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Abstract

In this paper we define a correspondence between the set of all fuzzy h-
ideals of a Γ-hemiring S and the set of all fuzzy h-ideals of the operator
hemirings of that Γ-hemiring. We deduce that the lattice of all fuzzy h-
ideals of a Γ-hemiring is isomorphic to the lattice of all fuzzy h-ideals of
the operator hemirings of that Γ-hemiring. Finally, the cartesian prod-
uct of corresponding fuzzy h-ideals is defined and a characterization is
obtained.
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1. Introduction

There are many concepts of universal algebra generalizing an associative ring (R,+, ·).
Some of them - in particular semirings - have been found very useful for solving problems
in different areas of applied mathematics and the information sciences, since the structure
of a semiring provides an algebraic framework for modeling and studying the key factors
in these applied areas. Ideals of semirings play a central role in the structure theory and
are useful for many purposes. However they do not in general coincide with the usual
ring ideals and for this reason, their use is somewhat limited in trying to obtain analogues
of ring theorems for semirings.

To solve this problem, Henriksen [5] defined a more restricted class of ideals, which
are called k-ideals. A still more restricted class of ideals in hemirings was given by Iizuka
[6], which are called h-ideals. LaTorre [9], investigated h-ideals and k-ideals in hemirings
in an effort to obtain analogues of ring theorems for hemirings and to amend the gap
between ring ideals and semiring ideals.

The theory of Γ-semirings was introduced by Rao[12]. The theory of Γ-semirings has
been enriched by the introduction of operator semirings of a Γ-semiring by Dutta and
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Sardar [3]. To make operator semirings effective in the study of Γ-semirings, Dutta et al.
[3] established a correspondence between the ideals of a Γ-semiring S and the ideals of
the operator semirings of S.

The concept of fuzzy set was introduced by Zadeh[16] and has been applied to many
branches of mathematics. Jun and Lee[7] applied the concept to the theory of Γ-rings.
The theory of fuzzy h-ideals in hemiring has been studied by many authors, for example
[2, 8, 10, 11, 17]. As a continuation of this Sardar et al.[13] studied those properties in Γ-
hemirings in terms of fuzzy h-ideals. Recently Ma et al. [10] investigated some properties
of fuzzy h-ideals in Γ-hemirings. In this paper we establish various correspondences
between the fuzzy h-ideals of a Γ-hemiring S and the fuzzy h-ideals of the operator
hemirings of S.

2. Preliminaries

A hemiring (respectively semiring) [4] is a nonempty set S on which operations of
addition and multiplication have been defined such that (S,+) is a commutative monoid
with identity 0S , (S, ·) is a semigroup (respectively monoid with identity 1S), multipli-
cation distributes over addition from either side, 1S 6= 0 and 0Ss = 0S = s0S for all
s ∈ S.

Let S and Γ be two additive commutative semigroups with zero. According to [13],
S is called a Γ-hemiring if there exists a mapping S × Γ × S −→ S by (a, α, b) 7→ aαb
satisfying the following conditions:

(1) (a+ b)αc = aαc+ bαc,
(2) aα(b+ c) = aαb+ aαc,
(3) a(α+ β)b = aαb+ aβb,
(4) aα(bβc) = (aαb)βc,
(5) 0Sαa = 0S = aα0S ,
(6) a0Γb = 0S = b0Γa,

for all a, b, c ∈ S and for all α, β ∈ Γ.

For simplicity we write 0 instead of 0S and 0Γ.

Let S be the set of all m × n matrices over Z−

0
(the set of all non-positive integers)

and Γ the set of all n×m matrices over Z−

0
. Then S forms a Γ-hemiring with the usual

addition and multiplication of matrices.

Now, we recall the following definitions from [3].

Let S be a Γ-hemiring and F the free additive commutative semigroup generated by
S × Γ. We define a relation ρ on F as follows:

m
∑

i=1

(xi, αi) ρ

n
∑

j=1

(yj , βj) if and only if

m
∑

i=1

xiαia =

n
∑

j=1

yjβja,

for all a ∈ S (m,n ∈ Z+). Then ρ is a congruence relation on F . We denote the con-

gruence class containing

m
∑

i=1

(xi, αi) by

m
∑

i=1

[xi, αi]. Then F/ρ is an additive commutative

semigroup. Now, F/ρ forms a hemiring with the multiplication defined by
(

m
∑

i=1

[xi, αi]

)(

n
∑

j=1

[yj , βj ]

)

=
∑

i,j

[xiαiyj , βj ].

We denote this hemiring by L and call it the left operator hemiring of the Γ-hemiring S.
Dually we define the right operator hemiring R of the Γ-hemiring S.
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Let S be a Γ-hemiring, L the left operator hemiring and R the right one. If there exists

an element
m
∑

i=1

[ei, δi] ∈ L
(

resp.
n
∑

j=1

[γj , fj ] ∈ R
)

such that
m
∑

i=1

eiδia = a
(

respectively,

n
∑

j=1

aγjfj = a
)

for all a ∈ S, then S is said to have the left unity
m
∑

i=1

[ei, δi]
(

respectively,

the right unity
n
∑

j=1

[γj , fj ]
)

.

Throughout this paper, unless otherwise mentioned, for different elements of L (re-
spectively, R) we take the same index say ‘i’ whose range is finite, that is from 1 to n,
for some positive integer n.

Let S be a Γ-hemiring, L the left operator hemiring and R the right one. If there
exists an element [e, δ] ∈ L ( respectively, [γ, f ] ∈ R) such that eδa = a (respectively,
aγf = a) for all a ∈ S, then S is said to have the strong left unity [e, δ] (respectively,
strong right unity [γ, f ]) [12].

Let S be a Γ-hemiring, L the left operator hemiring and R the right one. Let P ⊆ L
(⊆ R). According to [3], we define

P+ = {a ∈ S : [a,Γ] ⊆ P} (respectively, P ∗ = {a ∈ S : [Γ, a] ⊆ P})

and for Q ⊆ S,

Q+
′

=

{

m
∑

i=1

[xi, αi] ∈ L :

(

m
∑

i=1

([xi, αi]

)

S ⊆ Q

}

,

where

(

m
∑

i=1

[xi, αi]

)

S denotes the set of all finite sums
∑

i,k

xiαisk, sk ∈ S and

Q∗
′

=

{

m
∑

i=1

[αi, xi] ∈ R : S

(

m
∑

i=1

([αi, xi]

)

⊆ Q

}

,

where S

(

m
∑

i=1

[xi, αi]

)

denotes the set of all finite sums
∑

i,k

skαixi, sk ∈ S.

