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Abstract

In the present paper, we introduce and investigate some new subclasses
of multivalent analytic functions involving the generalized Srivastava-
Attiya operator. Such results as inclusion relationships, subordination
and superordination properties, integral-preserving properties and con-
volution properties are proved.
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1. Introduction

Let Ap(n) denote the class of functions of the form
(L) J() =+ apas (pneN={1,2,3,..}),
k=n

which are analytic in the open unit disk

U:={z: 2z€C and |2]|<1}.
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For simplicity, we write
Ai1(1) == A.

Also let H[a,n] be the class of analytic functions of the form
h(z) = a+ anz” 4+ ans12" T+ (2 € D).

Let f, g € Ap(n), where f is given by (1.1) and g is defined by

g(z) =22 + Z by izt
k=n
Then the Hadamard product (or convolution) f % g of the functions f and g is defined by

(F29)(2) = 27 + 3 aprabpars”™ =t (g% f)(2).

k=n

Let P denote the class of functions of the form
p(z)=1+ Zpkzk (n eN),
k=n

which are analytic and convex in U and satisfy the condition
R(p(z)) >0 (z€N).

For two functions f and g, analytic in U, the function f is said to be subordinate to g in
U, or the function g is said to be superordinate to f in U, and write

f(z) <g(z) (2€0),
if there exists a Schwarz function w, which is analytic in U with
w(@0)=0 and |w(z)|<1 (2€0)
such that
f(z) =g(w(2)) (z€D).
Indeed, it is known that
f(z) <g(z) (z€U) = £(0) =g(0) and f(U) C g(U).
Furthermore, if the function g is univalent in U, then we have the following equivalence:
f(z) <9(2) (2€U) < f(0) = g(0) and f(U) C g(U).

The following we recall a general Hurwitz-Lerch Zeta function ®(z, s, a) defined by (cf.,
e.g., 22, p. 121 et sep.])

> k

z
P(z,8,a) := E —_—
( ) k:O(k+a)s

(a € C\Zg; s € Cwhen |z|] <1; R(s) > 1 when |z]| =1),
where, as usual,
Zg :=Z\N (Z:={0,£1,£2,...}; N:={1,2,3,...}).

Several interesting properties and characteristics of the Hurwitz-Lerch Zeta function
®(z,s,a) can be found in recent investigations by (for example) Choi and Srivastava
[1], Ferreira and Lépez [3], Garg et al. [4], Lin et al. [6], Luo and Srivastava [10], Wen
and Liu [26], Wen and Yang [27] and others.
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Recently, Srivastava and Attiya [21] (see also [2, 5, 8, 9, 14, 15, 16, 17, 18, 23, 24, 25,
28, 29]) introduced and investigated the linear operator

Js,0(f): A— A
defined, in terms of the Hadamard product (or convolution), by
(1.2) 35, 0f(2) = Gs,0(2) x f(2) (€U beC\Zy; s€C fed),
where, for convenience,
(1.3)  Gs, b(2):=(1+D

It is easy to observe from
(14
9. v1(2) :z+z( )
k=2
By setting

b S
oy (2) =20 +Z<pi_l|<:—+b) T (2 eU; neN).

[B(z,5,0) =677 (2 €U).

)
(1.2) and (1.3) that

Then, motivated essentially by the above-mentioned Srivastava-Attiya operator, we in-
troduce the operator

i’ py (f) 1 Ap(n) — Ap(n),
which is defined as

n n b s
(L4) 9 PfE) = )+ f —wZ(pﬂ‘H) ap i,

where (and throughout this paper unless otherwise mentioned) the parameters s, b, p
and n are constrained as follows:
se€C; beC\Zy, and p,neN.
It is easily verified from (1.4) that
(15) 237 ,f) () = (p+b)8%  f(z) = b3 T L f(2).

In this paper, by making use of the operator H’S’: » and the above-mentioned principle

of subordination between analytic functions, we introduce and investigate the following
subclasses of the class Ap(n) of p-valent analytic functions.

1.1. Definition. A function f € A,(n) is said to be in the class 87 }'(n; ¢) if it satisfies
the subordination condition

(=) @
p—n a0 5 f(2)

(1.6) —n] <¢(2) (2€U; 05n<p; 9e?P).

