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Abstract

In the paper, the authors analyze and compare two double inequali-
ties for bounding the tangent function, reorganize the proof in C.-P.
Chen and F. Qi (A double inequality for remainder of power series of

tangent function, Tamkang J. Math. 34 (4), 351–355, 2003) by using
the usual definition of Bernoulli numbers, and correct some errors on
page 6, (1.29) and (1.30) of F. Qi, D. -W. Niu, and B. -N. Guo (Re-
finements, generalizations, and applications of Jordan’s inequality and

related problems, J. Inequal. Appl. 2009 (2009), Article ID 271923, 52
pages, 2009). Moreover, the authors propose a sharp double inequality
as a conjecture.
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1. Introduction

Usually Bernoulli numbers Bi may be defined by

(1.1)
x

ex − 1
=

∞
∑

n=0

Bi

i!
xi = 1−

x

2
+

∞
∑

j=1

B2j
x2j

(2j)!
, |x| < 2π.

In [2, p. 16 and p. 56], it is listed that for q ≥ 1

(1.2) ζ(2q) = (−1)q−1 (2π)
2q

(2q)!

B2q

2
,

where ζ is the Riemann zeta function defined by

(1.3) ζ(s) =
∞
∑

n=1

1

ns
.

From (1.2), it follows that

(1.4) (−1)n−1B2n = |B2n|.

The tangent function tan x and cotangent function cot x can be expanded into power
series with coefficients involving Bernoulli numbers respectively as

(1.5) tan x =
∞
∑

i=1

22i
(

22i − 1
)

|B2i|

(2i)!
x2i−1

for |x| < π
2
and

(1.6) cot x =
1

x
−

∞
∑

i=1

22i|B2i|

(2i)!
x2i−1

for |x| < π. See [1, p. 75, 4.3.67 and 4.3.70].

Let Sn(x) denote

(1.7) Sn(x) =

n
∑

i=1

22i
(

22i − 1
)

|B2i|

(2i)!
x2i−1

for 0 < x < π
2
. In [4], a double inequality for the difference tan x − Sn(x) on

(

0, π
2

)

was established by using induction and an alternative definition of Bernoulli numbers
different from (1.1). This result may be reformulated as the following theorem.

1.1. Theorem. For x ∈ (0, π
2
) and n ∈ N, we have

(1.8)
22(n+1)

[

22(n+1) − 1
]

|B2(n+1)|

(2n+ 2)!
<

tan x− Sn(x)

x2n tan x
<

(

2

π

)2n

,

where the scalars

(1.9)
22(n+1)

[

22(n+1) − 1
]

|B2(n+1)|

(2n+ 2)!
and

(

2

π

)2n

in (1.8) are the best possible.

Recently, a double inequality for tanx
x

was obtained in [14], which may be rearranged
as the following theorem:

1.2. Theorem. For 0 < x < π
2
and n ≥ 0, let P2n = a0 + a1x

2 + · · ·+ anx
2n and

(1.10) an =
22(n+1)

[

22(n+1) − 1
]

π2

(2n+ 2)!
|B2(n+1)| −

22(n+1)
(

22n − 1
)

(2n)!
|B2n|.
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Then

(1.11)
P2n(x) + αnx

2(n+1)

π2 − 4x2
<

tan x

x
<

P2n(x) + βnx
2(n+1)

π2 − 4x2
,

where

(1.12) αn =
8− P2n(π/2)

(π/2)2(n+1)

and βn = an+1 are the best constants.

The aims of this paper are to analyze and compare Theorems 1.1 and 1.2, and to
reorganize the proof of Theorem 1.1 by adopting the usual definition (1.1) of Bernoulli
numbers.

2. Comparison of Theorems 1.1 and 1.2

In what follows, we analyze and compare Theorem 1.1 and Theorem 1.2.

It is well known that the first six Bernoulli numbers are

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B4 = −

1

30
, B6 =

1

42
, and B8 = −

1

30
.

The inequality (1.8) may be rewritten as

(2.1)

Sn(x)

x−
{

22(n+1)[22(n+1) − 1]|B2(n+1)|/(2n+ 2)!
}

x2n+1
<

tanx

x

<
Sn(x)

x− (2/π)2nx2n+1

and

(2.2)

1

1−
{

22(n+1)[22(n+1) − 1]|B2(n+1)|/(2n+ 2)!
}

x2n
<

tan x

Sn(x)

<
1

1− (2/π)2nx2n

for 0 < x < π
2
and n ∈ N, where the constants

(2.3)
22(n+1)

[

22(n+1) − 1
]

|B2(n+1)|

(2n+ 2)!
and

(

2

π

)2n

in (2.1) and (2.2) are the best possible.

If we take n = 1 in (2.1), then

(2.4)
3

3− x2
<

tan x

x
<

π2

π2 − 4x2
, 0 < x <

π

2
.

If we let n = 2 in (2.1), then

(2.5)
5
(

x2 + 3
)

15− 2x4
<

tan x

x
<

π4
(

x2 + 3
)

3(π4 − 16x4)
, 0 < x <

π

2
.