A fuzzy subset µ of a non-empty set S is a function µ : S −→ [0, 1]. Let µ be a
non-empty fuzzy subset of a Γ-hemiring S (i.e., µ(x) 6= 0 for some x ∈ S). Then µ is
called a fuzzy left ideal (respectively, fuzzy right ideal) of S [13] if

(1) µ(x+ y) ≥ min{µ(x), µ(y)},
(2) µ(xγy) ≥ µ(y) (respectively, µ(xγy) ≥ µ(x)),

for all x, y ∈ S and γ ∈ Γ. A fuzzy ideal of a Γ-hemiring S is a non-empty fuzzy subset of
S which is a fuzzy left ideal as well as a fuzzy right ideal of S. Note that if µ is a fuzzy
left or right ideal of a Γ-hemiring S, then µ(0) ≥ µ(x) for all x ∈ S.

A left ideal A of a Γ-hemiring S is called a left h-ideal if for any x, z ∈ S and a, b ∈ A,

x+ a+ z = b+ z =⇒ x ∈ A.

A right h-ideal is defined analogously. A fuzzy left ideal µ of a Γ-hemiring S is called a
fuzzy left h-ideal if for all a, b, x, z ∈ S,

x+ a+ z = b+ z =⇒ µ(x) ≥ min{µ(a), µ(b)}.

A fuzzy right h-ideal is defined similarly. By a fuzzy h-ideal µ, we mean that µ is both a
fuzzy left and a fuzzy right h-ideal.
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For example, let S be the additive commutative semigroup of all non-positive integers
and Γ the additive commutative semigroup of all non-positive even integers. Then S is
a Γ-hemiring if aγb denotes the usual multiplication of integers a, γ, b where a, b ∈ S and
γ ∈ Γ. Let µ be a fuzzy subset of S, defined as follows

µ(x) =











1 if x = 0,

0.7 if x is even,

0.1 if xis odd,

The fuzzy subset µ of S is both a fuzzy ideal and a fuzzy h-ideal of S.

Let S be a Γ-hemiring and µ1, µ2 two fuzzy subsets of S . Then the sum µ1 ⊕ µ2 is
defined as follows:

(µ1 ⊕ µ2)(x) =

{

supx=u+v{min{µ1(u), µ2(v)} : u, v ∈ S},

0 if for all u, v ∈ S, u+ v 6= x.

Let µ and θ be two fuzzy subsets of a Γ-hemiring S. We define the generalized h-product
of µ and θ by

µ ◦h θ(x) =















sup
{

min
i

{min{µ(ai), µ(ci), θ(bi), θ(di)}}

: x+
∑n

i=1
aiγibi + z =

∑n

i=1
ciδidi + z

}

0 if x cannot be expressed as above,

where x, z, ai, bi, ci, di ∈ S and γi, δi ∈ Γ, for i = 1, . . . , n.

Ma et al. [10] also defined a simple h-product by

µΓhθ(x) =

{

sup{min{µ(a), µ(c), θ(b), θ(d)} : x+ aγb+ z = cδd+ z},

0 if x cannot be expressed as above,

where x, z, a, , c, d ∈ S and γ, δ ∈ Γ.

We now recall the following two definitions from [10]

A fuzzy left(right) h-ideal ζ of a Γ−hemiring S is said to be prime if ζ is a non-constant
function and for any two fuzzy left (right) h-ideals µ and ν of S, µΓhν ⊆ ζ implies µ ⊆ ζ
or ν ⊆ ζ.

Similarly we can define a semiprime fuzzy h-ideal.

A fuzzy subset µ of a Γ-hemiring S is called a fuzzy h-bi-ideal if for all x, y, z, a, b ∈ S
and α, β ∈ Γ we have

(1) µ(x+ y) ≥ min{µ(x), µ(y)},
(2) µ(xαy) ≥ min{µ(x), µ(y)},
(3) µ(xαyβz) ≥ min{µ(x), µ(z)},
(4) x+ a+ z = b+ z =⇒ µ(x) ≥ min{µ(a), µ(b)}.

A fuzzy subset µ of a Γ-hemiring S is called a fuzzy h-quasi-ideal if for all x, y, z, a, b ∈ S
we have

(1) µ(x+ y) ≥ min{µ(x), µ(y)},
(2) (µ ◦h χS) ∩ (χS ◦h µ) ⊆ µ,
(3) x+ a+ z = b+ z =⇒ µ(x) ≥ min{µ(a), µ(b)}.

For more preliminaries on semirings (hemirings) and Γ-semirings we refer to [4] and[3],
respectively. Also, for more results on fuzzy h-ideals in Γ-hemirings we refer to [13].

Throughout this paper, unless otherwise mentioned, S denotes a Γ-hemiring with left
unity and right unity and FLh-I(S), FRh-I(S) and Fh-I(S) denote respectively the
set of all fuzzy left h-ideals, the set of all fuzzy right h-ideals and the set of all fuzzy h-
ideals of the Γ-hemiring S. The meaning of FLh-I(L), FLh-I(R), FRh-I(L), FRh-I(R),
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Fh-I(L), Fh-I(R), where L and R are respectively the left operator and right operator
hemirings of the Γ-hemiring S are defined similarly.

Also, we assume that µ(0) = 1 for a fuzzy left h-ideal (respectively, fuzzy right h-ideal,
fuzzy h-ideal) µ of a Γ-hemiring S. Similarly, we assume that µ(0L) = 1 (respectively,
µ(0R) = 1) for a fuzzy left h-ideal (respectively, fuzzy right h-ideal, fuzzy h-ideal) µ of
the left operator hemiring (respectively, right operator hemiring R) of a Γ-hemiring S.

3. Corresponding fuzzy h-ideals

Throughout this section S denotes a Γ-hemiring, R denotes the right operator hemiring
and L denotes the left operator hemiring of the Γ-hemiring S.

3.1. Definition. Let µ be a fuzzy subset of L. We define a fuzzy subset µ+ of S by

µ+(x) = inf
γ∈Γ

µ([x, γ]) where x ∈ S.

If σ is a fuzzy subset of S, we define a fuzzy subset σ+
′

of L by

σ+
′
(

∑

i

[xi, αi]
)

= inf
s∈S

σ
(

∑

i

xiαis
)

where
∑

i

[xi, αi] ∈ L.

3.2. Definition. If δ be a fuzzy subset of R, we define a fuzzy subset δ∗ of S by

δ∗(x) = inf
γ∈Γ

δ([γ, x]) where x ∈ S.

If η be a fuzzy subset of S, we define a fuzzy subset η∗′ of R by

η∗
′
(

∑

i

[αi, xi]
)

= inf
s∈S

η
(

∑

i

sαixi) where
∑

i

[αi, xi] ∈ R.

