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Abstract

Common fixed points of R-weakly commuting mappings on a normed
vector space are obtained. This fixed point is guaranteed under a gen-
eralized and natural contraction condition and the convergence of a cer-
tain inductively defined sequence of points in the normed vector space.
The uniqueness of this common fixed point is also a notable feature.
The off-shoot corollaries of the main result obtained here happen to be
special cases which cover many results discovered by different authors.
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1. Introduction

Given any binary operation, one always tries to check whether it possesses some
standard properties or not. Composition of mappings is a binary operation, which, in
general, lacks the commutativity property. It is a welcome situation when two mappings
can show this nice harmony amongst themselves by commuting with each other. This
can be defined for two self-mappings on the most general structure, viz., a set.

1.1. Definition. (Commuting Mappings) Any two self-mappings A and B on a set X

are said to be commuting at a point x ∈ X if, and only if, ABx = BAx.
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Though this property is essentially local in nature, a few pairs of mappings can com-
mute at almost all points of the set.

A normed vector space is a richer structure as, in addition to the distance function,
viz., metric induced by the norm, it is equipped with two binary operations and also can
use scalars, which are elements from an outer structure, viz., the field, over which it is
defined.

Of course, commutativity of any binary operation, as also of the composition of map-
pings, is always desirable but not guaranteed. So, in an effort to search for a generalized
property which is close to commutativity for normed vector spaces, R-weakly commuting
mappings were defined.

Thus if X is a normed vector space, then for two self-mappings A and B on X and
at a point x ∈ X, we desire,

‖ABx−BAx‖ ≤ R ‖Ax−Bx‖ , for some R > 0.

But then this condition immediately suggests that each pair of self-mappings on a normed
vector space should satisfy it at every point except in two cases, viz., either probably
at coincidence points of the mappings where at those points x (with Ax = Bx), the
right hand side of the inequality becomes zero and left hand side may not be zero, or at
those points where either ‖Ax−Bx‖ is finite and ‖ABx−BAx‖ is not or where both
are not finite. In all other cases, one can choose sufficiently large R, which would make
‖ABx−BAx‖ smaller than required R ‖Ax−Bx‖. Being something trivial, it may seem
to be an uninteresting condition. But if the positive real number R, which balances the
inequality, is constrained to be common (and of course finite) at all the points, it remains
trivial no more.

1.2. Definition. (R-Weakly Commuting Mappings) If X is a normed vector space, two
self-mappings A and B on X are said to be R-weakly commuting if, and only if, there
exists a real number R > 0 such that ‖ABx−BAx‖ ≤ R ‖Ax−Bx‖ for all x ∈ X.

The definitions make it clear that commuting mappings on a normed vector space are
R-weakly commuting, but the converse need not hold.

2. R-Weakly commuting mappings and their fixed points

Taking up pairs of R-weakly commuting mappings on normed vector space and a very
general and natural contraction condition, under the requirement of the convergence of
certain inductively defined sequences, we prove our main result for the existence and
uniqueness of common fixed point of those mappings.

2.1. Theorem. Let X be a normed vector space, S, I and T , J two pairs of respectively

R1-weakly and R2-weakly commuting mappings on X. Also let C be a closed, convex

subset of X such that

I (C) ⊇ (1− k) I (C) + kS (C) ,(2.1)

J (C) ⊇
(

1− k
′
)

J (C) + k
′

T (C) ,(2.2)

where 0 < k, k′ ≤ 1 and suppose that

(2.3)

‖Sx− Ty‖p ≤ φ
(

max {‖Sx− Ix‖p + ‖Ix− Jy‖p + ‖Jy − Ty‖p ,

‖Sx− Ix‖p + ‖Ix− Ty‖p ,

‖Sx− Jy‖p + ‖Jy − Ty‖p}
)

,
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for all x, y ∈ C, where p > 0 and φ is a function which is upper semi-continuous from

the right such that φ (t) < t for each t > 0. If for some x0 ∈ C, the sequence {xn} in X

defined inductively for n = 0, 1, 2, 3, . . ., by

Ix2n+1 = (1− a2n) Ix2n + a2nSx2n,(2.4)

Jx2n+2 = (1− a2n+1) Jx2n+1 + a2n+1Tx2n+1,(2.5)

where 0 < an ≤ 1 for all n ≥ 0 and lim inf an > 0, converges to a point z ∈ C and for

this {xn}, if Ixn → Iz and Jxn → Jz as n → ∞, then S, I, J and T have the unique

common fixed point Tz in C.

