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Abstract

For a graph G and a real number α (α 6= 0, 1), the graph invariant
Sα(G) is the sum of the αth power of the signless Laplacian eigenvalues
of G. Let IE(G) denote the incidence energy of G, i.e., IE(G) = S 1

2
(G).

This note presents some properties and bounds for Sα(G) and IE(G).
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1. Introduction

Let G = (V,E) be a undirected simple graph with n vertices and m edges. Sometimes,
G is referred to be an (n,m) graph. Suppose the degree of vertex vi equals di for
i = 1, 2, . . . , n, then (d1, . . . , dn) is called the degree sequence of G. Throughout this
paper, the degrees are enumerated in non-increasing order, i.e., d1 ≥ d2 ≥ · · · ≥ dn. As
usual, Kn and K1,n−1 denote a complete graph and a star of order n, respectively.

Let A(G) be the adjacency matrix, and D(G) the diagonal matrix of vertex degrees
of G, respectively. The Laplacian matrix of G is L(G) = D(G) − A(G) and the signless

Laplacian matrix of G is Q(G) = D(G) + A(G). It is well known that both L(G) and
Q(G) are symmetric and positive semidefinite, then we can denote the eigenvalues of
L(G) and Q(G) by µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0 and q1(G) ≥ q2(G) ≥ · · · ≥ qn(G),
respectively. If there is no confusion, we write qi(G) as qi, and µi(G) as µi, respectively.
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Let λ1, λ2, . . . , λn be the eigenvalues of A(G). The energy E(G) of G is defined as
[7] E(G) =

∑n

i=1 |λi|. This quantity has a long known application in molecular-orbital
theory of organic molecules (see [8, 9]) and has been much investigated. In the sequel,
Gutman and Zhou [13] posed the definition of Laplacian energy LE(G) of an (n,m)
graph G, where LE(G) =

∑n

i=1 |µi − 2m
n
|. There is a great deal of analogy between the

properties of E(G) and LE(G), but also some significant differences [13].

Recently, the Laplacian-energy-like invariant of G, denoted by LEL(G) =
∑n−1

i=1

√
µi,

has been defined and investigated in [16]. It is proved that E(G) and LEL(G) have a
number of similar properties [10, 14, 16], while also some significant differences [10, 14,
16]. Moreover, Stevanović et al. [24] showed that the LEL-invariant is a well designed
molecular descriptor, which has great application in chemistry.

Motivated by the definition of LEL(G), Jooyandeh et al. [14] put forward the definition
of the incidence energy IE(G) of G, where IE(G) =

∑n

i=1

√
qi. They called LEL(G) the

directed incidence energy DIE(G) of G to distinguish the notation incidence energy. This
new invariant immediately attracted the attention of other scholars [10].

For the relation between the eigenvalues of Q(G) and L(G), it is well known that

1.1. Proposition. [4]

(i) If G is connected, then qn(G) = 0 if and only if G is bipartite.

(ii) If G is bipartite, then Q(G) and L(G) share the same eigenvalues.

Since the definitions of LEL(G) and Kirhhoff index (one can refer to [11] for its
definition), Zhou [26] put forward the definition sα(G), where

sα(G) =
n−1
∑

i=1

µ
α
i (G).

In [26], Zhou called sα(G) the sum of powers of the Laplacian eigenvalues of G, and he
achieved some properties and bounds for sα(G). In the sequel, some bounds of sα for
connected bipartite graphs were obtained in [25], which improve some known results of
[26]. Moreover, Zhou established some bounds for sα and for the Estrada index in terms
of degree sequences in [27]. Motivated by the definitions of LEL(G), IE(G), sα(G), and
Proposition 1.1, the sum of powers of the signless Laplacian eigenvalues of G, denoted
by Sα(G), was also investigated by other mathematicians [1], where

Sα(G) =

n
∑

i=1

q
α
i (G).

In this paper, by employing similar techniques to those applied in [26], we establish some
properties and bounds for Sα(G) and IE(G).

2. Bounds for Sα(G)

2.1. Lemma. [5] Let G be an (n,m) graph and e an edge of G. Then,

0 ≤ qn(G− e) ≤ qn(G) ≤ qn−1(G− e) ≤ qn−1(G) ≤ · · · ≤ q1(G− e) ≤ q1(G).