3.3. Lemma. If {µi : i ∈ I} is a collection of fuzzy subsets of L then
⋂

i∈I

µ+

i =
(

⋂

i∈I

µi

)+

.

�

3.4. Proposition. If µ ∈ Fh-I(L) then µ+ ∈ Fh-I(S).

Proof. Let µ ∈ Fh-I(L). Then µ(0L) = 1.

Now µ+(0S) = inf
γ∈Γ

{µ([0S , γ])} = 1 [Since for all γ ∈ Γ, [0S , γ] is the zero element of

L]. So, µ+ is non empty and µ+(0S) = 1.

Let x, y ∈ S and α ∈ Γ. Now

µ+(x+ y) = inf
γ∈Γ

{µ([x + y, γ])} = inf
γ∈Γ

{µ([x, γ] + [y, γ])}

≥ inf
γ∈Γ

{min{µ([x, γ]), µ([y, γ])}} = min{ inf
γ∈Γ

{µ([x, γ])}, inf
γ∈Γ

{µ([y, γ])}}

= min{µ+(x), µ+(y)}.

Therefore µ+(x+ y) ≥ min{µ+(x), µ+(y)}. Again

µ+(xαy) = inf
γ∈Γ

{µ([xαy, γ])} ≥ inf
γ∈Γ

{µ([x, α][y, γ])} ≥ inf
γ∈Γ

µ[y, γ] = µ+(y)

and

µ+(xαy) = inf
γ∈Γ

{µ([xαy, γ])} = inf
γ∈Γ

{µ([x, α][y, γ])} ≥ µ([x, α])

≥ inf
δ∈Γ

{µ([x, δ])} = µ+(x).

Hence µ+ is a fuzzy ideal of S.
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Now for an h-ideal, suppose x+ a+ z = b+ z, where x, a, b, z ∈ S. Therefore

µ+(x) = inf
γ∈Γ

{µ([x, γ])} ≥ inf
γ∈Γ

min{µ([a, γ]), µ([b, γ])}

= min
{

inf
γ∈Γ

{µ([a, γ])}, inf
γ∈Γ

{µ([b, γ])}
}

= min{µ+(a), µ+(b)}.

Hence µ+ is a fuzzy h-ideal of S. �

3.5. Proposition. If σ ∈ Fh-I(S) [resp. FRh-I(S), FLh-I(S)] then σ+
′

∈ Fh-I(L)
[resp. FRh-I(L), FLh-I(L)].

Proof. Let σ ∈ Fh-I(S). Then σ(0S) = 1.

Now σ+
′

([0S , γ]) = inf
s∈S

[σ(0Sγs)] = inf
s∈S

[σ(0S)] = 1, ∀ γ ∈ Γ.

Therefore σ+
′

is non empty and σ+
′

(0L) = 1 as [0S , γ] is the zero element of L.

Let
∑

i

[xi, αi],
∑

j

[yj , βj ] ∈ L. Then

σ+
′
(

∑

i

[xi, αi] +
∑

j

[yj , βj ]
)

= inf
s∈S

{

σ
(

∑

i

xiαis+
∑

j

yjβjs
)}

≥ inf
s∈S

{

min
{

σ
(

∑

i

xiαis
)

, σ
(

∑

j

yjβjs
)}}

= min
{

inf
s∈S

{

σ
(

∑

i

xiαis
)}

, inf
s∈S

{

σ
(

∑

j

yjβjs)
}}

= min
{

σ+
′
(

∑

i

[xi, αi]
)

, σ+
′
(

∑

j

[yj , βj ]
)}

.

Again

σ+
′
(

∑

i

[xi, αi]
∑

j

[yj , βj ]
)

= σ+
′
(

∑

i,j

[xiαiyj , βj ]
)

= inf
s∈S

σ
(

∑

i,j

xiαiyjβjs
)

≥ inf
s∈S

{

min
{

σ
(

∑

i

xiαiy1
)

, σ
(

∑

i

xiαiy2
)

, σ
(

∑

i

xiαiy3
)

, . . .
}}

≥ min
{

σ
(

∑

i

xiαiy1
)

, σ
(

∑

i

xiαiy2
)

, σ
(

∑

i

xiαiy3
)

, . . .
}

≥ inf
s∈S

{

σ
(

∑

i

(xiαis)
)}

= σ+
′
(

∑

i

[xi, αi]
)

.

Similarly we can show that σ+
′
(

∑

j

[yj , βj ]
∑

i

[xi, αi]
)

≥ σ+
′
(

∑

j

[yj , βj ]
)

.

Thus σ+
′

is a fuzzy ideal of L.

Now for an h-ideal suppose
∑

i

[xi, ei] +
∑

i

[ai, αi] +
∑

i

[zi, δi] =
∑

i

[bi, βi] +
∑

i

[zi, δi]



Fuzzy h-Ideals of a Γ-Hemiring and of its Operator Hemirings 455

where
∑

i

[xi, ei],
∑

i

[ai, αi],
∑

i

[zi, δi],
∑

i

[bi, βi] ∈ L. Then

σ+
′
(

∑

i

[xi, ei]
)

= inf
s∈S

{

σ
(

∑

i

xieis
)}

≥ inf
s∈S

{

min
{

σ
(

∑

i

aiαis
)

, σ
(

∑

j

biβis
)}}

= min
{

inf
s∈S

{

σ
(

∑

i

aiαis
)}

, inf
s∈S

{

σ
(

∑

j

biβis
)}}

= min
{

σ+
′
(

∑

i

[ai, αi]
)

, σ+
′
(

∑

j

[bi, βi]
)}

Therefore σ+
′

is a fuzzy h-ideal of L. �

Similarly we can prove the following propositions.

3.6. Proposition. If δ ∈ Fh-I(R) [resp. FRh-I(R), FLh-I(R)] then δ∗ ∈ Fh-I(S)
[resp. FRh-I(S), FLh-I(S)]. �

3.7. Proposition. If η ∈ Fh-I(S) [resp. FRh-I(S), FLh-I(S)] then η∗
′

∈ Fh-I(R)
[resp. FRh-I(R), FLh-I(R)]. �

3.8. Theorem. The lattices of all fuzzy h-ideals of S and L are isomorphic via the

inclusion preserving bijection σ 7→ σ+′

, where σ ∈ Fh-I(S) and σ+′

∈ Fh-I(L).

Proof. First we shall show that (σ+
′

)+ = σ, where σ ∈ Fh-I(S). Let x ∈ S. Then

((

σ+
′)+)

(x) = inf
γ∈Γ

{

σ+
′

([x, γ])
}

= inf
γ∈Γ

{

inf
s∈S

{σ(xγs)}
}

≥ inf
γ∈Γ

{

inf
s∈S

{σ(x)}
}

= σ(x).

