

RESEARCH ARTICLE

On square Tribonacci Lucas numbers

Nurettin Irmak

Department of Engineering Basic Sciences, Konya Technical University, Konya, Turkey

Abstract

The Tribonacci-Lucas sequence $\{S_n\}$ is defined by the recurrence relation $S_{n+3} = S_{n+2} + S_{n+1} + S_n$ with $S_0 = 3$, $S_1 = 1$, $S_2 = 3$. In this note, we show that 1 is the only perfect square in Tribonacci-Lucas sequence for $n \not\equiv 1 \pmod{32}$ and $n \not\equiv 17 \pmod{96}$.

Mathematics Subject Classification (2020). 11B39, 11D72

Keywords. Tribonacci sequence, Tribonacci Lucas sequence, squares

1. Introduction

For $n \ge 1$, the Fibonacci sequence $\{F_n\}_{n\ge 0}$ is given by $F_{n+1} = F_n + F_{n-1}$ with $F_0 = 0$, $F_1 = 1$. The Lucas sequence $\{L_n\}_{n\ge 0}$ satisfies the same recursive relation with the initials $L_0 = 2$, $L_1 = 1$.

Tribonacci sequence $\{T_n\}_{n\geq 0}$ is defined by $T_n = T_{n-1} + T_{n-2} + T_{n-3}$ with $T_0 = 0$, $T_1 = 0$ and $T_2 = 1$. The associated sequence of Tribonacci numbers is known Tribonacci-Lucas sequence $\{S_n\}_{n\geq 0}$ which satisfies the same relation with $S_0 = 3$, $S_1 = 1$ and $S_3 = 3$. The Binet formulas of Tribonacci and Tribonacci-Lucas sequences are

$$T_n = \frac{\alpha^{n+1}}{(\alpha - \beta)(\alpha - \overline{\beta})} + \frac{\beta^{n+1}}{(\beta - \alpha)(\beta - \overline{\beta})} + \frac{\overline{\beta}^{n+1}}{(\overline{\beta} - \alpha)(\overline{\beta} - \beta)}$$

and

 $S_n = \alpha^n + \beta^n + \overline{\beta}^n$

where α , β and $\overline{\beta}$ are the roots of the equation $x^3 - x^2 - x - 1 = 0$. A few terms of these sequences are given by the following table.

n	0	1	2	3	4	5	6	7	8	9	
$\mathbf{F_n}$	0	1	1	2	3	5	8	13	21	34	
$\mathbf{L}_{\mathbf{n}}$	2	1	3	4	7	11	18	29	47	76	
$\mathbf{T_n}$	0	0	1	1	2	4	7	13	23	36	
$\mathbf{S_n}$	3	1	3	7	11	21	39	71	131	241	

To find perfect powers in recursive sequences is very popular and historical topic in number theory. Firstly, the well-known result was given by Cohn [2] and Wylie [8], indepently. The authors proved that 0, 1 and 144 are only perfect Fibonacci squares. Alfred [1] showed that 1 and 4 are two squares in Lucas sequences. Other known results for second order linear recursive sequences can be found in the papers [4,7].

Email addresses: irmaknurettin@gmail.com, nirmak@ktun.edu.tr

Received: 27.11.2019; Accepted: 26.06.2021

In 1996, Pethő [5] proposed the following problem at 7^{th} International Research Conference on Fibonacci numbers and Their Applications.

Problem 1.1. Are the only squares $T_0 = T_1 = 0$, $T_2 = T_3 = 1$, $T_5 = 4$, $T_{10} = 81$, $T_{16} = 3136 = 56^2$ and $T_{18} = 10609 = 103^2$ among the number T_n ?

This problem is still unsolved. By the motivation of this problem and the paper of Alfred [1], it is natural to ask that what are the squares in Tribonacci-Lucas sequences if they exist? In this paper, we answer this question under some weak conditions. Our result is following:

Theorem 1.2. Let n be nonnegative integer with $n \not\equiv 1 \pmod{32}$ and $n \not\equiv 17 \pmod{96}$. Then $S_1 = 1$ is only square in Tribonacci-Lucas sequence.

