicit prices by two methods which
are the Martingale pricing approach and the fast Fourier transform based characteristic
formula.

Throughout the pricing section, we assume that the jump size of the compound Poisson
process has a particular distribution which will be clarified below. Ultimately we obtain
the value at time t of a European call option with strike price K and payoff function
f(ST ) only depending on the stock price at maturity. Equation (4.1) can be restated as
follows:

M̃t =

∫

(0,t]

∫

R

xNQ(ds, dx)−

∫

(0,t]

∫

R

x ds ν̃(dx),

where the first part, the compound Poisson process, can be represented as
∑

0<s≤t

△M̃t.

Moreover, by [7, Proposition 3.5], we can represent the compensator in the following
form:

∫

(0,t]

∫

R

xdsν̃(dx) =

∫

(0,t]

∫

R

xλ̃F (dx)dt = tλ̃IEQ(△M̃t),

where λ̃ is the intensity of the Poisson random measure, F is the jump size distribution
and IEQ(△M̃t) denotes the expected jump size under Q.

Since a compound Poisson process has almost surely a finite number of jumps in
interval (0, t], the summation is finite. Hence, we do not have convergence problems. If
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U = (Ui)i≥1 is the sequence of independent random variables, then the jump size process

of M̃t takes the following form:

M̃t =

N(t)
∑

i=1

Ui − λ̃IEQ(△M̃t)t.

Under these circumstances, the risk-neutral dynamics of the stock price process can be
rewritten as:

St = S0 exp

(

cW̃t + M̃t +
(

r −
c2

2

)

t

)

∏

0<s≤t

(

1 +△M̃s

)

exp
(

−△M̃s

)

= S0 exp

(

cW̃t − λ̃IEQ

(

△M̃t

)

t+
(

r −
c2

2
)t+

N(t)
∑

i=1

ln(1 + Ui)

)

,

where Ui > −1 for all 1 ≤ i ≤ N(t).

Henceforth we assume that jumps in the log-price process have a Gaussian distribution:
ln(1 + U) ∽ N(m, ̺2) as in the Merton Jump-Diffusion (JD) model [14]. This allows
us to obtain the probability of the intensity process of the jumps and find the price of
European options using the density function.

Hence, the stock price process under the measure Q becomes as follows:

(5.1) St = S0 exp

(

cW̃t +
(

r − λ̃
(

exp
(

m+
̺2

2

)

− 1
)

−
c2

2

)

t+

N(t)
∑

i=1

ln(1 + Ui)

)

.

5.1. Martingale pricing approach. The Martingale pricing approach is based on the
fact that the discounted value of a contingent claim is a martingale under measure Q.
In the Black-Scholes market model, it is rather easy to obtain the option price by this
approach. Hence it is useful to price in extended market models based on the Black-
Scholes settings. In this subsection, we obtain the price of a European call option under
the Merton JD model, in terms of the Black-Scholes model price.

5.1. Theorem. The price of a European call option on an underlying asset satisfying
Equation (5.1) has the following form:

(5.2) C(t, St) =

+∞
∑

n=0

(λ̃τ )n exp(−λ̃τ )

n!
CBS(τ, Sn; cn),

where τ = T − t is the time to maturity, CBS is the Black-Scholes model price, cn =
√

c2τ+n̺2

τ
, Sn = St exp

(

nm+ n̺2

2τ
− λ̃(exp(m+ ̺2

2
)− 1)τ

)

and m, ̺2 are the mean and

the variance of the jump size distribution.

Proof. The value of a contingent claim X with a payoff function f(ST ) at time t ∈ [0, T ]
is defined as:

(5.3) C(t, St) = exp(−r(T − t))IEQ(f(ST )|Ft).

The proof can be completed by substituting Equation (5.1) in Equation (5.3) and doing
some straightforward calculations. �

Note that, the formula we derived in Equation (5.2) is the same as the one derived from
solving the partial differential equation (PDE) based on the first and second derivatives
of the option price. In other words, the PDE approach and the Martingale approach give
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the same result. The corresponding derivatives used in the PDE approach in our setting
are given as follows :

D
n
2C(t, x) = IEQ

(

exp(nM̃T−t)
∏

0<s≤T−t

(

1 +△M̃s

)n
exp(−n△M̃s)

×D
n
2CBS

(

t, x exp(nM̃T−t)
∏

0<s≤T−t

(1 +△M̃s) exp(−△M̃s)
)

)

,

where M̃ is the process defined in Equation (4.1) and D2
nCBS( · , · ) is the n-th order

derivative of the Black-Scholes model price, CBS , with respect to the second component,
for n = 1, 2. Note that the necessary Black-Scholes price derivatives Dn

2 (CBS), n = 1, 2
are very simple to derive. For instance for a European call the first two derivatives,
namely Delta and Gamma, are given in terms of the cumulative probability distribution
function N(x) and the density function n(x) of a standard Normal random variable.