So σ ⊆
(

σ+
′)+

.

Let
∑

i

[γi, fi] be the right unity of S. Then
∑

i

xγifi = x for all x ∈ S. Now

σ(x) = σ(
∑

i

xγifi) ≥ min{σ(xγ1f1), σ(xγ2f2), . . .}

≥ inf
γ∈Γ

{

inf
s∈S

{σ(xγs)}
}

=
(

σ+
′)+

(x).

Therefore
(

σ+′)+
⊆ σ and hence

(

σ+′)+
= σ.

Next let µ ∈ Fh-I(L). Then

((

µ+
)+

′
)

(

∑

i

[xi, αi]
)

= inf
s∈S

{

µ+
(

∑

i

xiαis
)}

= inf
s∈S

{

inf
γ∈Γ

{

µ
(

∑

i

[xiαis, γ]
)}}

= inf
s∈S

{

inf
γ∈Γ

{

µ(
∑

i

[xi, αi][s, γ])
}}

≥ inf
s∈S

{

inf
γ∈Γ

{

µ
(

∑

i

[xi, αi]
)}}

= µ
(

∑

i

[xi, αi]
)

.

So µ ⊆
(

µ+
)+′

.
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Let
∑

i

[ei, δi] be the left unity of S. Then

µ
(

∑

j

[xj , αj ]
)

= µ
(

∑

j

[xj , αj ]
∑

i

[ei, δi]
)

≥ min
{

µ
(

∑

j

[xj , αj ][e1, δ1]
)

, µ
(

∑

j

[xj , αj ][e2, δ2]
)

, . . .
}

≥ inf
s∈S

{

inf
γ∈Γ

{

µ
(

∑

j

[xj , αj ][s, γ]
)}}

=
(

µ+
)+

′
(

∑

j

[xj , αj ]
)

Therefore
(

µ+
)+

′

⊆ µ, and so
(

µ+
)+

′

= µ. Thus the correspondence σ 7→ σ+
′

is a
bijection.

Now let σ1, σ2 ∈ Fh-I(S) be such that σ1 ⊆ σ2. Then

σ+′

1

(

∑

i

[xi, αi]
)

= inf
s∈S

{

σ1

(

∑

i

xiαis
)}

≤ inf
s∈S

{

σ2

(

∑

i

xiαis
)}

= σ+
′

2

(

∑

i

[xi, αi]
)

for all
∑

i

[xi, αi] ∈ L. Thus, σ+
′

1 ⊆ σ+
′

2 .

Similarly we can deduce that if µ1 ⊆ µ2 where µ1, µ2 ∈ Fh-I(L) then µ+

1 ⊆ µ+

2 .

We shall now show that (σ1 ⊕ σ2)
+

′

= σ+′

1 ⊕ σ+′

2 and (σ1 ∩ σ2)
+

′

= σ+′

1 ∩ σ+′

2 .

Let
∑

i

[ai, αi] ∈ L. Then

(

(σ1 ⊕ σ2)
+

′)
(

∑

i

[ai, αi]
)

= inf
s∈S

(σ1 ⊕ σ2)
(

∑

i

aiαis
)

= inf
s∈S

{

sup
{

min
{

σ1(
∑

k

xkδks), σ2

(

∑

j

yjβjs
)}

:

∑

i

aiαis =
∑

k

xkδks+
∑

j

yjβjs
}}

= sup
{

min
{

inf
s∈S

σ1

(

∑

k

xkδks), inf
s∈S

σ2

(

∑

j

yjβjs
)}}

= sup
{

min
{

σ+
′

1

(

∑

k

[xk, δk]
)

, σ+
′

2

(

∑

j

[yj , βj ]
)}}

=
(

σ+
′

1 ⊕ σ+
′

2

)

(

∑

i

[ai, αi]
)

Thus (σ1 ⊕ σ2)
+′

= σ+
′

1 ⊕ σ+
′

2 . Again

(σ1 ∩ σ2)
+

′
(

∑

i

[ai, αi]
)

= inf
s∈S

{

(σ1 ∩ σ2)
(

∑

i

aiαis
)}

= inf
s∈S

{

min
{

σ1

(

∑

i

aiαis
)

, σ2

(

∑

i

aiαis
)}}

= min
{

inf
s∈S

σ1

(

∑

i

aiαis
)

, inf
s∈S

σ2

(

∑

i

aiαis
)}
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= min
{

σ+′

1

(

∑

i

[ai, αi]
)

, σ+′

2

(

∑

i

[ai, αi]
)}

=
(

σ+
′

1 ∩ σ+
′

2

)

(

∑

i

[ai, αi]
)

.

So (σ1 ∩ σ2)
+

′

= σ+
′

1 ∩ σ+
′

2 . Hence the mapping σ 7→ σ+
′

is a lattice isomorphism. �

Similarly we can obtain the following theorem.

3.9. Theorem. The lattices of all fuzzy h-ideals of S and R are isomorphic via the

inclusion preserving bijection σ 7→ σ∗
′

, where σ ∈ Fh-I(S) and σ∗
′

∈ Fh-I(R). �

3.10. Corollary. FLh-I(L) [resp. FRh-I(L), FLh-I(R), FRh-I(R)] is a complete
lattice.

Proof. The corollary follows from the above theorems and the fact that FLh-I(S) [resp.
FRh-I(S), Fh-I(S)] is a complete lattice [13]. �

By routine verification the following Lemmas can be obtained.

3.11. Lemma. Let I be an h-ideal (left h-ideal, right h-ideal) of a Γ-hemiring S and let

λI be the characteristic function of I. Then
(

λI

)+
′

= λ(
I+

′

). �

3.12. Lemma. Let I be an h-ideal (left h-ideal, right h-ideal) of the left operator hemiring

L of a Γ-hemiring S and let λI be the characteristic function of I. Then
(

λI

)+
=

λ(
I+
). �

3.13. Lemma. Let I be an h-ideal (left h-ideal, right h-ideal) of a Γ-hemiring S and let

λI be the characteristic function of I. Then
(

λI

)

∗
′

= λ(
I∗

′

). �

3.14. Lemma. Let I be an h-ideal (left h-ideal, right h-ideal) of the right operator
hemiring R of a Γ-hemiring S and let λI be the characteristic function of I. Then
(

λI

)

∗

= λ(
I∗
). �

3.15. Theorem. The lattices of all h-ideals of S and L are isomorphic via the mapping

I 7→ I+
′

, where I denotes an h-ideal of S.