This theorem gives a motivation to proposed the following conjecture

Conjecture 1.3. The solution of the equation $S_n = x^2$ is only (n, x) = (1, 1).

Our proof depends on 2-adic order of the terms $S_n \neq 1$ and congruence identities. Before going further, we present several lemmas for the proof of theorem.

2. Auxiliary results

The *p*-adic order of r, $\nu_p(r)$, is the exponent of the highest power of a prime p which divides r.

Lemma 2.1. Let t be integer with $t \not\equiv 0 \pmod{8}$. Then

$$\nu_2 \left(4t + 32 \right) = \nu_2 \left(4t \right)$$

follows.

Proof. We will follow the method of Theorem 1 in [3]. Assume that t is an odd integer. Since t + 8 and t are odd integers, then we have

$$\nu_2\left(4(t+8)\right) = \nu_2\left(4t\right) = 2.$$

If t is even integer, then it has the form $t = 2^a s$ where s is odd and $a \in \{1, 2\}$. Then

$$\nu_2 \left(4(t+8) \right) = 2 + a = \nu_2 \left(4t \right)$$

follows as claimed.

The following lemma gives the recursive relation with arithmetic progressions for Tribonacci-Lucas numbers.

Lemma 2.2. Let n, r, s nonnegative integers with $0 \le s \le r - 1$. We get

$$S_{r(n+3)+s} = \left(\alpha^r + \beta^r + \left(\overline{\beta}\right)^r\right) S_{r(n+2)+s} - \left((\alpha\beta)^r + \left(\beta\overline{\beta}\right)^r + \left(\alpha\overline{\beta}\right)^r\right) S_{r(n+1)+s} + S_{rn+s}$$

where $\alpha, \beta, \overline{\beta}$ are the roots of the equation $x^3 - x^2 - x - 1 = 0$.

Proof. By using the Binet formula for the Tribonacci-Lucas sequence with the fact $\alpha\beta\overline{\beta} = 1$,

$$\left(\alpha^{r} + \beta^{r} + \left(\overline{\beta}\right)^{r}\right) S_{r(n+2)+s} - \left(\left(\alpha\beta\right)^{r} + \left(\beta\overline{\beta}\right)^{r} + \left(\alpha\overline{\beta}\right)^{r}\right) S_{r(n+1)+s} + S_{rn+s}$$

$$= \left(\alpha^{r} + \beta^{r} + \left(\overline{\beta}\right)^{r}\right) \left(\alpha^{r(n+2)+s} + \beta^{r(n+2)+s} + \overline{\beta}^{r(n+2)+s}\right)$$

$$- \left(\left(\alpha\beta\right)^{r} + \left(\beta\overline{\beta}\right)^{r} + \left(\alpha\overline{\beta}\right)^{r}\right) \left(\alpha^{r(n+1)+s} + \beta^{r(n+1)+s} + \overline{\beta}^{r(n+1)+s}\right)$$

$$+ \left(\alpha^{r(n)+s} + \beta^{r(n)+s} + \overline{\beta}^{r(n)+s}\right)$$

$$= \left(\alpha^{r(n+3)+s} + \beta^{r(n+3)+s} + \overline{\beta}^{r(n+3)+s}\right) = S_{r(n+3)+s}$$

follows as claimed.

Now, we present the characterization of the term $\nu_2 (S_n \pm 1)$.