Proof. We prove the theorem in three steps.

In the first step, we prove that Iz = Jz = Sz = Tz = w. From (2.4) and (2.5), we
have

a2nSx2n = Ix2n+1 − (1− a2n) Ix2n,

a2n+1Tx2n+1 = Jx2n+2 − (1− a2n+1) Jx2n+1.

Since lim Ixn = Iz, lim Jxn = Jz and 0 < an ≤ 1 for all n with lim inf an > 0, then
letting n → ∞, in both the above equations, we get respectively,

limSx2n = lim Ix2n = Iz,

lim Tx2n+1 = lim Jx2n+1 = Jz.

If possible, suppose that Iz 6= Jz. Then for large n, Sx2n 6= Tx2n+1 and so using (2.3)
with x = x2n and y = x2n+1, we have

‖Sx2n − Tx2n+1‖
p ≤ φ (max {‖Sx2n − Ix2n‖

p + ‖Ix2n − Jx2n+1‖
p

+ ‖Jx2n+1 − Tx2n+1‖
p
,

‖Sx2n − Ix2n‖
p + ‖Ix2n − Tx2n+1‖

p
,

‖Sx2n − Jx2n+1‖
p + ‖Jx2n+1 − Tx2n+1‖

p}) .

Letting n tend to infinity, we have

‖Iz − Jz‖p ≤ φ
(

max {‖Iz − Iz‖p + ‖Iz − Jz‖p + ‖Jz − Jz‖p ,

‖Iz − Iz‖p + ‖Iz − Jz‖p ,

‖Iz − Jz‖p + ‖Jz − Jz‖p}
)

= φ (max {‖Iz − Jz‖p, ‖Iz − Jz‖p, ‖Iz − Jz‖p})

= φ (‖Iz − Jz‖p)

< ‖Iz − Jz‖p,

a contradiction and so Iz = Jz.

If possible, now suppose that Jz 6= Sz. Then for large n, Tx2n+1 6= Sz and so using
(2.3) with x = z and y = x2n+1,

‖Sz − Tx2n+1‖
p ≤ φ (max {‖Sz − Iz‖p + ‖Iz − Jx2n+1‖

p

+ ‖Jx2n+1 − Tx2n+1‖
p
,

‖Sz − Iz‖p + ‖Iz − Tx2n+1‖
p
,

‖Sz − Jx2n+1‖
p + ‖Jx2n+1 − Tx2n+1‖

p}) .
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Letting n tend to infinity, we have

‖Sz − Jz‖p ≤ φ (max {‖Sz − Iz‖p + ‖Iz − Jz‖p + ‖Jz − Jz‖p ,

‖Sz − Iz‖p + ‖Iz − Jz‖p ,

‖Sz − Jz‖p + ‖Jz − Jz‖p})

= φ (max {‖Sz − Iz‖p, ‖Sz − Iz‖p, ‖Sz − Jz‖p})

= φ (‖Sz − Jz‖p)

< ‖Sz − Jz‖p,

a contradiction and so Sz = Jz.

If possible, suppose that Iz 6= Tz. Then for large n, Sx2n 6= Tz and so using (2.3)
with x = x2n and y = z, we have

‖Sx2n − Tz‖p ≤ φ
(

max {‖Sx2n − Ix2n‖
p + ‖Ix2n − Jz‖p

+ ‖Jz − Tz‖p,

‖Sx2n − Ix2n‖
p + ‖Ix2n − Tz‖p ,

‖Sx2n − Jz‖p + ‖Jz − Tz‖p}
)

.

Letting n tend to infinity, we have

‖Iz − Tz‖p ≤ φ
(

max {‖Iz − Iz‖p + ‖Iz − Jz‖p + ‖Jz − Tz‖p ,

‖Iz − Iz‖p + ‖Iz − Tz‖p ,

‖Iz − Jz‖p + ‖Jz − Tz‖p}
)

= φ (max {‖Jz − Tz‖p, ‖Iz − Tz‖p, ‖Jz − Tz‖p})

= φ (‖Iz − Tz‖p)

< ‖Iz − Tz‖p,

a contradiction and so Iz = Tz.

We have therefore proved that Iz = Jz = Sz = Tz = w, that is, z is a coincidence
point of I , J , S, and T .

In the second step, we prove the existence of the common fixed point.

Since I and S are R1-weakly commuting,

‖Iw − Sw‖ = ‖ISz − SIz‖ ≤ R1 ‖Sz − Iz‖ = 0,

and so Sw = Iw.