Proof. First we shall show that the mapping I 7→ I+
′

is one-one. Let I1 and I2 be two
h-ideals of S such that I1 6= I2. Then λI1 and λI2 are fuzzy h-ideals of S where λI1 and
λI2 are the characteristic functions of I1 and I2 respectively. Evidently, λI1 6= λI2 . Then

by Theorem 3.8, λ+′

I1
6= λ+′

I2
. Hence by Lemma 3.11, λ

I
+′

1

6= λ
I
+′

2

whence I+
′

1 6= I+
′

2 .

Consequently the mapping I 7→ I+
′

is one-one.

Next let J be an h-ideal of L. Then λJ is a fuzzy h-ideal of L. By Proposition 3.4
and Theorem 3.8, λ+

J is a fuzzy h-ideal of S. Now by Lemma 3.12, λ+

J = λJ+ and
consequently, J+ is an h-ideal of S. Hence the mapping is onto.

Let I1, I2 be two h-ideals of S such that I1 ⊆ I2. Then λI1 ⊆ λI2 and by Theorem 3.8,

λ+
′

I1
⊆ λ+

′

I2
and by Lemma 3.11, λ

I
+′

1

⊆ λ
I
+′

2

and consequently I+
′

1 ⊆ I+
′

2 . Thus the

mapping is inclusion preserving. Hence the theorem. �

Similarly we can prove the following theorem:

3.16. Theorem. The lattices of all h-ideals of S and R are isomorphic via the mapping

I 7→ I∗
′

, where I denotes an h-ideal of S. �
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3.17. Proposition. For any two fuzzy h-ideals µ and ν of S,

(µ ◦h ν)+
′

=
(

(µ)+
′

◦h (ν)+
′)

.

Proof. Let
∑

i

[xi, ei],
(

∑

i

[ai, αi]
)

j
,
∑

i

[zi, ηi],
(

∑

i

[bi, βi]
)

j
,
(

∑

i

[ci, γi]
)

j
,
(

∑

i

[di, δi]
)

j
∈ L

be such that
∑

i

[xi, ei] +
∑

j

(

∑

i

[ai, αi]
)

j

(

∑

i

[ci, γi]
)

j
+
∑

i

[zi, ηi]

=
∑

j

(

∑

i

[bi, βi]
)

j

(

∑

i

[di, δi]
)

j
+
∑

i

[zi, ηi].

Then
(

(µ)+
′

◦h (ν)+
′)
(

∑

i

[xi, ei]
)

= sup
{

min
j

{

(µ)+
′
((

∑

i

[ai, αi]
)

j

)

, (ν)+
′

((

∑

i

[ci, γi]
)

j

)

, (µ)+
′

((

∑

i

[bi, βi]
)

j

)

,

(ν)+
′
((

∑

i

[di, δi]
)

j

)}

:
∑

i

[xi, ei] +
∑

j

(

∑

i

[ai, αi]
)

j

(

∑

i

[ci, γi]
)

j

+
∑

i

[zi, ηi] =
∑

j

(

∑

i

[bi, βi]
)

j

(

∑

i

[di, δi]
)

j
+
∑

i

[zi, ηi]
}

= sup
{

min
j

{

inf
s∈S

(µ)
((

∑

i

aiαis
)

j

)

, inf
s∈S

(ν)
((

∑

i

ciγis
)

j

)

,

inf
s∈S

(µ)
((

∑

i

biβis
)

j

)

, inf
s∈S

(ν)
((

∑

i

diδis
)

j

)}}

= inf
s∈S

{

sup
{

min
j

{

(µ)
((

∑

i

aiαis)j
)

, (ν)
((

∑

i

ciγis
)

j

)

, (µ)
((

∑

i

biβis
)

j

)

,

(ν)
(

∑

i

(diδis)j)
}

:
∑

i

xieis+
∑

j

(

∑

i

aiαis
)

j
γj
(

∑

i

ciγis
)

j

+
∑

i

ziηis =
∑

j

(

∑

i

biβis
)

j
δj
(

∑

i

di, δis
)

j
+
∑

i

ziηis
}}

= inf
s∈S

(µ ◦h ν)
(

∑

i

xieis
)

= (µ ◦h ν)+
′
(

∑

i

[xi, ei]
)

. �

3.18. Remark. Similarly we can show that for any two fuzzy h-ideals µ and ν of S,

(µΓhν)
+

′

= µ+
′

Γhν
+

′

.

3.19. Proposition. If ζ is a prime [semiprime] fuzzy h-ideal of S then ζ+
′

(resp. ζ∗
′

)
is a prime [semiprime] fuzzy h-ideal of L (resp. R).

Proof. Suppose ζ is a prime fuzzy h-ideal of S and let µ+
′

, ν+
′

be fuzzy h-ideals of L

such that µ+
′

Γhν
+

′

⊆ ζ+
′

. Then from Remark 3.18 we have (µΓhν)
+

′

⊆ ζ+
′

which
implies (µΓhν) ⊆ ζ, that is µ ⊆ ζ or ν ⊆ ζ [since ζ is a prime fuzzy h-ideal of S]. Hence

µ+
′

⊆ ζ+
′

or ν+
′

⊆ ζ+
′

. Therefore ζ+
′

is a prime fuzzy h-ideal of L.

Similarly we can prove the result for R.

Now for semiprime fuzzy h-ideal, the proof is very similar. �

3.20. Proposition. If ζ is a prime [semiprime] fuzzy h-ideal of L (resp. R), then ζ+

(resp. ζ∗) is a prime [semiprime] fuzzy h-ideal of S.
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Proof. The proof follows from a routine verification. �

3.21. Proposition. If µ is a fuzzy h-bi-ideal of S. Then µ+
′

(resp. µ∗
′

) is a fuzzy
h-bi-ideal of L (resp. R).

Proof. Suppose µ is a fuzzy h-bi-ideal of S and
∑

i

[xi, αi],
∑

i

[yi, βi],
∑

i

[zi, γi] ∈ L.

Then from Proposition 3.5 we have

µ+
′
((

∑

i

[xi, αi]
)

+
(

∑

i

[yi, βi]
))

≥ min
{

µ+
′
(

∑

i

[xi, αi]
)

, µ+
′
(

∑

i

[yi, βi]
)}

and

µ+
′
((

∑

i

[xi, αi]
)(

∑

i

[yi, βi]
))

≥ min
{

µ+
′
(

∑

i

[xi, αi]
)

, µ+
′
(

∑

i

[yi, βi]
)}

.