Lemma 2.3. Let $n \not\equiv 1 \pmod{32}$. We have that

$$\nu_2 \left(S_n - 1 \right) = \begin{cases} 1 & \text{if } n \equiv 0, 2, 3 \pmod{4} \\ \nu_2 \left((n+31) \left(n-1 \right) \right) - 2 & \text{if } n \equiv 1 \pmod{4} \end{cases}$$

Proof. Assume that $n \equiv 2 \pmod{4}$. We use the induction method on n. It is obvious that $\nu_2(S_2 - 1) = \nu_2(2) = 1$, $\nu_2(S_6 - 1) = \nu_2(38) = 1$ and $\nu_2(S_{10} - 1) = \nu_2(442) = 1$. Assume that $\nu_2(S_{4n+2} - 1) = \nu_2(S_{4(n+1)+2} - 1) = \nu_2(S_{4(n+2)+2} - 1) = 1$. So, there exist the odd integers k_1, k_2 and k_3 such that $S_{4n+2} - 1 = 2k_1$, $S_{4(n+1)+2} - 1 = 2k_2$ and $S_{4(n+2)+2} - 1 = 2k_3$ follow. Our aim to show that $\nu_2(S_{4(n+3)+2} - 1) = 1$. By Lemma 2.2,

$$S_{4(n+3)+2} - 1 = 11S_{4(n+2)+2} + 5S_{4(n+1)+2} + S_{4n+2} - 1$$

= 11 (2k₁ + 1) + 5 (2k₂ + 1) + (2k₃ + 1) - 1
= 2 (11k₁ + 5k₂ + k₃ + 8)

Since k_1, k_2 and k_3 are odd integers, then $11k_1 + 5k_2 + k_3 + 8$ is odd integer. This yields $\nu_2\left(S_{4(n+3)+2} - 1\right) = 1$ as claimed. The other cases $n \equiv j \pmod{4}$, $j \in \{0,3\}$ can be proven similarly. Therefore, we omit these cases.

Now, assume that $n \equiv 1 \pmod{4}$. Since $n \not\equiv 1 \pmod{32}$, then we have that $n \equiv 5, 9, 13, 17, 21, 25, 29 \pmod{32}$. Then

$$\nu_2\left((n+31)\,(n-1)\right) - 2 = \begin{cases} 2, & \text{if } n \equiv 5, 13, 21, 29 \pmod{32} \\ 4, & \text{if } n \equiv 25, 9 \pmod{32} \\ 6, & \text{if } n \equiv 17 \pmod{32} \end{cases}$$
(2.1)

Let $n \equiv 5 \pmod{32}$. One can see that $\nu_2(S_5 - 1) = \nu_2(S_{37} - 1) = \nu_2(S_{69} - 1) = 2$. By

the induction hypothesis, assume that $S_{32n+5} - 1 = 2^2 l_1$, $S_{32(n+1)+5} - 1 = 2^2 l_2$ and $S_{32(n+2)+5} - 1 = 2^2 l_3$ where l_1, l_2, l_3 are odd integers. Together with Lemma 2.2,

$$S_{32(n+3)+5} - 1 = 294294531S_{32(n+2)+5} - 29699S_{32(n+1)+5} + S_{32n+5} - 1$$

= 294294531 (2²l₁ + 1) - 29699 (2²l₂ + 1)
+ (2²l₃ - 1) + 1
= 2² (294294531l₁ - 29699l₂ + l₃)

holds. Since $294294531l_1 - 29699l_2 + l_3$ is odd integer, then this gives our aim, namely $\nu_2 \left(S_{32(n+3)+5} - 1\right) = 2$ follows. The other cases can be proven similarly. To cut unnecessary repetation, we do not give the proof of other cases.

Lemma 2.4. If $n \equiv 1 \pmod{4}$, then $\nu_2(S_n + 1) = 1$ holds. Otherwise, $\nu_2(S_n + 1) \ge 2$ follows.