5.2. Characteristic formula approach via the fast Fourier transform. In this
section we obtain the price of a European call option by using the fast Fourier transform
(FFT) method, following the steps presented in the paper of Carr et. al. [5]. This
method has significant advantages compared to the classical Martingale approach. First
of all, when the risk neutral density is unknown in the models (as is often the case),
we can find the price by using the Fourier transform of St, which can be calculated by
the Lévy-Khintchine representation [7]. Secondly, the algorithms used for the inversion
of the Fourier transform are fast and optimized. Also the method enables us to price
options with different strikes in a single calculation.

In this subsection, we consider a European call option written on ST with payoff
function f(ST ) at maturity time T and strike price K. Note that the properties of this
contingent claim are the same as the properties of the one introduced in the previous
subsection.

5.2. Theorem. The price of a European call option obtained by the characteristic for-
mula approach and the fast Fourier transform is

(5.4)

C(kυ) =
e−αkυ

π

N−1
∑

j=1

(

ei(uj−i(1+α))(r− c2

2
)t− 1

2
(uj−i(1+α))2c2t

α2 + α− u2
j + i(2α+ 1)uj

−
λ̃t
(

em+ ̺2

2 − ei(uj−i(1+α))m− 1
2
(uj−i(1+α))2̺2

)

α2 + α− u2
j + i(2α+ 1)uj

)

×
e−rT+ibuj−i 2π

N
(j−1)(υ−1)

α2 + α− u2
j + i(2α+ 1)uj

η

3
(3 + (−1)j − δj−1),

where kυ are the segmented log-strike prices (the log-strikes that are equally spaced around
the log-spot price for υ = 1, . . . , N), α is the dampening factor which is a parameter used
to modify the call price so that it becomes square integrable for a range of its values and
m, ̺2 are the mean and the variance of the jump size distribution.

Proof. The characteristic function of the log-price process sT = ln(ST ) can be found
explicitly as follows:

(5.5) φT (u) = exp

(

iu(r −
c2

2
)t−

1

2
u
2
c
2
t− iuλ̃t(exp(m+

̺2

2
)− exp(ium−

1

2
u
2
̺
2))

)

.

If k denotes the log of the strike price K, then CT (k) is the desired value of a T maturity
call option with strike exp(k). Let the risk-neutral density of the log-price be qT (s). The
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characteristic function of sT = ln(ST ) is defined by:

φT (u) =

∫ +∞

−∞

e
ius
qT (s) ds.

The initial call price CT (k) is related to the risk-neutral density by the following steps:

(5.6)

CT (k) = IEQ

(

e
−rT (ST −K)+|F0

)

=

∫ ∞

k

e
−rT (es − e

k)qT (s) ds.

Since CT (k) does not decay on the negative log-strike axis, it is not integrable. To
overcome this problem, we use a dampening coefficient α as in [6] and define a new
square integrable modified call price C̄T (k) as follows:

C̄T (k) = exp(αk)CT (k)

for α > 0.

For more details on the selection of the dampening coefficient α such that C̄T (k) does
have a well-defined Fourier transform, one can see [5].

Considering the Fourier transform of C̄T (k) defined by:

ψT (u) =

∫ +∞

−∞

e
iuk
C̄T (k) dk,

we have the following direct Fourier transform by the inversion formula in [17]

(5.7) CT (k) =
e−αk

π

∫ +∞

0

e
iuk
ψT (u) du.

By Equation (5.6) and Fubini’s Theorem, the analytical relation is obtained as follows:

(5.8) ψT (u) =
e−rTφT (u− i(1 + α))

α2 + α− u2 + i(2α+ 1)u
,

where −∞ < k < s < +∞ and φT (u) is the characteristic function of sT = ln(ST ).
Substituting Equation (5.8) into Equation (5.7), the call option price is obtained as:

(5.9) CT (k) =
e−αk

π

∫ +∞

0

e
−iuk e−rTφT (u− i(1 + α))

α2 + α− u2 + i(2α+ 1)u
du.