Now suppose that Sw 6= w. Then using (2.3) with x = Sz and y = z, we have

‖Sw − w‖p = ‖Sw − Tz‖p

≤ φ
(

max {‖Sw − Iw‖p + ‖Iw − Jz‖p + ‖Jz − Tz‖p ,

‖Sw − Iw‖p + ‖Iw − Tz‖p ,

‖Sw − Jz‖p + ‖Jz − Tz‖p}
)

= φ
(

max {‖Sw − Iw‖p + ‖Iw − w‖p + ‖w − w‖p ,

‖Sw − Iw‖p + ‖Iw − w‖p ,

‖Sw − w‖p + ‖w − w‖p}
)

= φ (‖Sw − w‖p)

< ‖Sw − w‖p,
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a contradiction and so Sw = w = Iw, proving that w is a fixed point of S and I .

Similarly, since J and T are R2-weakly commuting,

‖Jw − Tw‖ = ‖JTz − TJz‖ ≤ R2 ‖Tz − Jz‖ = 0,

and so Tw = Jw.

Now suppose that Tw 6= w. Then using (2.3) with x = z and y = Tz, we have

‖Tw − w‖p = ‖w − Tw‖p = ‖Sz − Tw‖p

≤ φ
(

max {‖Sz − Iz‖p + ‖Iz − Jw‖p + ‖Jw − Tw‖p ,

‖Sz − Iz‖p + ‖Iz − Tw‖p ,

‖Sz − Jw‖p + ‖Jw − Tw‖p}
)

= φ
(

max {‖w −w‖p + ‖w − Tw‖p + ‖Tw − Tw‖p ,

‖w −w‖p + ‖w − Tw‖p ,

‖w − Tw‖p + ‖Tw − Tw‖p}
)

= φ (‖Tw − w‖p)

< ‖Tw − w‖p,

a contradiction and so Tw = w = Jw, proving that w is a fixed point of T and J . Thus,
w = Iz = Jz = Sz = Tz is a common fixed point of all the four mappings I , J , S and T .

In the third and final step, we establish the uniqueness of the common fixed point w.
If possible, suppose that there exist two distinct common fixed points w and w′.

Using (2.3) with x = w and y = w′, we have
∥

∥Sw − Tw
′
∥

∥

p
≤ φ

(

max
{

‖Sw − Iw‖p +
∥

∥Iw − Jw
′
∥

∥

p
+

∥

∥Jw
′ − Tw

′
∥

∥

p
,

‖Sw − Iw‖p +
∥

∥Iw − Tw
′
∥

∥

p
,

∥

∥Sw − Jw
′
∥

∥

p
+

∥

∥Jw
′ − Tw

′
∥

∥

p})

∥

∥w − w
′
∥

∥

p
≤ φ

(

max
{

‖w − w‖p +
∥

∥w − w
′
∥

∥

p
+

∥

∥w
′ − w

′
∥

∥

p
,

‖w −w‖p +
∥

∥w − w
′
∥

∥

p
,

∥

∥w −w
′
∥

∥

p
+

∥

∥w
′ − w

′
∥

∥

p})

= φ
(

max
{∥

∥w − w
′
∥

∥

p
,
∥

∥w − w
′
∥

∥

p
,
∥

∥w − w
′
∥

∥

p})

= φ
(
∥

∥w −w
′
∥

∥

p)

<
∥

∥w − w
′
∥

∥

p
,

a contradiction and so w = w′. The common fixed point is therefore unique, completing
the proof of the theorem. �

3. Implied results as particular cases for two or fewer pairs

Theorem 2.1 is rich enough to give many other results as mere particular cases. We
list an interesting collection of these and just specify how these are readily obtainable
from it.

3.1. Corollary. ([4, Theorem 2.1]) Let S, I and T , J be two pairs of mappings of a

normed vector space X into itself which commute pairwise at their coincidence points, let

C be a closed, convex subset of X such that

I (C) ⊇ (1− k) I (C) + kS (C) ,(2.1)

J (C) ⊇
(

1− k
′
)

J (C) + k
′

T (C) ,(2.2)
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where 0 < k, k′ < 1 and suppose that

(2.3)

‖Sx− Ty‖p ≤ φ
(

max {‖Sx− Ix‖p + ‖Ix− Jy‖p + ‖Jy − Ty‖p ,

‖Sx− Ix‖p + ‖Ix− Ty‖p ,

‖Sx− Jy‖p + ‖Jy − Ty‖p}
)