Denote by G the complement graph of G. By Lemma 2.1, we have

2.2. Theorem. For any graph G on n vertices and α > 0, Sα(G) ≥ 0, where the

equality holds if and only if G ∼= Kn. Moreover, if G has components G1, . . . , Gp, then

Sα(G) =
∑p

i=1 Sα(Gi). �

Note that
∑n

i=1 qi(G) −∑n

i=1 qi(G − e) = 2. By Lemma 2.1, it immediately follows
that
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2.3. Theorem. Let e be an edge of G. Then, Sα(G) > Sα(G− e) for α > 0. �

Suppose (x) = (x1, x2, . . . , xn) and (y) = (y1, y2, . . . , yn) are two non-increasing se-
quences of real numbers, we say (x) is majorized by (y), denoted by (x)� (y), if and only

if
∑n

i=1 xi =
∑n

i=1 yi, and
∑j

i=1 xi ≤ ∑j

i=1 yi for all j = 1, 2, . . . , n. Furthermore, by
(x)� (y) we mean that (x)� (y) and (x) is not the rearrangement of (y).

2.4. Lemma. [16, 20] Suppose (x) = (x1, x2, . . . , xn) and (y) = (y1, y2, . . . , yn) are

non-increasing sequences of real numbers. If (x)� (y), then for any convex function ψ,
∑n

i=1 ψ(xi) ≤
∑n

i=1 ψ(yi). Furthermore, if (x)� (y) and ψ is a strictly convex function,

then
∑n

i=1 ψ(xi) <
∑n

i=1 ψ(yi). �

Denote by Φ(G, x) = det(xI −Q(G)) the signless Laplacian characteristic polynomial

of G. Let SQ(G) = (q1, q2, . . . , qn) be the spectrum of Q(G). Set

Aα(n) = (n− 2)(n− 2)α +
(1

2

)α
(

3n− 6−
√

(n− 2)(n+ 6)
)α

+
(1

2

)α
(

3n− 6 +
√

(n− 2)(n+ 6)
)α
,

Bα(n) = (n− 4)α + (n− 3)(n− 2)α +
(1

2

)α
(

3n− 6−
√

n2 + 4n− 28
)α

+
(1

2

)α
(

3n− 6 +
√

n2 + 4n− 28
)α
,

Cα(n) = (n− 3)α + (n− 3)(n− 2)α +
(1

2

)α
(

3n− 7−
√

n2 + 6n− 23
)α

+
(1

2

)α
(

3n− 7 +
√

n2 + 6n− 23
)α
.

2.5. Theorem. For any connected graph G on n vertices and α > 0, we have Sα(G) ≤
(n− 1)(n− 2)α + (2n− 2)α, where the equality holds if and only if G ∼= Kn. Moreover,

if G 6∼= Kn, then Sα(G) ≤ Aα(n), where equality holds if and only if G ∼= Kn − e.

Proof. By an elementary computation, it follows that

SQ(Kn − e) =
(3n− 6 +

√

(n− 2)(n+ 6)

2
, n− 2, . . .

. . . , n− 2,
3n− 6−

√

(n− 2)(n+ 6)

2

)

.

Note that SQ(Kn) = (2n−2, n−2, . . . , n−2). The result follows from Theorem 2.3. �

Let G1∪G2 be the new graph consisting of two (disconnected) components G1 and G2,
and kG the new graph consisting of k copies of G. The join G1 ∨G2 of G1 and G2 is the
graph having vertex set V (G1 ∨G2) = V (G1 ∪G2) and edge set E(G1 ∨G2) = E(G1) ∪
E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}. Let W1 = Kn−4 ∨ C4, W2 = Kn−3 ∨ (K1 ∪K2).

2.6. Theorem. Suppose G is a connected graph with n ≥ 6 vertices, and G 6∈ {Kn,Kn−
e}.

(i) If 0 < α < 1, then Sα(G) ≤ Bα(n), where equality holds if and only if G ∼=W1.

(ii) If α > 1, then Sα(G) ≤ Cα(n), where equality holds if and only if G ∼=W2.
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Proof. By an elementary computation, we have

SQ(W1) =
(3n− 6 +

√
n2 + 4n− 28

2
, n− 2, . . .

. . . , n− 2,
3n− 6−

√
n2 + 4n− 28

2
, n− 4

)

,

SQ(W2) =
(3n− 7 +

√
n2 + 6n− 23

2
, n− 2, . . .

. . . , n− 2, n− 3,
3n− 7−

√
n2 + 6n− 23

2

)

.

Observe that for x > 0, −xα is a strictly convex function if 0 < α < 1, and SQ(W1) �
SQ(W2). By Lemma 2.4, Bα(n) = Sα(W1) > Sα(W2) = Cα(n) if 0 < α < 1. On the
other hand, since W1 and W2 are all the graphs on n vertices with

(

n

2

)

− 2 edges, by
Theorems 2.3 and 2.5, (i) follows.