Afterwards, we perform the required integration using FFT and obtain an approximation
of CT (k). FFT is an efficient algorithm for computing the sum:

(5.10) ω(k) =
N
∑

j=1

e
−i 2π

N
(j−1)(k−1)

x(j)

for k = 1, . . . , N .

Using the Trapezoidal rule for the integral in Equation (5.7), an approximation of
CT (k) is obtained as follows:

(5.11) CT (k) ≈
e−αk

π

N−1
∑

j=1

e
−iujkψT (uj)η,

where η is the width of the segmented intervals, uj = η(j − 1). Employing a regular

spacing size of λ̂ between two consecutive log-strikes, values of k are determined as:

kυ = −b+ λ̂(υ − 1) + s0,
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for υ = 1, . . . , N where b = Nλ̂
2
. However, when we consider S0 = 1, we obtain s0 = 0

and this implies

kυ = −b+ λ̂(υ − 1),

for υ = 1, . . . , N . Applying Simpson’s rule, the weighting call price can be written in the
following way:

(5.12) CT (kυ) =
e−αkυ

π

N−1
∑

j=1

e
−i 2π

N
(j−1)(υ−1)

e
ibujψT (uj)

η

3
(3 + (−1)j − δj−1),

where δn is the Kronecker delta function.

After expressing these relations in the Lévy market model described in the previous
section and using the characteristic function of the log-price process in Equation (5.5),
we rewrite the following equation:

φT (u− i(1 + α)) = exp
{

i(u− i(1 + α))
(

r −
c2

2

)

t−
1

2

(

u− i(1 + α)
)2

c
2
t
}

× exp
{

− λ̃t
(

e

(

m+ ̺2

2

)

− e

(

i(u−i(1+α))m− 1
2

(

(u−i(1+α))2̺2
))

)}

.

Substituting the above equality into the Equation (5.8), we obtain the Fourier transform

of CT (k), ψT , as follows:

(5.13)

ψT (u)

=
ei(u−i(1+α))(r− c2

2
)t− 1

2
(u−i(1+α))2c2t−λ̃t(e

m+
̺2

2 −e
i(u−i(1+α))m− 1

2
(u−i(1+α))2̺2

−rT

α2 + α− u2 + i(2α+ 1)u

Finally, substitution of Equation (5.13) into Equation (5.12) yields the desired call option
price. �

In the next subsection, we will compare the prices computed by the two approaches in
this section. We obtain the price values for fixed parameters and estimated parameters
using market option price data by computing the results via computer software.

5.3. Comparison of Pricing Methods. For the sake of the simplicity, we use the same
parameters and variables for both formulas derived in Theorem 5.1 and in Theorem 5.2.
In both calculations, we fix S0 = 50, c = 0.02, r = 0.05, T = 20

252
, λ = 1, m = −0.1,

̺ = 0.01. As shown in Figure ??, the outcomes of both methods are almost the same.
In fact, it is the expected result since Equation (5.4) is just a series representation of the
martingale price formula.

Figure 1. Call prices generated by the two approaches
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6. Application

In this section we illustrate the theory of the previous parts and calibrate the JD model
to option data set on Standard&Poors 500 index options. The calibration consists of an
estimation of the unknown parameters of our model which reproduce almost perfectly
the market option prices. In the calibration of Lévy driven models, qualitative features of
the model must be considered such as infinite/finite activity. Moreover, testing the data
concerned for the presence of jumps will provide accuracy in the model choice. Several
studies have investigated the presence of a jump component looking at the S&P 500
option data and it is shown in [7] that in addition to a continuous diffusion component,
the jump component exists but may not be present every single day in the sample. It
is shown in [8] that Lévy processes produce better implied volatility smile for a single
maturity, but when calibrating several maturities at the same time, the calibration of
Lévy processes becomes much less precise. This difficulty of calibrating an exponential-
Lévy model to option prices of several different maturities arises due to independence
and stationarity properties of the increments.

Data consists of S&P 500 index call option prices observed in the market on 20 August
2010 at 2.42 pm and at that time the S&P 500 index quote was 1075.63. Options are
selected with 21 different strike prices ranging from 925 to 1500 with the maturities;
T1 = 21 days, T2 = 51 days, T3 = 82 days, T4 = 203 days, T5 = 295 days, T6 = 478 days,
T6 = 478 days, T7 = 662 days, T8 = 845 days.

Maturities of the selected options are at least 20 days as prices of short maturity
options are very close to the intrinsic value. Also, deep in the money and deep out of the
money options are eliminated because of unrealistic implied volatilities and difficulties in
implied volatility calculation.