,

for all x, y ∈ C, where p > 0 and φ is a function which is upper semi-continuous from

the right such that φ (t) < t for each t > 0. If for some x0 ∈ C, the sequence {xn} in X

defined inductively for n = 0, 1, 2, 3, . . ., by

Ix2n+1 = (1− a2n) Ix2n + a2nSx2n,(2.4)

Jx2n+2 = (1− a2n+1) Jx2n+1 + a2n+1Tx2n+1,(2.5)

where a0 = 1, 0 < an ≤ 1 for all n > 0 and lim inf an > 0, converges to a point z ∈ C

and for this {xn}, if Ixn → Iz and Jxn → Jz as n → ∞, then S, I, J and T have the

unique common fixed point Tz in C.

Proof. In the proof of Theorem 2.1, it is clear that the locations where we need to
use the R-weakly commuting nature of the pairs of mappings S, I and T , J are their
coincidence points, and the result is more naturally obtainable under the strong property
of commutativity, when this happens to be a special case of it. Of course, the hypothesis
of the corollary is not that much stronger either, as it does not demand the global
commutativity of the concerned pairs of mappings, (like our Theorem 2.1 demands); it
just demands those mappings to be commuting at coincidence points.

Again, of course, under the strong condition of the continuity of mappings I and J , in
both Theorem 2.1 and Corollary 3.1, as well as in all the special cases following ahead,
for the sequence {xn} defined inductively by (2.4) and (2.5) converging to some point z
in X, the requirements of Ixn → Iz and Jxn → Jz become redundant; but being weaker
than continuity, we continue to state all the results under these conditions. �

Now, strengthening the contraction condition (2.3) gives the following.

3.2. Corollary. Let X be a normed vector space, let S, I and T , J be two pairs of

respectively R1-weakly and R2-weakly commuting mappings on X, let C be a closed,

convex subset of X such that

I (C) ⊇ (1− k) I (C) + kS (C) ,(2.1)

J (C) ⊇
(

1− k
′
)

J (C) + k
′

T (C) ,(2.2)

where 0 < k, k′ ≤ 1 and suppose that

(3.1)
‖Sx− Ty‖p ≤ φ

(

max {‖Ix− Jy‖p, ‖Sx− Ix‖p + ‖Ty − Jy‖p ,

1

2
(‖Sx− Jy‖p + ‖Ix− Ty‖p)}

)

,

for all x, y ∈ C, where p > 0 and φ is a function which is upper semi-continuous from

the right such that φ (t) < t for each t > 0. If for some x0 ∈ C, the sequence {xn} in X

defined inductively for n = 0, 1, 2, 3, . . ., by

Ix2n+1 = (1− a2n) Ix2n + a2nSx2n,(2.4)

Jx2n+2 = (1− a2n+1) Jx2n+1 + a2n+1Tx2n+1,(2.5)

where 0 < an ≤ 1 for all n ≥ 0 and lim inf an > 0, converges to a point z ∈ C and for

this {xn}, if Ixn → Iz and Jxn → Jz as n → ∞, then S, I, J and T have the unique

common fixed point Tz in C.
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Proof. For brevity, we let ‖Ix− Jy‖p = a, ‖Sx− Ix‖p = b, ‖Ty − Jy‖p = c, ‖Sx− Jy‖p =
d, and ‖Ix− Ty‖p = e. Since ‖·‖ ≥ 0 and p > 0; a, b, c, d, e ≥ 0, it is clear that

max

{

a, b+ c,
1

2
[d+ e]

}

≤ max{a+ b+ c, b+ e, c+ d}.

So, the contraction condition (3.1) guarantees the natural one (2.3). Hence by Theo-
rem 2.1, S, I, J and T have the unique common fixed point Tz in C. This completes
the proof of the theorem. �

Corollary 3.2 has just narrowed down the contraction condition in Theorem 2.1 and
it is obvious that the result is guaranteed under it. Then the reason behind stating it
explicitly is that it is a generalization of the famous result [6, Theorem 1], in view of
replacing commutativity by R-weak commutativity, and continuity by the local conver-
gence condition for the images of the sequences Ixn and Jxn.

The particular cases that follow now are obtained by identifying some of the mappings
amongst S, I, J and T .