1.2. Definition. A function f € Ap(n) is said to be in the class X' ;' (A; ¢) if it satisfies
the subordination condition

(1.7 (1=2X) 8471 bf( ) )\35: ‘;Z(z) <¢(2) (2€U; AeC; peP).

In the present paper, we aim at proving such results as inclusion relationships, subor-
dination and superordination properties, integral-preserving properties and convolution
properties for the classes 87" ' (n; ¢) and X%’ ;' (A; ¢).



424 Z.-G. Wang, Z.-H. Liu, F.-H. Wen, Y. Sun

2. Preliminary results
In order to prove our main results, we need the following lemmas.
2.1. Lemma. (see [11]) Let 9, v € C. Suppose that ¢ is conver and univalent in U with
»(0) =1 and R(Wp(z) +v) >0 (z€l).
If p is analytic in U with p(0) = 1, then the following subordination

#'(2) D (2
P+ o 1, PR (2ED)

implies that
p(z) <¢(2) (z€0). U

2.2. Lemma. (see [12]) Let the function Q2 be analytic and convex (univalent) in U with
Q(0) = 1. Suppose also that the function © given by

O(z)=1+cn2" + Cng1z" T4
is analytic in U. If
207(2)

¢

(2.1) O(z) + <Q(z) RE)>0; C£0; z€U),

then

0(2) < x(z) = E;f% /0 £ h(t)dt < Q(z) (2 € ),

and x 1is the best dominant of (2.1). O

Denote by @ the set of all functions f that are analytic and injective on U — E(f),
where

E(f)= {E€8U2 hinf(z) :oo}7
and such that f'(¢) # 0 for € € OU — E(f).

2.3. Lemma. (see [13]) Let g be convex univalent in U and k € C. Further assume that
R(R) > 0. If

p € Hq(0),1]Nn@Q,
and p + kzp' is univalent in U, then
q(2) + kzq'(2) < p(2) + w2p'(2)
implies ¢ < p and q is the best subordinant. O
2.4. Lemma. (see [19]) Let q be a convez univalent function in U and let o, n € C with
R (1 + zq/ (Z)> > ma,x{O7 —-Rr <£> } .
7 (2) U

If p is analytic in U and

op(z) +nzp'(2) < 0q(2) +nzd (2),
then p < q and q is the best dominant. O

2.5. Lemma. (see [20]) Let the function T be analytic in U with
T(O)=1 and R(Y()) > 3 (- €0).

Then, for any function ¥ analytic in U, (T x U)(U) is contained in the convex hull of
W(U). O
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3. Properties of the function class Sg,’ o (13 ®)

We begin by stating the following inclusion relationship for the function class 8’;’ 5 (15 0).
3.1. Theorem. Let 0 < n < p and ¢ € P with

31)  R(6(2)) > max {o, _%} (z € U).

Then

(3:2) 8L (s 0) CSLT (m: )

Proof. Let f € 8% '(n; ¢) and suppose that
L (2@ s) @)

p—n 300 v f(2)

(3.3)  ¥(2):= -n| (zen).

Then ¢ is analytic in U with ¢(0) = 1. Combining (1.5) and (3.3), we easily find that

(34) (p+ b)% =(-ny()+b+n.

Differentiating both sides of (3.4) with respect to z logarithmically and using (3.3), we
have

L (@) @

2y’ (2)
p—n RO

(p—my(z) +b+n

(3.5) =(z)+ < ¢(z).

By noting that (3.1) holds, an application of Lemma 2.1 to (3.5) yields

o ()
Sl vy S I

that is f € 82,1 ,(n;¢), which implies that the assertion (3.2) of Theorem 3.1 holds. [
Next, we prove some integral-preserving properties for the function class SIS’: o (5 8).
3.2. Theorem. Let f € 87 }'(n; $) with
Rllp—me(z) +n+n) >0 (z€U; p>—p).
Then the integral operator F defined by

(3.6) F(z):= ki /Zt“*lf(t)dt (z€U; p>—p)
0

ZH
belongs to the class 82’ ;' (n; ¢).
Proof. Let f € 8% '(n; ¢). Then, from (3.6), we find that
(3.7 2(30 ) F) (2) + pdl JF(2) = (n+ )3Ty f(2)-
By setting
L (=(@E) @)
p—n 35y F(z)