If we set n = 3 in (2.1), then

(2.6)
21

(

15 + 5x2 + 2x4
)

315− 17x6
<

tan x

x
<

π6(2x4 + 5x2 + 15)

15(π6 − 64x6)
, 0 < x <

π

2
.
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If we let n = 4 in (2.1), then

(2.7)
9
(

315 + 105x2 + 42x4 + 17x6
)

2835 − 62x8
<

tan x

x

<
π8

(

315 + 105x2 + 42x4 + 17x6
)

315
(

π8 − 256x8
) , 0 < x <

π

2
.

If we take n = 0 in (1.11), we have

(2.8)
π4 + 4

(

8− π2
)

x2

π2
(

π2 − 4x2
) <

tan x

x
<

3π2 +
(

π2 − 12
)

x2

3
(

π2 − 4x2
) , 0 < x <

π

2
.

If we set n = 1 in (1.11), we obtain

(2.9)
3π6 + π4

(

π2 − 12
)

x2 + 4
(

96− π4
)

x4

3π4
(

π2 − 4x2
) <

tan x

x

<
2
(

π2 − 10
)

x4 + 5
(

π2 − 12
)

x2 + 15π2

15
(

π2 − 4x2
) , 0 < x <

π

2
.

Further letting n = 2 in (1.11) gives

(2.10)
8
(

960− π6
)

x6 + 2π6
(

π2 − 10
)

x4 + 5π6
(

π2 − 12
)

x2 + 15π8

15π6
(

π2 − 4x2
) <

tan x

x

<

(

17π2 − 168
)

x6 + 42
(

π2 − 10
)

x4 + 3
(

35π2 − 420
)

x2 + 315π2

315
(

π2 − 4x2
)

for 0 < x < π
2
.

As x > 0 becomes small, then the left-hand side inequalities in (2.4), (2.5) and (2.6)
are better than those in (2.8), (2.9) and (2.10) respectively. On the other hand, the
right-hand side inequality in (2.7) is better than that in (2.9) as x > 0 becomes smaller.
So the inequalities in Theorems 1.1 and 1.2 are not included in each other.

3. Reorganization of the proof of Theorem 1.1

To conform with more readers and to correct errors caused by wrongly citing (1.29)
and (1.30) in [10, Page 6], we here reorganize the proof of Theorem 1.1 in [4] by using
the usual definition (1.1) of Bernoulli numbers Bn for n ∈ N.

For proving Theorem 1.1, we need the following lemma.

3.1. Lemma. For 0 < x < π
2
and n ∈ N, let

(3.1) hn(x) =
tanx− Sn(x)

x2n tanx
.

Then

(3.2) hn(x) =

n
∑

j=1

22(n−j+1)
[

22(n−j+1) − 1
]

|B2(n−j+1)|

[2(n− j + 1)]!

∞
∑

k=j

22k|B2k|

(2k)!
x2(k−j).

Proof. We prove this lemma by induction on n.
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For n = 1, we have

h1(x) =
tan x− S1(x)

x2 tanx
=

1

x2
−

cot x

x

=
1

x2
−

1

x

[

1

x
−

∞
∑

k=1

22k|B2k|

(2k)!
x2k−1

]

=
∞
∑

k=1

22k|B2k|

(2k)!
x2(k−1),

so the formula (3.2) holds for n = 1.

For n = 2, we have

h2(x) =
tan x− S2(x)

x4 tanx
=

1

x4
−

cot x

x3
−

cot x

3x

=
1

x4
−

1

x3

[

1

x
−

1

3
x−

∞
∑

k=2

22k|B2k|

(2k)!
x2k−1

]

−
1

3x

[

1

x
−

∞
∑

k=1

22k|B2k|

(2k)!
x2k−1

]

=

∞
∑

k=2

22k|B2k|

(2k)!
x2(k−2) +

1

3

∞
∑

k=1

22k|B2k|

(2k)!
x2(k−1),

so the formula (3.2) holds for n = 2.

Suppose that the formula (3.2) holds for n = m. Then for n = m+ 1, we have

hm+1 =
tanx− Sm+1(x)

x2(m+1) tanx

=
tanx− Sm(x)− 22(m+1)[22(m+1) − 1]|B2(m+1)|x

2m+1/[2(m+ 1)]!

x2(m+1) tan x

=
1

x2
·
tan x− Sm(x)

x2m tan x
−

22(m+1)
[

22(m+1) − 1
]

|B2(m+1)|

[2(m+ 1)]!
·
cot x

x

=
1

x2

m
∑

j=1

22(m−j+1)
[

22(m−j+1) − 1
]

|B2(m−j+1)|

[2(m− j + 1)]!

∞
∑

k=j

22k|B2k|

(2k)!
x2(k−j)

−
22(m+1)

[

22(m+1) − 1
]

|B2(m+1)|

[2(m+ 1)]!

1

x

[

1

x
−

∞
∑

k=1

22k|B2k|

(2k)!
x2k−1

]

=
1

x2

m
∑

j=1

22j
(

22j − 1
)

|B2j |

(2j)!
·
22(m−j+1)|B2(m−j+1)|

[2(m− j + 1)]!