3.3. Corollary. Let X be a normed vector space, let S and I be a pair of R-weakly

commuting mappings on X, let C be a closed, convex subset of X such that

I (C) ⊇ (1− k) I (C) + kS (C) ,(2.1)

T (C) ⊇
(

1− k
′
)

T (C) + k
′

T (C) ,(3.2)

where 0 < k, k′ ≤ 1 and suppose that

(3.3) ‖Sx− Ty‖p ≤ φ (‖Sx− Ix‖p + ‖Ix− Ty‖p) ,

for all x, y ∈ C, where p > 0 and φ is a function which is upper semi-continuous from

the right such that φ (t) < t for each t > 0. If for some x0 ∈ C, the sequence {xn} in X

defined inductively for n = 0, 1, 2, 3, . . ., by

Ix2n+1 = (1− a2n) Ix2n + a2nSx2n,(2.4)

Tx2n+2 = Tx2n+1,(3.4)

where 0 < an ≤ 1 for all n ≥ 0 and lim inf an > 0, converges to a point z ∈ C and for

this {xn}, if Ixn → Iz and Txn → Tz as n → ∞, then S, I, and T have the unique

common fixed point Tz in C.

Proof. Putting J = T in Theorem 2.1, the contraction condition (2.3) becomes

‖Sx− Ty‖p ≤ φ
(

max {‖Sx− Ix‖p + ‖Ix− Ty‖p + ‖Ty − Ty‖p ,

‖Sx− Ix‖p + ‖Ix− Ty‖p ,

‖Sx− Ty‖p + ‖Ty − Ty‖p}
)

= φ
(

max {‖Sx− Ix‖p + ‖Ix− Ty‖p

‖Sx− Ix‖p + ‖Ix− Ty‖p ,

‖Sx− Ty‖p}
)

= φ (max {‖Sx− Ix‖p + ‖Ix− Ty‖p, ‖Sx− Ty‖p})

= φ (max {‖Sx− Ix‖p + ‖Ix− Ty‖p,}) .

In the step prior to the last one, the second term in the maximum is neglected due to
the nature of φ; ‖Sx− Ty‖p ≤ φ (‖Sx− Ty‖p) would mean that ‖Sx− Ty‖ = 0, under
which again the last step holds. All the conditions in Theorem 2.1 are satisfied and hence
S, I , and T have the unique common fixed point Tz in C. �
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This has generalized [4, Corollary 3.3]. Instead of equating J and T , if we opt for
equating I and S, we get the same result; J being replaced by I and T by S.

3.4. Corollary. Let X be a normed vector space, let I, J and T be mappings on X

such that T , I and T , J are respectively R1-weakly and R2-weakly commuting, let C be

a closed, convex subset of X such that

I (C) ⊇ (1− k) I (C) + kT (C) ,(3.5)

J (C) ⊇
(

1− k
′
)

J (C) + k
′

T (C) ,(2.2)

where 0 < k, k′ ≤ 1 and suppose that

(3.6)

‖Tx− Ty‖p ≤ φ
(

max {‖Tx− Ix‖p + ‖Ix− Jy‖p + ‖Jy − Ty‖p ,

‖Tx− Ix‖p + ‖Ix− Ty‖p ,

‖Tx− Jy‖p + ‖Jy − Ty‖p}
)

,

for all x, y ∈ C, where p > 0 and φ is a function which is upper semi-continuous from

the right such that φ (t) < t for each t > 0. If for some x0 ∈ C, the sequence {xn} in X

defined inductively for n = 0, 1, 2, 3, . . ., by

Ix2n+1 = (1− a2n) Ix2n + a2nTx2n,(3.7)

Jx2n+2 = (1− a2n+1) Jx2n+1 + a2n+1Tx2n+1,(2.5)

where 0 < an ≤ 1 for all n ≥ 0 and lim inf an > 0, converges to a point z ∈ C and for

this {xn}, if Ixn → Iz and Jxn → Jz as n → ∞, then I, J and T have the unique

common fixed point Tz in C.