(3.8)  q(z):= -n|,
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we observe that ¢ is analytic in U with ¢(0) = 1. It follows from (3.7) and (3.8) that

3 v (2)

I e k(=)

Differentiating both sides of (3.9) with respect to z logarithmically and using (3.8), we
get

(39 p+n+@-—mqz)=(u+p)

w1 (@) e
(310)  g(=)+ p+n+@-mnqeiz)  p-n o f(z) Ul e

Since
R(p=m)d(z) +n+n) >0 (2€l),
an application of Lemma 2.1 to (3.10) yields
L (=) @
p—n Dy F(2)

and we readily deduce that the assertion of Theorem 3.2 holds true. O
3.3. Theorem. Let f € 87 }'(n; ¢) with
R((p—m66(=) +u+16) >0 (s€U; §40).

Then the function K € Ap(n) defined by

5[ 1/6
(3.11) g PK(2) = (%/ (@ )’ dt> (2 € V)

0
belongs to the class 87’ }'(n; ¢).
Proof. Let f € 8% '(n; ¢). We easily find from (3.11) that
n 51 n & n 5

(812) 2 [(@% 1K()"] + 1 (@ 7K )" = (utpo) (37 1 1(2))"

By putting

L= iE) @)
(3'13) Q(Z) = -1 JSJ: ;LK(Z) -n (Z € U)7

in view of (3.12) and (3.13), we have
n 5
35 v 1(2)
S K(z))
Making use of (3.11), (3.13) and (3.14), we get
/
20 (2) L (=) @

(3.15) g(z)+u+n5+(p—n)59(z):p—n e —n| < ¢(2).

(314) p4+nd+(@—ndo(z)=(u+pd) <

Since

R((p—n)do(z)+pn+nd) >0 (z€0),
it follows from (3.15) and Lemma 2.1 that

o(z) < ¢(2) (2€0),



Some Subclasses of Analytic Functions 427

that is K € 87" }'(n; ¢). This completes the proof of Theorem 3.3. d

Now, we derive certain convolution properties for the class SIS’: (15 0).

3.4. Theorem. Let f € 87 ['(n;¢). Then

10 0= [ (5 [ L. (145 (258) )

=n

where w is analytic in U with
w(0) =0 and |w(z)| <1 (z€0).

Proof. Suppose that f € 8¥ 7L( ;¢). We know that the subordination condition (1.6)
can be written as follows:

(a01) ()
3 v f(2)
where w is analytic in U with
w(0)=0 and |w(z)|<1 (z€U).
We now find from (3.17) that

(m30) @ ¢ (w(2) 1
W—; =({- U)f7

(3.17) =(p—n¢(w(z))+mn,

(3.18)

which, upon integration, yields

(3.19) log (357 b /(2) ) / o) =1 e
It follows from (3.19) that
3200 321 = e (- [ LD ae),
0
The assertion (3.16) of Theorem 3.4 can now easily be derived from (1.4) and (3.20). O
3.5. Theorem. Let f € Ap(n) and ¢ € P. Then f € 87 }'(n; ¢) if and only if

1 P - p+b N\ ik
Z{f*{pz +Z(p+k) <p+k+b> z

k=n

(3.21) ~[w=me (&) + ]<Z +Z<pizib>s"p+k>}}¢o

(z€U; 06 <2m).
Proof. Suppose that f € 82 ["(n; ¢). We know that (1.6) is equivalent to

L (@) @

(3.22) - )

—n|#6(e") (ev0<0<2m).

It is easy to see that the condition (3.22) can be written as follows:

(323) L {=(@00) ()= [w-ms () +u a1} £0 (e 0o <2m).
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On the other hand, we find from (1.4) that

n +b \°
(3:24) 2(% ) f) (2)=pz +Zp+ (pik+b> appnz”tE.

Combining (1.4), (3.23) and (3. 24) we readily get the convolution property (3.21) as-
serted by Theorem 3.5. O

4. Properties of the function class fK’;’ :()\; ®)
In this section, we first derive the following subordination property.
4.1. Theorem. Let f € X2 ['(\; ¢) with R(X) > 0. Then
354; o f(2) < p-l—bz,r'n_tb
zP n 0
Proof. Let f € X }'(A; #) and suppose that
Iei1, v/ (2)

(4.1) TG dt < 6(2).

(4.2)  h(z):= po (z € ).