6.1. Parameter estimation. The parameter estimation procedure is carried out by
a sampling algorithm that minimizes numerically the sum of squares of the difference
between market and JD model prices. The vector of unknown parameters θ are hence
determined by minimizing the following expression

(6.1)
N
∑

i=1

(Ci
market − C

i,θ

model)
2
.

The algorithm used in this process is the DIRECT optimization algorithm developed by
Jones et. al. in [10], which is a method for finding the global minimum of a multivariate
function subject to simple bounds. It was created to solve difficult global optimization
problems with bound constraints and a real-valued objective function.

The minimization function concerned is non-convex, so a gradient-based method may
not succeed in locating the global minimum, which in turn reduces the quality of the
calibration algorithm. Therefore, we employ the DIRECT sampling algorithm which
does not require any knowledge of the objective function’s gradient. Instead, it samples
points in the domain, and uses the information it has obtained to decide where to search
next. The algorithm will globally converge to the minimal value of the objective function
in Equation (6.1).

DIRECT’s sample points are centers of hyperrectangles and it initiates its search by
sampling the objective function at the center of Ω. The entire domain is treated as
the first hyperrectangle, which DIRECT identifies as potentially optimal and divides.
In the division process, it determines hyperrectangles that has the most potential to
contain unsampled points and in the sampling stage it samples f at the centers of the
newly-created hyperrectangles.
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Let a, b ∈ R, Ω = {x ∈ RN : ai ≤ xi ≤ bi} and f : Ω → R be Lipschitz continuous
with constant α. The algorithm attempts to find a xopt such that

fopt = f(xopt) ≤ f
∗ + ε,

where ε is a given small positive constant and f∗ is the current best function value.

The DIRECT algorithm converges globally to the minimal value of the objective
function. However, this global convergence may occur after a large and exhaustive search
over the domain. The algorithm is advantageous because of the balanced effort it gives
to local and global searches, and the few parameters it requires to run. The algorithm
has been shown to be very competitive with other Lipschitzian optimization algorithms
in its class, see [10] for further details.

6.2. Results. Merton’s JD model generates volatility smiles by adding discontinuous
jumps to diffusion dynamics. By choosing the parameters of the jump process appropri-
ately, the JD model can generate a multitude of volatility smiles and skews. In addition
to calculating a volatility smile, a volatility term structure can be calculated as a function
of maturity for a fixed strike price. Combining the volatility smile and the volatility term
structure, we can generate a volatility surface, one dimension for maturity and the other
for the strike price.

Figure 2. Implied volatility surface generated by the Jump-Diffusion
process. (r = 0.05, λ̃ = 0.01, c = 0.15, mean jump size m = −0.05,

jump size standard deviation ̺ = 0.4)
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In Figure 2 we plot the implied volatility surface of the JD model for fixed parameters.
Observing the figure, it can be seen the jump part of the process dynamics drives the
skew in the short time to expiration limit which is short dated and dies with time to
maturity. Therefore while failing for longer maturities, the model explains a significant
part of the volatility smile/skew observed in the market.
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On the other hand, stochastic volatility models cannot generate enough skew for very
short expirations but in some degree fit for longer expirations. So, a combination of
stochastic volatility and jumps in one model can display a relatively good performance
in volatility smile modeling.

Estimated parameter values for separate and simultaneous calibration of JD and are
given in Tables ?? and ??, respectively.

Table 1. Separately calibrated JD model parameters for different times to
maturity

Maturity c λ̃ m ̺

21 days 0.2550 0.0261 0.0750 0.1289

51 days 0.2006 0.1550 -0.2167 0.2600

82 days 0.2006 0.1550 -0.0500 0.2600

203 days 0.1824 0.2517 -0.1056 0.2067

295 days 0.1824 0.1550 -0.0056 0.2067

478 days 0.1824 0.1872 -0.1611 0.3133

662 days 0.1461 0.1550 -0.2667 0.1000

845 days 0.1461 0.2194 0.1167 0.4733

Table 2. Simultaneously calibrated JD model parameters for all times to
maturity

Maturity c λ̃ m ̺

All Maturities 0.2369 0.2517 -0.1015 0.42

In Table 1, we observe different parameter values for the S&P500 index for given strike
price and different time to maturities. As we can see from the table, the qualitative
behavior varies through the maturities. Volatility is seen to decline as time to maturity
increases, which is the case for at the money options. Since we select our data set among
the money options, indeed this phenomenon is expected. Moreover, the range of the
estimates points out that the true volatility of the asset for the corresponding period lies
between 0.1461 and 0.255. Moreover, the jump intensity, denoted by λ̃, oscillates around
0.2 which indicates a very low average. This finding supports our model’s assumption
about jumps being rare events. The expected jump size, m, seems to have a random
behavior which shows the consistency with the random jump size assumption and the
random jump direction. Finally, we see that ̺, which is the standard deviation of the
jump sizes, follows a random pattern. This can be interpreted as the occurrence of
independent shocks in the market.