Now suppose
∑

i

[xi, ei],
∑

i

[ai, αi],
∑

i

[zi, δi],
∑

i

[bi, βi] ∈ L are such that

∑

i

[xi, ei] +
∑

i

[ai, αi] +
∑

i

[zi, δi] =
∑

i

[bi, βi] +
∑

i

[zi, δi].

Since µ+
′

is a fuzzy h-ideal of L,

µ+
′
(

∑

i

[xi, ei]
)

≥ min
{

µ+
′
(

∑

i

[ai, αi]
)

, µ+
′
(

∑

j

[bi, βi]
)}

.

Now

µ+
′
((

∑

i

[xi, αi]
)(

∑

i

[yi, βi]
)(

∑

i

[zi, γi]
))

= µ+
′
(

∑

i

[xi, αi]
∑

i

[yiβizi, γi]
)

≥ µ+
′
(

∑

i

[xi, αi]
)

.

Similarly,

µ+
′
((

∑

i

[xi, αi]
)(

∑

i

[yi, βi]
)(

∑

i

[zi, γi]
))

= µ+
′
(

∑

i

[xi, αiyiβi]
∑

i

[zi, γi]
)

≥ µ+
′
(

∑

i

[zi, γi]
)

.

Therefore we have,

µ+
′
((

∑

i

[xi, αi]
)(

∑

i

[yi, βi]
)(

∑

i

[zi, γi]
))

≥ min
{

µ+
′
(

∑

i

[xi, αi]
)

, µ+
′
(

∑

i

[zi, γi]
)}

Hence µ+
′

is a fuzzy h-bi-ideal of L.

Similarly we can prove the result for R. �

3.22. Proposition. If µ is a fuzzy h-bi-ideal of L (resp. R), then µ+ (resp. µ∗) is also
a fuzzy h-bi-ideal of S. �

3.23. Proposition. If µ is a fuzzy h-quasi-ideal of S then µ+
′

(resp. µ∗
′

) is a fuzzy
h-quasi-ideal of L (resp. R).
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Proof. Suppose µ is a fuzzy h-quasi-ideal of S and
∑

i

[xi, αi],
∑

i

[yi, βi],
∑

i

[zi, γi] ∈ L.

Then by Proposition 3.5 we obtain

µ+
′
(

∑

i

[xi, αi] +
∑

i

[yi, βi]
)

≥ min
{

µ+
′
(

∑

i

[xi, αi]
)

, µ+
′
(

∑

i

[yi, βi]
)}

,

and if
∑

i

[xi, ei] +
∑

i

[ai, αi] +
∑

i

[zi, δi] =
∑

i

[bi, βi] +
∑

i

[zi, δi]

for
∑

i

[xi, ei],
∑

i

[ai, αi],
∑

i

[zi, δi],
∑

i

[bi, βi] ∈ L, then

µ+
′
(

∑

i

[xi, ei]
)

≥ min
[

µ+
′
(

∑

i

[ai, αi]
)

, µ+
′
(

∑

j

[bi, βi]
)]

.

Let χS be the characteristic function of S. Then by using Proposition 3.17 and Theo-
rem 3.8 we deduce that

(

µ+
′

◦h χ+
′

S

)

∩
(

χ+
′

S ◦h µ+
′)

=
(

µ ◦h χS

)+
′

∩
(

χS ◦h µ
)+

′

= ((µ ◦h χS) ∩ (χS ◦h µ))+
′

⊆ µ+
′

[since µ is a fuzzy h-quasi ideal]. Hence µ+
′

is an h-quasi-ideal of L.

Similarly we can prove the result for R. �

3.24. Proposition. If µ is a fuzzy h-quasi-ideal of L (resp. R), then µ+ (resp. µ∗) is
also a fuzzy h-quasi-ideal of S. �

4. Cartesian product of corresponding fuzzy h-ideals

Let {Si}i∈I be a family of Γ-hemirings. Now if we define addition (+) and multipli-
cation on the Cartesian product Πi∈ISi as follows:

(xi)i∈I + (yi)i∈I = (xi + yi)i∈I and (xi)i∈Iα(yi)i∈I = (xiαyi)i∈I

for all (xi)i∈I , (yi)i∈I ∈ Πi∈ISi and for all α ∈ Γ, then Πi∈ISi becomes a Γ-hemiring.

4.1. Definition. [1] Let µ and σ be two fuzzy subsets of a set X. Then the Cartesian
product of µ and σ is defined by (µ× σ)(x, y) = min{µ(x), σ(y)} ∀ x, y ∈ X.

4.2. Definition. Let µ×σ be the Cartesian product of two fuzzy subsets µ and σ of R.
Then the corresponding cartesian product (µ× σ)∗ of S × S is defined by

(µ× σ)∗(x, y) = inf
α,β∈Γ

(µ× σ)([α, x], [β, y]) where x, y ∈ S.

4.3. Definition. Let µ× σ be the Cartesian product of two fuzzy subsets µ and σ of S.

Then the corresponding cartesian product (µ× σ)∗
′

of R ×R is defined by

(µ× σ)∗
′
(

n
∑

i=1

[αi, xi],

m
∑

j=1

[βj , yj ]
)

= inf
si,sj∈S

(µ× σ)
(

n
∑

i=1

siαixi,

m
∑

j=1

sjβjyj
)

,

where

n
∑

i=1

[αi, xi],

m
∑

j=1

[βj , yj ] ∈ R.
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4.4. Definition. Let µ× σ be the cartesian product of two fuzzy subsets µ and σ of L.
Then the corresponding Cartesian product (µ× σ)+ of S × S is defined by

(µ× σ)+(x, y) = inf
α,β∈Γ

(µ× σ)([x,α], [y, β]),

where x, y ∈ S.

4.5. Definition. Let µ× σ be the Cartesian product of two fuzzy subsets µ and σ of S.

Then the corresponding Cartesian product (µ× σ)+
′

of L× L is defined by

(µ× σ)+
′
(

n
∑

i=1

[xi, αi],
m
∑

j=1

[yj , βj ]
)

= inf
si,sj∈S

(µ× σ)
(

n
∑

i=1

xiαisi,
m
∑

j=1

yjβjsj
)

where

n
∑

i=1

[xi, αi],

m
∑

j=1

[yj , βj ] ∈ L.

4.6. Proposition. Let µ, µ′, ν, ν′ are four fuzzy h-ideals of S. Then
(

µ× µ′
)

Γh

(

ν × ν′
)

=
(

µΓhν
)

×
(

µ′Γhν
′
)

.