Then h is analytic in U. By virtue of (1 5) (1.7) and (4.2), we find that
A I, bf( 2) 301

(4.3)  h(z)+ p— bzh (2)=(1-X) + A po =< ¢(2).

Thus, an application of Lemma 2.2 to (4.3) yields the assertion (4.1) of Theorem 4.1. O
In view of Theorem 4.1, we easily get the following inclusion relationship.
4.2. Corollary. Let ®(\) > 0. Then
K0 (A 6) C K 7 (056). O
Now, we give another inclusion relationship for the function class Kf v (A 9).
4.3. Theorem. Let Ao > A1 = 0. Then
XLy (A5 9) C KD (Aas ).
Proof. Suppose that f € X' }'(A2; ¢). It follows that

(44) (1- )\2)3541, b f(2) Y ds, Z;{(Z)

< ¢(2) (z€U).

zP
Since
A1
0s—=«<1
e S
and the function ¢ is convex and univalent in U, we deduce from (4.1) and (4.4) that
354? » (2) o f(2)
(1—-X) tha——
A It v fz a0 o f(z A\ 45
1(1_)\) +1,bf()+)\2 ,bf()+ 1M 3o f(2)
DY 2P P Ao 2P

< ¢(z) (2€0),
which implies that f € Kf o (A1;8). The proof of Theorem 4.3 is evidently completed. O

4.4. Theorem. Let f € X2 '(X;¢). If the function F € Ap(n) is defined by (3.6), then

ZP

(4.5) Y L6(z) (zeU).
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Proof. Let f € X }'(A; ). Suppose also that
P F(z
(4.6)  G(z):= L()

zP
From (3.6), we deduce that

A7) 2 (307 o F) () +pdlt F(2) = (n+ )3T o f (2)-
Combining(4.1), (4.6) and (4.7), we have

(z €.

1 / s+1 b f( )
4.8 Gz—|——szf7<¢z.
(4.8) (2) pry (2) (2)
Thus, by Lemma 2.2 and (4.8), we conclude that the assertion (4.5) of Theorem 4.4 holds
true. O

4.5. Theorem. Let f € X% LN\ ¢) and g € Ap(1) with R (gz(z)

(f*9)(2) €KE (X 0).

) > % Then

1
) 5- Suppose also that

Proof. Let f € fK’;’ ;()\Hb) and g € Ap(1) with R (gz(z)

N IQNIN IS
2P zP

(4.9)  H(z):=(1-\ < ¢(2).

It follows from (4. 9) that

s+1 b(f 9)(2) Do (fx9)(2) g(z)

(4.10)  (1—A) FAT = H(z)*

2P
Since the function ¢ is convex and univalent in U, by virtue of (4.9), (4.10) and Lemma 2.5,
we conclude that

(411)  (1-N) 5+1 b(f g)(z )+)\ -5+1 b(f 9)(2)

< o(2),
which implies that the assertion of Theorem 4.5 holds true. (|

4.6. Theorem. Let f € KT’ ;()\; @) and suppose that F is defined by (3.6) with f € Ap(1)
and pp > —p. Then F € X2’ (N 9).

Proof. Let f € fKI;’ ;(A;d)) and suppose that F is defined by (3.6) with u > —p. We
easily find that

F(z)=1TP / L f () de = (f ) (2),

zZH

where

N+p th‘FP*l
= dt € Ap(1).
o) = [ o ae A,

Moreover, for > —p, we have

h(2)\ _ [ putp [FtHP!
w(%) =n (5 [ )

(4.12) = (u+p) /01 ut PR <#> du

1—wuz

utp ld 1 U
>(u—|—p)/0 T u> g (z € ).
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Combining (4.12) and Theorem 4.5, we conclude that ' € X%’ +(X\;¢). The proof of
Theorem 4.6 is thus completed. O

4.7. Theorem. Let f € X% L\ ¢) and
j—1
(413)  Sj(2) =2 + Y apr2?™ (2 €U; jEN\{1}).
Then the function W; defined by
W;(z) := zpil/ Si—l(zt)dt (€ U; j eN\{1})
0
belongs to the class K% LA ).