+
m+1
∑

j=2

22(m−j+2)
[

22(m−j+2) − 1
]

|B2(m−j+2)|

[2(m− j + 2)]!

∞
∑

k=j

22k|B2k|

(2k)!
x2(k−j)

−
22(m+1)

[

22(m+1) − 1
]

|B2(m+1)|

[2(m + 1)]!

1

x2

+
22(m+1)

[

22(m+1) − 1
]

|B2(m+1)|

[2(m+ 1)]!

∞
∑

k=1

22k|B2k|

(2k)!
x2(k−1)
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(3.3)

=
m+1
∑

j=1

22(m−j+2)
[

22(m−j+2) − 1
]

|B2(m−j+2)|

[2(m− j + 2)]!

∞
∑

k=j

22k|B2k|

(2k)!
x2(k−j)

+
1

x2

m
∑

j=1

22j
(

22j − 1
)

|B2j |

(2j)!

22(m−j+1)|B2(m−j+1)|

[2(m− j + 1)]!

−
22(m+1)

[

22(m+1) − 1
]

|B2(m+1)|

[2(m+ 1)]!
·
1

x2
.

Since tan x cot x = 1, we have
[

∞
∑

i=1

22i
(

22i − 1
)

|B2i|

(2i)!
x2i−1

][

1

x
−

∞
∑

i=1

22i|B2i|

(2i)!
x2i−1

]

= 1,

which is equivalent to

(3.4)
∞
∑

i=2

22i
(

22i − 1
)

|B2i|

(2i)!
x2i−2 =

[

∞
∑

i=1

22i
(

22i − 1
)

|B2i|

(2i)!
x2i−1

][

∞
∑

i=1

22i|B2i|

(2i)!
x2i−1

]

,

equating coefficients of the term x2m on both sides of (3.4) yields

(3.5)
22(m+1)

[

22(m+1) − 1
]

|B2(m+1)|

[2(m + 1)]!
=

m
∑

j=1

22j
(

22j − 1
)

|B2j |

(2j)!

22(m−j+1)|B2(m−j+1)|

[2(m− j + 1)]!
.

Substituting (3.5) into (3.3) and simplifying give

(3.6) hm+1(x) =

m+1
∑

j=1

22(m−j+2)
[

22(m−j+2) − 1
]

|B2(m−j+2)|

[2(m− j + 2)]!

∞
∑

k=j

22k|B2k|

(2k)!
x2(k−j).

By induction, the proof of Lemma 3.1 is complete. �

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Utilizing the formulas

(3.7) B2n(x) =
(−1)n−12(2n)!

(2π)2n

∞
∑

k=1

cos(2kπx)

k2n

for n ∈ N and 0 ≤ x ≤ 1 and

(3.8) Bn(0) = (−1)nBn(1) = Bn

for n ≥ 0, where the Bernoulli polynomials Bn(x) are defined by

(3.9)
text

et − 1
=

∞
∑

n=0

Bn(x)
tn

n!
, |t| < 2π,

see [1, p. 805, 23.1.18 and 23.1.20] and [1, p. 804, 23.1.1], and differentiating (3.2) easily
reveal that that h′

n(x) > 0, and so the function hn(x) is strictly increasing on (0, π
2
). A

standard computation using (3.1) shows that

lim
x→0+

hn(x) =
22n+2

(

22n+2 − 1
)

|B2(n+1)|

(2n+ 2)!

and

lim
x→(π/2)−

hn(x) =

(

2

π

)2n

.
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Therefore, we have

(3.10)
22n+2

(

22n+2 − 1
)

|B2(n+1)|

(2n+ 2)!
< hn(x) <

(

2

π

)2n

,

which is equivalent to the double inequality (1.8). Theorem 1.1 is proved. �

3.2. Remark. By the way, we point out that the formula (3.2) implies that the function

(3.11)
tan x− Sn(x)

x2n tan x

is absolutely monotonic on
(

0, π
2

)

, that is,

(3.12)

[

tan x− Sn(x)

x2n tanx

](i)

≥ 0

for all i ∈ N on
(

0, π
2

)

. For more information on absolutely monotonic functions, please
refer to [5] and closely related references therein.

4. A conjecture

Stimulated by the right hand side of the inequality (2.1), we raise the following con-
jecture.

4.1. Conjecture. The function

(4.1)
tan x

Sn(x)

[

1−

(

2

π

)2n

x2n

]

for n ∈ N is strictly decreasing and concave on
(

0, π
2

)

. Consequently, the double inequality

(4.2)
4n/πSn(π/2)

1− (2/π)2nx2n
<

tan x

Sn(x)
<

1

1− (2/π)2nx2n

holds for 0 < x < π
2
and n ∈ N, where the constants 4n

πSn(π/2)
and 1 in the numerators

of the very ends of (4.2) are the best possible.

4.2. Remark. We finally remark that, for the history, background, generalizations,
and applications of inequalities relating to tan x, please refer to [3, 7, 8, 12] and closely
related references therein, and that, for more information on inequalities of trigonometric
functions and inverse trigonometric functions, please refer to [6, 9, 11, 13], the expository
and survey article [10] and plenty of references therein.
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