Observe that for x > 0, xα is a strictly convex function if α > 1, and SQ(W1) �
SQ(W2). By Lemma 2.4, Bα(n) = Sα(W1) < Sα(W2) = Cα(n) if α > 1. Thus, (ii)
follows from Theorems 2.3 and 2.5. �

2.7. Lemma. [18, 21] Let G be a connected graph with diameter d(G). If Q(G) (resp.
L(G)) has exactly k distinct eigenvalues, then d(G) + 1 ≤ k. �

2.8. Lemma. If G is a connected graph on n vertices, then q2 = q3 = · · · = qn if and

only if G ∼= Kn.

Proof. If q2 = q3 = · · · = qn, then d(G) = 1 follows from Lemma 2.7. Thus, G ∼= Kn.
Conversely, if G ∼= Kn, then q2 = q3 = · · · = qn = n− 2. The result follows. �

The first Zagreb index M1 =M1(G) is defined as [12] M1(G) =
∑n

i=1 d
2
i .

2.9. Lemma. [17] Suppose G is a connected (n,m) graph. Then q1 ≥ M1
m

, where equality

holds if and only if G is a regular graph or a bipartite semiregular graph. �

2.10. Lemma. Let G be a connected (n,m) graph, where n ≥ 3. Then,

M1

m
≥ 2

√

M1

n
≥ 4m

n
>

2m

n− 1
>

2m

n
.

Proof. Note that

M1

m
=

∑n

i=1 d
2
i

m
≥ (
∑n

i=1 di)
2

mn
=

(2m)2

mn
=

4m

n
>

2m

n− 1
>

2m

n
.

Then, 4M1
n

= M1
m

· 4m
n

≥
(

4m
n

)2
. The result follows. �

2.11. Theorem. Let G be a connected non-bipartite (n,m) graph with n ≥ 3.

(i) If α < 0 or α > 1, then

(2.1) Sα(G) ≥
(

M1

m

)α

+
(2m2 −M1)

α

mα(n− 1)α−1

where equality holds if and only if G ∼= Kn.

(ii) If 0 < α < 1, then

(2.2) Sα(G) ≤
(

M1

m

)α

+
(2m2 −M1)

α

mα(n− 1)α−1
.

where equality holds if and only if G ∼= Kn.
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Proof. Here we only prove (i), (ii) can be shown similarly.

Observe that for x > 0, xα is a strictly convex function if α < 0 or α > 1. Then,
(

n
∑

i=2

qi

n− 1

)α

≤
n
∑

i=2

1

n− 1
q
α
i .

Hence,

n
∑

i=2

q
α
i ≥ 1

(n− 1)α−1

(

n
∑

i=2

qi

)α

=
(2m− q1)

α

(n− 1)α−1
,

where equality holds if and only if q2 = q3 = · · · = qn. It follows that

Sα(G) ≥ q
α
1 +

(2m− q1)
α

(n− 1)α−1
.

Let f(x) = xα + (2m−x)α

(n−1)α−1 . If x ≥ 2m
n
, then f ′(x) = α

(

xα−1 − ( 2m−x
n−1

)α−1
)

≥ 0 whether

α < 0 or α > 1.

Note that M1
m

> 2m
n

by Lemma 2.10. By Lemma 2.9, we have

Sα(G) ≥ f(q1) ≥ f(
M1

m
) =

(

M1

m

)α

+
(2m2 −M1)

α

mα(n− 1)α−1
.

If equality (2.1) holds, then q2 = q3 = · · · = qn and q1 = M1
m

. Thus, Lemmas 2.8 and
2.9 imply that G ∼= Kn. For the converse, if G ∼= Kn, it is easy to see that equality (2.1)
holds. �

2.12. Lemma. [2] If G = (V,E) is a connected graph, then µ1 ≤ d1 + d2, where equality

holds if and only if G is a regular bipartite graph or a semiregular bipartite graph. �

2.13. Lemma. [22] If G1 and G2 are graphs on k and t vertices, respectively with

eigenvalues 0 = µk(G1) ≤ µk−1(G1) ≤ · · · ≤ µ1(G1) and 0 = µt(G2) ≤ µt−1(G2) ≤ · · · ≤
µ1(G2) respectively, then the Laplacian eigenvalues of G1 ∨G2 are given by