Proof. Let f € XY ()\; ) and let S; be defined by (4.13). We readily get

/5 = (f+g)(2) (z€U;jeN\{1}),

tp

where

j—1
1 +k
z):zp—t-;k_’_lzp € Ap(1).
For j € N\ {1}, we know from [20] that
i—1
%) _ Lokt
(4.14) 3%( - > —§R<1+Zk+1z > 5

Combining (4.14) and Theorem 4.5, we deduce that W; € X%’ +(X;¢). We thus complete
the proof of Theorem 4.7. O

4.8. Theorem. Let f € X% }'(X;¢). Then

(o E (Gt) o) e ()] 2o

(€U; 06 <2m).

(4.15) =

Proof. Suppose that f € X2 }'(X; ). By virtue of Theorem 4.1, we know that

(4.16) Bt o/ (2) "f( 2) <¢(z) (zel).
Thus, by smularly applying the method of Theorem 3.5, we easily get the convolution
property (4.15) asserted by Theorem 4.8. a

4.9. Theorem. Let q1 be univalent in U and R(\) > 0. Suppose also that q1 satisfies

2qi (2 )) { (p + b) }
4.17) R(1+ > max —R .
w12 X
If f € Ap(n) satisfies the following subordination
0GB )
zP 2P

/

(4.18)  (1-2) 2q1(2),

<q(z)+

p+b
then

P L fz
%() < q(2),

and q1 s the best dominant.
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Proof. Let the function h be defined by (4.2). We know that (4.3) holds. Combining
(4.3) and (4.18), we find that

(4.19)  h(z) + 5 A zh'(2) < qi(2) + qui(z)

+b p+b
By Lemma 2.4 and (4.19), we easily get the assertion of Theorem 4.9. |
Taking ¢1(z) = iigz in Theorem 4.9, we get the following result.

4.10. Corollary. Let #(A) > 0 and —1 < B < A < 1. Suppose also that iigz satisfies
the condition (4.17). If f € Ap(n) satisfies the following subordination

(1) s f) By S 1445 A (A-B)s
2P 2P 1+Bz p+b(l+ Bz)?’
then
35#; » f(2) D 14+ Az
zP 1+ Bz’
and }igi is the best dominant. O

We now derive the following superordination result for the class Kp.n(m, A, l; 8; ¢).
4.11. Theorem. Let g2 be convex univalent in U, X\ € C with R(\) > 0. Also let

P, N
M € H[g2(0),1] N Q
P
and
1,

1, b
2P

(1-X) ) 5% ’Z;f(z)

be univalent in U. If

A
p+b

2q3(2) < (1= X)

q2(z) +

)

a7 z Pz

.s+1,bf()+)\3.s,bf()
zP zP

then

301 b f(2)

q2(2) < "

)

and q2 s the best subordinant.

Proof. Let the function h be defined by (4.2). Then

)\ ’ ]sj’+7ll, b f(Z) ISJ: Z;L (Z) _ )\ ’
a2(z) + m?«‘%(z) < (1= " tA——— = h(z) + o 52h (2)-
Thus, an application of Lemma 2.3 yields the assertion of Theorem 4.11. (|
Taking ¢2(z) = iigz in Theorem 4.11, we get the following corollary.

4.12. Corollary. Let g2 be convezr univalent in U and —1 < B < A <1, A € C with

R(N) > 0. Also let
3ot b f(2)
—E e € 3[R (0),110Q

and

T

1, b
2P

(1-X) 1) \% ’Zf(z)



432 Z.-G. Wang, Z.-H. Liu, F.-H. Wen, Y. Sun

be univalent in U. If

_ P, n z 3}), n z
1+ Az A (A B)z<(1_)\) s+1, b ()+)\ o b J( )7
1+ Bz p+0b(1l+ Bz)? 2P 2P
then
1+ Az 35+? b f(2)
1+ Bz zP ’
and }igi is the best subordinant. O

Finally, combining the above results of subordination and superordination, we easily
get the following “sandwich-type result”.

4.13. Corollary. Let g3 be convexr univalent and let qu be univalent in U, A € C with
R(N) > 0. Suppose also that qs satisfies

(oo ) oo 5 ()

If

02 = coguo) e
and

(1B 16 I

zP 2P

is univalent in U, also

A G s f(2) 32 () ,
g3(z) + p+bzq3(Z) =A== FAT—— <) + p+bzq4(2)7
then
I v F(2)
a3(2) < = < a(2),
and q3 and qa are, respectively, the best subordinant and the best dominant. O
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