Proof. Assume that $n \equiv 1 \pmod{4}$. It is clear that $\nu_2(S_1+1) = \nu_2(S_5+1) = \nu_2(S_9+1) = \nu_2(S_9+1)$ 1. By Lemma 2.2 and assuming $S_{4n+1} = 2w_1$, $S_{4(n+1)+1} = 2w_2$, and $S_{4(n+2)+1} = 2w_3$ $(w_1, w_2, w_3 \text{ are odd integers})$, we obtain the claimed result. Assume that $n \equiv 2 \pmod{4}$. It is obvious that $\nu_2(S_2+1) \ge 2$, $\nu_2(S_6+1) \ge 2$ and $\nu_2(S_{10}+1) \ge 2$. By induction method, we suppose that the congruences holds for $n \equiv 2 \pmod{4}$. Namely, assume that $S_{4n+2} = 2^{a_1}q_1$, $S_{(n+1)+2} = 2^{a_2}q_2$ and $S_{4(n+2)+2} = 2^{a_3}q_3$ where q_1, q_2, q_3 are odd integers and min $\{a_1, a_2, a_3\} \ge 2$. Let min $\{a_1, a_2, a_3\} = a_3$. By the using Lemma 2.2, we get that

$$S_{4(n+3)+2} = 11S_{4(n+2)+2} + 5S_{4(n+1)+2} + S_{4n+2}$$

= $11 \cdot 2^{a_1}q_1 + 5 \cdot 2^{a_2}q_2 + 2^{a_3}q_3$
= $2^{a_3} (11 \cdot 2^{a_1-a_3}q_1 + 5 \cdot 2^{a_2-a_3}q_2 + q_3)$

This gives that $\nu_2\left(S_{4(n+3)+2}\right) \ge a_3 \ge 2$ as desired. The cases $n \equiv 0,3 \pmod{4}$ can be proven similarly. Therefore, we omit them.

Lemma 2.5. For $n \in \mathbb{Z}^+ \cup \{0\}$, the followings hold:

- (i) $S_{8n+1} \equiv 3, 5, 6 \pmod{7}$, if *n* odd integer
- (ii) $S_{32(3n+1)+17} \equiv 10 \pmod{17}$
- (iii) $S_{32(3n+2)+17} \equiv 14 \pmod{17}$
- (iv) $(8n \mp 1)^2 \equiv 0, 1, 2, 4 \pmod{7}$, if n odd integer (v) $(32n \mp 1)^2 \equiv 1, 8, 13, 16, 0, 13, 8, 1, 9, 15, 2, 4, 4, 2, 15, 9 \pmod{17}$ if n odd integer

Proof. The items (i), (ii) and (iii) can be proven by using the Lemma 2.2. The period of (iv) and (v) can be seen easily. \square

3. Proof of the theorem

Proof. Assume that $n \not\equiv 1 \pmod{32}$ and $n \not\equiv 17 \pmod{96}$. The terms of the Tribonacci-Lucas sequence are odd integers by the recurrence relation of the sequence. So, we are looking for the solution of the equation $S_n = (2k+1)^2$. From now on, assume that k is even integer. If k = 0, then it gives the solution $S_1 = 1^2$. Now, assume that $k \ge 1$. This yields that $n \ge 4$. Assume that the pair (n, k) is the solution of $S_n = (2k+1)^2$. Then we obtain that

$$S_n + 1 = (2k+1)^2 + 1.$$

After taking 2-adic order of both sides,

$$\nu_2 (S_n + 1) = \nu_2 \left((2k+1)^2 + 1 \right)$$
$$= \nu_2 \left(4k^2 + 4k + 2 \right) = 1$$

follows. This gives that $n \equiv 1 \pmod{4}$ by using Lemma 2.4. Now, subtract 1 from both side of the equation $S_n = (2k+1)^2$. Then we have the followings

$$\nu_2 (S_n - 1) = \nu_2 \left((2k+1)^2 - 1 \right)$$

= $\nu_2 \left(4k^2 + 4k \right)$
= $2 + \nu_2 (k)$. (3.1)

Together with (3.1) and Lemma 2.3, we deduce that

$$\nu_2\left((n+31)\,(n-1)\right) = 4 + \nu_2\left(k\right).\tag{3.2}$$

The equation (3.2) gives that

 $2^{4+\nu_2(k)} \mid (n+31)(n-1).$

The Lemma 2.1 yields that

$$2^{2+\frac{\nu_2(k)}{2}} \mid (n+31)$$
 and $2^{2+\frac{\nu_2(k)}{2}} \mid (n-1)$. (3.3)