Proof. When S = T , Theorem 2.1 gives this result. �

3.5. Corollary. Let X be a normed vector space, let S, I and T be mappings on X

such that S, I and T , I are respectively R1-weakly and R2-weakly commuting, let C be a

closed, convex subset of X such that

I (C) ⊇ (1− k) I (C) + kS (C) ,(2.1)

I (C) ⊇
(

1− k
′
)

I (C) + k
′

T (C) ,(3.8)

where 0 < k, k′ ≤ 1 and suppose that

(3.9)

‖Sx− Ty‖p ≤ φ
(

max {‖Sx− Ix‖p + ‖Ix− Iy‖p + ‖Iy − Ty‖p ,

‖Sx− Ix‖p + ‖Ix− Ty‖p ,

‖Sx− Iy‖p + ‖Iy − Ty‖p}
)

,

for all x, y ∈ C, where p > 0 and φ is a function which is upper semi-continuous from

the right such that φ (t) < t for each t > 0. If for some x0 ∈ C, the sequence {xn} in X

defined inductively for n = 0, 1, 2, 3, . . ., by

Ix2n+1 = (1− a2n) Ix2n + a2nSx2n,(2.4)

Ix2n+2 = (1− a2n+1) Ix2n+1 + a2n+1Tx2n+1,(3.10)

where 0 < an ≤ 1 for all n ≥ 0 and lim inf an > 0, converges to a point z ∈ C and for

this {xn}, if Ixn → Iz as n → ∞, then S, I and T have the unique common fixed point

Tz in C.

Proof. When I = J , Theorem 2.1 gives this result. �

Now we combine both approaches of Corollary 3.4 and Corollary 3.5 to get the fol-
lowing result.
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3.6. Corollary. Let X be a normed vector space, let T and J be R-weakly commuting

mappings on X, let C be a closed, convex subset of X such that

(2.2) J (C) ⊇
(

1− k
′
)

J (C) + k
′

T (C) ,

where 0 < k′ ≤ 1 and suppose that

(3.11)

‖Tx− Ty‖p ≤ φ
(

max {‖Tx− Jx‖p + ‖Jx− Jy‖p + ‖Jy − Ty‖p ,

‖Tx− Jx‖p + ‖Jx− Ty‖p ,

‖Tx− Jy‖p + ‖Jy − Ty‖p}
)

,

for all x, y ∈ C, where p > 0 and φ is a function which is upper semi-continuous from

the right such that φ (t) < t for each t > 0. If for some x0 ∈ C, the sequence {xn} in X

defined inductively for n = 0, 1, 2, 3, . . ., by

(3.12) Jxn+1 = (1− an)Jxn + anTxn,

where 0 < an ≤ 1 for all n ≥ 0 and lim inf an > 0, converges to a point z ∈ C and for

this {xn}, if Jxn → Jz as n → ∞, then J and T have the unique common fixed point

Tz in C.

Proof. When S = T and I = J , Theorem 2.1 gives this result. �

This has additionally generalized [4, Corollary 3.5].

4. Particular case for a sequence of maps

Most of the time, the approach of the earlier section was to reduce the number of
mappings by equating them in various combinations. In the other way round, we can
consider many pairs of maps simultaneously for common fixed point. In fact, a whole
sequence of mappings can be considered for this purpose.

4.1. Corollary. Let X be a normed vector space, let I, J and Tn be mappings of X

into itself for for n = 1, 2, 3, . . .. Further suppose that the pairs of mappings T2n−1, I

and T2n, J, R2n−1-weakly and R2n-weakly commute respectively and that C is a closed,

convex subset of X such that

I (C) ⊇ (1− k) I (C) + kT2n−1 (C) ,(4.1)

J (C) ⊇
(

1− k
′
)

J (C) + k
′

T2n (C) ,(4.2)

where 0 < k, k′ ≤ 1 and suppose that

(4.3)

‖Tix− Ti+1y‖
p ≤ φ

(

max {‖Tix− Ix‖p + ‖Ix− Jy‖p + ‖Jy − Ti+1y‖
p
,

‖Tix− Ix‖p + ‖Ix− Ti+1y‖
p
,

‖Tix− Jy‖p + ‖Jy − Ti+1y‖
p}

)

,

for all x, y ∈ C, where p > 0 and φ is a function which is upper semi-continuous from

the right such that φ (t) < t for each t > 0. If for some x0 ∈ C, the sequence {xn} in X

defined inductively for n = 0, 1, 2, 3, . . ., by

Ix2n+1 = (1− a2n) Ix2n + a2nT2n−1x2n,(4.4)

Jx2n+2 = (1− a2n+1) Jx2n+1 + a2n+1T2nx2n+1,(4.5)

where 0 < an ≤ 1 for all n ≥ 0 and lim inf an > 0, converges to a point z ∈ C and for

this {xn}, if Ixn → Iz and Jxn → Jz as n → ∞, then S, I, J and Tn have the unique

common fixed point Iz in C.

Proof. This is a direct application of Theorem 2.1. �
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