Proof. Let (x, y) ∈ S×S be such that (x, y)+(a, c)γ(a′, c′)+(z, z′) = (b, d)δ(b′, d′)+(z, z′),
where a, c, a′, c′, z, z′, b, d, b′, d′ ∈ S and γ, δ ∈ Γ. Then (x, y)+ (aγa′, cγc′)+ (z, z′) =
(bδb′, dδd′)+ (z, z′), which implies that (x+aγa′+ z, y+ cγc′ + z′) = (bδb′+ z, dδd′+ z′).
Now

(µ× µ′)Γh(ν × ν′)(x, y)

= sup{min{(µ× µ′)(a, c), (µ× µ′)(b, d), (ν × ν′)(a′, c′), (ν × ν′)(b′, d′)} :

(x, y) + (a, c)γ(a′, c′) + (z, z′) = (b, d)δ(b′, d′) + (z, z′)}

= sup{min{min{µ(a), µ′(c)},min{µ(b), µ′(d)},min{ν(a′), ν′(c′)},

min{ν(b′), ν′(d′)}}}

= min{sup{min{µ(a), µ(b), ν(a′), ν(b′)} : x+ aγa′ + z = bδb′ + z},

sup{min{µ′(c), µ′(d), ν′(c′), ν′(d′)} : y + cγc′ + z′ = dδd′ + z′}}

= min
{(

µΓhν
)

(x),
(

µ′Γhν
′
)

(y)
}

=
((

µΓhν
)

×
(

µ′Γhν
′
))

(x, y)

Hence the proof. �

In this section we prove the results for the Γ-hemiring S and its right operator hemiring
R. Similar results hold for the Γ-hemiring S and its left operator hemiring L.

4.7. Proposition. Let µ and σ be two fuzzy subsets of R (L) [the right (left) operator
hemiring of the Γ-hemiring S]. Then (µ× σ)∗ = µ∗ × σ∗ (resp. (µ× σ)+ = µ+ × σ+).

Proof. Let x, y ∈ S. Then

(µ× σ)∗(x, y) = inf
α,β∈Γ

(µ× σ)([α, x], [β, y]) = inf
α,β∈Γ

min{µ([α, x]), σ([β, y])}

= min
{

inf
α∈Γ

µ([α, x]), inf
β∈Γ

σ([β, y])
}

= min
{

µ∗(x), σ∗(y)
}

=
(

µ∗ × σ∗
)

(x, y).

Consequently, (µ× σ)∗ = µ∗ × σ∗. Similarly, we can show that (µ× σ)+ = µ+ × σ+. �

4.8. Proposition. Let µ and σ be two fuzzy subsets of S. Then

(µ× σ)∗
′

= µ∗
′

× σ∗
′

((µ× σ)+
′

= µ+
′

× σ+
′

).
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Proof. Let
n
∑

i=1

[αi, xi],
m
∑

j=1

[βj , yj ] ∈ R. Then

(µ× σ)∗
′
(

n
∑

i=1

[αi, xi],
m
∑

j=1

[βj , yj ]
)

= inf
si,sj∈S

(µ× σ)
(

n
∑

i=1

siαixi,
m
∑

j=1

sjβjyj
)

= inf
si,sj∈S

min
{

µ
(

n
∑

i=1

siαixi

)

,
m
∑

j=1

σ(sjβjyj)
}

= min
{

inf
si∈S

µ
(

n
∑

i=1

siαixi

)

, inf
sj∈S

σ
m
∑

j=1

(sjβjyj)
}

= min
{

µ∗
′
(

n
∑

i=1

[αi, xi]
)

, σ∗
′
(

m
∑

j=1

[βj , yj ]
)}

=
(

µ∗
′

× σ∗
′)
(

n
∑

i=1

[αi, xi],

m
∑

j=1

[βj , yj ]
)

.

Consequently, (µ×σ)∗
′

= µ∗
′

×σ∗
′

. Similarly we can show that (µ×σ)+
′

= µ+
′

×σ+
′

. �

4.9. Proposition. Suppose µ and σ are two fuzzy h-ideals of R (resp. L). Then µ∗×σ∗

(resp. µ+ × σ+) is a fuzzy h-ideal of S × S.

Proof. Since µ, σ are fuzzy h-ideals of R, by Proposition 3.6, µ∗, σ∗ are fuzzy h-ideals
of S and so from [13, Theorem 35] we have that µ∗ × σ∗ is a fuzzy h-ideal of S × S.

In similar way we can prove the result for L. �

4.10. Proposition. Let µ and σ be two prime (semiprime) fuzzy h-ideals of R (L).
Then µ∗ × σ∗ (resp. µ+ × σ+) is a prime (semiprime) fuzzy h-ideal of S × S.

Proof. Since µ and σ are two prime fuzzy h-ideals of R, by Proposition 4.9 we see
that µ∗ × σ∗ is a fuzzy h-ideal of S × S. To show that µ∗ × σ∗ is prime, suppose
θ, θ′, η, η′ ∈ Fh-I(S) are such that (θ×θ′)Γh(η×η′) ⊆ µ∗×σ∗ Then from Proposition 4.6
we obtain (θΓhη)× (θ′Γhη

′) ⊆ µ∗×σ∗. Therefore (θΓhη) ⊆ µ∗ and (θ′Γhη
′) ⊆ σ∗. Hence

θ ⊆ µ∗ or η ⊆ µ∗ and θ′ ⊆ σ∗ or η′ ⊆ σ∗, that is θ × θ′ ⊆ µ∗ × σ∗ or η × η′ ⊆ µ∗ × σ∗.
So, µ∗ × σ∗ is a prime fuzzy h-ideal of S × S.

Similarly we can prove the result for semiprime fuzzy h-ideals and the left operator
hemiring L. �

By suitable modification of the above argument we obtain the following result.

4.11. Proposition. Let µ and σ be two fuzzy h-ideals (prime fuzzy h-ideals, semiprime

fuzzy h-ideals) of S. Then µ∗
′

× σ∗
′

[resp. µ+
′

× σ+
′

] is a fuzzy h-ideal (resp. prime
fuzzy h-ideal, semiprime fuzzy h-ideal) of R ×R [resp. L× L]. �

4.12. Theorem. Let S be a Γ-hemiring with unities and let R be its right operator

hemiring. Then there exists an inclusion preserving bijection µ×σ 7−→ µ∗
′

×σ∗
′

between
the set of all Cartesian products of fuzzy h-ideals (prime fuzzy h-ideals, semiprime fuzzy
h-ideals) of S and the set of all Cartesian products of fuzzy h-ideals (prime fuzzy h-ideals,
semiprime fuzzy h-ideals) of R, where µ and σ are fuzzy h-ideals (prime fuzzy h-ideals,
semiprime fuzzy h-ideals) of S.
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Proof. Let µ and σ are fuzzy h-ideals of S and x, y ∈ S. Then

(

µ∗
′

× σ∗
′)∗

(x, y) = inf
α,β∈Γ

(

µ∗
′

× σ∗
′)

([α, x], [β, y])

= inf
α,β∈Γ

min
{

µ∗
′

([α, x]), σ∗
′

([β, y])
}

= min
{

inf
α∈Γ

µ∗
′

([α, x]), inf
β∈Γ

σ∗
′

([β, y])
}

= min
{

inf
α∈Γ

inf
s1∈S

µ(s1αx), inf
β∈Γ

inf
s2∈S

σ(s2βy)
}

≥ min{µ(x), σ(y)}( since µ and σ are fuzzy ideals)

= (µ× σ)(x, y).