By (3.3), we have

$$2^{2+\frac{\nu_2(k)}{2}} | \gcd(n+31, n-1).$$
(3.4)

By (2.1), it is obvious that $\nu_2(k)$ is even nonnegative integer. So, $\frac{\nu_2(k)}{2} \in \mathbb{Z}^+ \cup \{0\}$. Since $n \equiv 1 \pmod{4}$ and $n \not\equiv 1 \pmod{32}$, there exists an integer t such that n = 4t + 1 with $t \not\equiv 0 \pmod{8}$.

If $t \equiv 1, 3, 5, 7 \pmod{8}$, then we obtain that gcd(n + 31, n - 1) = gcd(4t + 32, 4t) = 4. By (3.4),

$$2^{2+\frac{\nu_2(k)}{2}} \mid 4$$

follows. It gives that $\nu_2(k) = 0$. Since we assume k even integer with $k \ge 1$, we arrive at a contradiction.

If $t \equiv 2, 6 \pmod{8}$, then gcd(n+31, n-1) = 8. It gives that

$$2^{2+\frac{\nu_2(k)}{2}} \mid 8$$

yielding $\nu_2(k) = 0, 2$. If $\nu_2(k) = 2$, then $k = 4b_1$ where w_1 is odd integer. The equation (1) gives that $\nu_2(n-1) = \nu_2(n+31) = 3$. So, we have $n = 8b_2 + 1$ where w_2 is odd integer. Then we obtain the following equation

$$S_{8b_2+1} = (8b_1+1)^2$$

This is impossible together with Lemma 2.5 (i) and (iv).

If $t \equiv 4 \pmod{8}$, then we have

 $2^{2+\frac{\nu_2(k)}{2}} \mid 16$

since gcd (n + 31, n - 1) = 16. So, we have $\nu_2(k) = 0, 2, 4$. If $\nu_2(k) = 4$, then there exist the integers c_1, c_2 such that $(2k + 1) = (32c_1 + 1) (c_1 \text{ odd})$ and $n = 4t + 1 = 4 (8c_2 + 4) = 32c_2 + 17$. So the equation turns to

$$S_{32c_2+17} = (32c_1+1)^2$$

Since we assume $n \not\equiv 17 \pmod{96}$, then we arrive at a contradiction by using Lemma 2.5 (ii), (iii) and (v).

If k is odd, we get the similar calculations. Therefore, the proof is completed.

Acknowledgment. The author thanks to the anonymous reviewer(s) for their insightful comments and suggestions.

References

- [1] B. U. Alfred, On square Lucas numbers, Fibonacci Quart. 2 (1), 11-12, 1964.
- [2] J. E. Cohn, Square fibonacci numbers, Fibonacci Quart. 2 (2), 109-113, 1964.
- [3] N. Irmak and M. Alp, Tribonacci numbers with indices in arithmetic progression and their sums, Miskolc Math. Notes 14 (1), 125-133, 2013.
- [4] A. Pethő, Perfect powers in second order recurrences, Topics in Classical Number Theory, Akadémiai Kiadó, Budapest, 1217-1227, 1981.
- [5] —, Fifteen problems in number theory, Acta Univ. Sapientiae Math. 2 (1), 72-83, 2010.
- [6] N. Robbins, On Fibonacci numbers of the form px^2 , where p is prime, Fibonacci Quart. **21**, 266-271, 1983.

- [7] —, On Pell numbers of the form Px^3 , where P is prime, Fibonacci Quart. **22**, 340-348, 1984.
- [8] O. Wylie, In the Fibonacci series $F_1 = 1$, $F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ the first, second and twelvth terms are squares, Amer. Math. Monthly **71**, 220-222, 1964.