The calibration procedure is carried out both simultaneously for all maturities and
separately for each maturity in the S&P 500 option data sample. In the next figures we
plot the market and model prices which are calculated with the parameters found after
calibration for all the strikes and maturities.
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Figure 3. Calibration of JD model to market data
separately for each maturity

(A) Top: maturity 51 days (B) Top: maturity 662 days
Bottom: maturity 203 days Bottom: maturity 845 days
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As seen in Figure 3, the calibration for each individual maturity gives quite good results,
despite the fact that the options with different maturities correspond to the same under-
lying and the same trading day, the parameter values for each maturity are different, as
seen from Table 1.

Figure 4. Calibration of the jump-diffusion model simultaneously to 8
maturities. (circles are market prices, stars are model prices)
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Figure 4 presents the result of the simultaneous calibration of the model to 8 differ-
ent maturities ranging from 1 month to 3 years. As can be seen from the Figure, the
calibration error is much higher than in Figures 3A and 3B.
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This problem arises due to the fact that log-price process, which is a Lévy process, has
independent and stationary increments. So the law of the entire process is completely
determined by its law at any given time t. If we have calibrated the model parameters
for a single maturity T , this fixes completely the risk-neutral stock price distribution for
all other maturities.

To adequately calibrate a jump-diffusion model to options of different maturities at
the same time, the model must have a sufficient number of degrees of freedom to generate
different term structures.

7. Conclusion

In this paper, a geometric Lévy market model is considered in three parts. In the first
part, the market setup is examined. Since generally these markets are incomplete, for
completion the market is enlarged by a series of artificial assets called power-jump assets
which are related to the power-jump processes of the underlying Lévy process as in [9].
These assets are linked to options on the stock and contracts on realized variance that are
traded in OTC markets and thus can be traded for volatility expectation purposes. Next,
it is shown by using the martingale representation property that the enlarged market is
complete. Then the equivalent martingale measure conditions are given and the market is
shown to be arbitrage-free. Finally, the explicit hedging portfolios for contingent claims
whose payoff function depends on the prices of the stock are derived.

In the second part, we obtained prices for European call options by using two pricing
methods under a specified jump-size distribution for the jump sizes. The methods were
the Martingale pricing approach and the characteristic formula approach via the fast
Fourier transform. Moreover, we made a comparison of the performances and speeds
of these methods. We found that the FFT produces very small pricing errors and the
results generated by the methods are nearly identical.

In the third part, we performed calibration of the specified jump-diffusion model
on S&P 500 call option data. The optimization algorithm used is discussed and the
parameter estimation results are presented. We found that for longer maturities the jump
intensity tends to increase meanwhile the mean jump size decreases for extensive holding
period. The calibration of the jump-diffusion model is executed both simultaneously for
all maturities and separately for each maturity in the S&P 500 call option data sample.
We came to the conclusion that the calibration for each individual maturity gives better
results than the simultaneous calibration. The reason for this outcome is the fact that the
log-price process, which is a Lévy process, has independent and stationary increments.
So the law of the entire process is determined by its law at any given time t. Therefore,
when we calibrate the model parameters for a single maturity T , this fixes completely
the risk-neutral stock price distribution for all other maturities.

Note that, it is also possible to do the calibration of the parameters of the asset price
directly using stock prices and then use those estimations as inputs for the corresponding
option price. Or instead, one can estimate the parameters directly from the option price
model like in our setting. In fact, in theory both estimations should yield the same
option price assuming that option prices reflect underlying properties. But when we
make a calibration for different maturities we observe different parameter values for the
stock price. Hence for this case, calibration through option prices could reveal other
embedded impacts of the price properties. For the simultaneous calibration, however,
the parameters from both data sets yield the same option price. Because of this fact,
in this work, we did not use any stock price data and work with one compact option
data set. As an accuracy test, the estimations obtained using the stock prices could be
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inserted into the option price formula as inputs (like historical volatility in the BS model)
and the difference between the estimations made through option prices and stock prices
could be analyzed.
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