Therefore µ × σ ⊆
(

µ∗
′

× σ∗
′)∗

. Let [e, δ] be the strong left unity of S. Then eδx = x
and eδy = y for all x, y ∈ S. Now,

(µ× σ)(x, y) = min{µ(x), σ(y)} = min{µ(eδx), σ(eδy)}

≥ min{ inf
α∈Γ

inf
s1∈S

µ(s1αx), inf
β∈Γ

inf
s2∈S

σ(s2βy)}

= min{ inf
α∈Γ

µ∗
′

([α, x]), inf
β∈Γ

σ∗
′

([β, y])}

= min
{

(µ∗
′

)∗(x), (σ∗
′

)∗(y)
}

=
((

µ∗
′)∗

×
(

σ∗
′

)∗
)

(x, y)

=
(

µ∗
′

× σ∗
′)∗

(x, y).

So µ× σ ⊇ (µ∗
′

× σ∗
′

)∗. Hence µ× σ = (µ∗
′

× σ∗
′

)∗.

Now let µ and σ be two fuzzy h-ideals of R. Then

(

µ∗ × σ∗
)

∗
′
(

n
∑

i=1

[αi, xi],
m
∑

j=1

[βj , yj ]
)

= inf
si,sj∈S

(

µ∗ × σ∗
)

(

n
∑

i=1

siαixi,
m
∑

j=1

sjβjyj
)

= inf
si,sj∈S

min
{

µ∗

(

n
∑

i=1

siαixi), σ
∗

(

m
∑

j=1

sjβjyj
)}

= min
{

inf
si∈S

µ∗

(

n
∑

i=1

siαixi), inf
sj∈S

σ∗

(

m
∑

j=1

sjβjyj
)}

= min
{

inf
si∈S

inf
γ∈Γ

µ
([

γ,
n
∑

i=1

siαixi

])

, inf
sj∈S

inf
δ∈Γ

σ
([

δ,
m
∑

j=1

sjβjyj
])}

= min
{

inf
si∈S

inf
γ∈Γ

µ
(

n
∑

i=1

[γ, si]
n
∑

i=1

[αi, xi]
)

, inf
sj∈S

inf
δ∈Γ

σ
(

m
∑

j=1

[δ, sj ]
m
∑

j=1

[βj , yj ])
}

≥ min
{

µ
(

n
∑

i=1

[αi, xj ]), σ
(

m
∑

j=1

[βj , yj ]
)}

= (µ× σ)
(

n
∑

i=1

[αi, xi],

m
∑

j=1

[βj , yj ]
)

.
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Thus we obtain (µ∗ × σ∗)∗
′

⊇ µ× σ. Let

p
∑

k=1

[γk, fk] be the right unity of S. Then

(µ× σ)
(

n
∑

i=1

[αi, xi],

m
∑

j=1

[βj , yj ]
)

= min
{

µ
(

n
∑

i=1

[αi, xi]), σ
(

m
∑

j=1

[βj , yj ]
)}

= min
{

µ
(

n
∑

i=1

[αi, xi]

p
∑

k=1

[γk, fk]), σ
(

m
∑

j=1

[βj , yj ]

p
∑

k=1

[γk, fk]
)}

≥ min
{

inf
si∈S

inf
γ∈Γ

µ
(

n
∑

i=1

[αi, xi]
n
∑

i=1

[γ, si]), inf
sj∈S

inf
δ∈Γ

σ
(

m
∑

j=1

[βj , yj ]
m
∑

j=1

[δ, sj ]
)}

≥ min
{

(

µ∗
)

∗
′
(

n
∑

i=1

[αi, xi]
)

,
(

σ∗
)

∗
′
(

m
∑

j=1

[βj , yj ])
}

=
((

µ∗)∗
′

×
(

σ∗
)

∗
′)
(

n
∑

i=1

[αi, xi],

m
∑

j=1

[βj , yj ]
)

=
(

µ∗ × σ∗
)

∗
′
(

n
∑

i=1

[αi, xi],

n
∑

j=1

[βj , yj ]
)

.

Hence
(

µ∗ × σ∗
)

∗
′

⊆ µ × σ. Consequently,
(

µ∗ × σ∗
)

∗
′

= µ × σ. Thus we see that the

correspondence µ× σ 7−→ µ∗
′

× σ∗
′

is a bijection.

Now let µ1, µ2, σ1, σ2 be fuzzy h-ideals of S such that µ1 × σ1 ⊆ µ2 × σ2. Then:

(

µ∗
′

1 × σ∗
′

1

)

(

n
∑

i=1

[αi, xi],
m
∑

j=1

[βj , yj ]
)

= inf
si,sj∈S

(

µ1 × σ1

)

(

n
∑

i=1

siαixi,
m
∑

j=1

sjβjyj
)

= inf
si,sj∈S

min
{

µ1

(

n
∑

i=1

siαixi), σ1

m
∑

j=1

(sjβjyj
)}

≤ inf
si,sj∈S

min
{

µ2

(

n
∑

i=1

siαixi), σ2(

m
∑

j=1

sjβjyj
)}

= min
{

inf
si∈S

µ2

(

n
∑

i=1

siαixi

)

, inf
sj∈S

σ2

(

m
∑

j=1

sjβjyj
)}

= min
{

µ∗
′

2

(

n
∑

i=1

[αi, xi]
)

, σ∗
′

2

(

m
∑

j=1

[βj , yj ]
)}

=
(

µ∗
′

2 × σ∗
′

2

)

(

n
∑

i=1

[αi, xi],
m
∑

j=1

[βj , yj ]
)

.

Hence µ∗
′

1 × σ∗
′

1 ⊆ µ∗
′

2 × σ∗
′

2 . Therefore, µ × σ 7−→ µ∗
′

× σ∗
′

is an inclusion preserving
bijection.

Similarly, we can prove the results for prime fuzzy h-ideals and semiprime fuzzy h-
ideals. �
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