0, µk−1(G1) + t, . . . , µ1(G1) + t, µt−1(G2) + k, . . . , µ1(G2) + k, t+ k. �

2.14. Lemma. Let G be a connected graph with n ≥ 3 vertices. Then µ2 = µ3 = · · · =
µn−1 if and only if G ∼= Kn or G ∼= K1,n−1 or G ∼= Kn

2
,n
2

Proof. If G ∼= Kn or G ∼= K1,n−1 or G ∼= Kn

2
,n
2
, it is easy to see that µ2 = µ3 = · · · =

µn−1. Conversely, suppose µ2 = µ3 = · · · = µn−1. By Lemma 2.7, the diameter of G
satisfies d(G) ≤ 2. We may suppose that G 6∼= Kn, and hence d(G) = 2 in the following.

It is well known that µn−1 ≤ dn if G 6∼= Kn. Note that µ2 ≥ d2 (see [15]). Then,
µn−1 ≤ dn ≤ dn−1 ≤ · · · ≤ d2 ≤ µ2. Thus, dn = dn−1 = · · · = d2 = µ2 = µn−1. It
follows that

d2 = µ2 =
2m− µ1

n− 2
=

(n− 1)d2 + d1 − µ1

n− 2
= d2 +

d2 + d1 − µ1

n− 2
.

Thus, µ1 = d1 + d2. By Lemma 2.12, we can conclude that G is a complete regular
bipartite graph or a complete semiregular bipartite graph because d(G) = 2.

If G is a complete regular bipartite graph, then G ∼= Kn

2
,n
2
. If G is a complete

semiregular bipartite graph, then G ∼= K1,n−1 follows from Lemma 2.13 because µ2 =
µ3 = · · · = µn−1. �
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2.15. Theorem. Let G be a connected bipartite (n,m) graph with n ≥ 3.
(i) If α > 1, then

(2.3) sα(G) = Sα(G) ≥
(

M1

m

)α

+
(2m2 −M1)

α

mα(n− 2)α−1

where equality holds if and only if G ∼= K1,n−1 or G ∼= Kn

2
,n
2
.

(ii) If 0 < α < 1, then

(2.4) sα(G) = Sα(G) ≤
(

M1

m

)α

+
(2m2 −M1)

α

mα(n− 2)α−1
.

where equality holds if and only if G ∼= K1,n−1 or G ∼= Kn

2
,n
2
.

Proof. Here we only prove (i), (ii) can be shown similarly.

Note that qn = µn = 0 by Proposition 1.1. Using similar arguments as in the proof
of Theorem 2.11 (i), we have

(

n−1
∑

i=2

qi

n− 2

)α

≤
n
∑

i=2

1

n− 2
q
α
i .

Thus, it follows that

n−1
∑

i=2

q
α
i ≥ 1

(n− 2)α−1

(

n−1
∑

i=2

qi

)α

=
(2m− q1)

α

(n− 2)α−1
,

where equality holds if and only if q2 = q3 = · · · = qn−1. Let g(x) = xα+(n−2)
(

2m−x
n−2

)α

.

If x ≥ 2m
n−1

, then g′(x) = α

(

xα−1 −
(

2m−x
n−2

)α−1
)

≥ 0 for α > 1. By Lemmas 2.9 and

2.10,

Sα(G) ≥ q
α
1 +

(2m− q1)
α

(n− 2)α−1
≥
(

M1

m

)α

+
(2m2 −M1)

α

mα(n− 2)α−1
.(2.5)

Note that all the equalities hold in (2.5) if and only if q2 = q3 = · · · = qn−1 and

q1 = M1
m

. By Lemma 2.9, Lemma 2.14 and Proposition 1.1, the second part of the
theorem follows. �

2.16. Remark. With an observation to the proof of Theorem 2.15, it is easy to see that
bound (2.3) also holds for sα(G) when G is a connected bipartite (n,m) graph and α < 0.

For a bipartite graph G, Zhou justified [26]

sα(G) = Sα(G) ≥
(

2

√

M1

n

)α

+

(

2m− 2
√

M1
n

)α

(n− 2)α−1
(2.6)

if α < 0 or α > 1, and

sα(G) = Sα(G) ≤
(

2

√

M1

n

)α

+

(

2m− 2
√

M1
n

)α

(n− 2)α−1
.(2.7)

if 0 < α < 1. When x > 2m
n−1

, g(x) is increasing for α > 1 and decreasing for 0 < α < 1.
Thus, by Lemma 2.10 it follows that

2.17. Remark. The bound (2.3) is better than that of (2.6), and the bound (2.4) is

better than that of (2.7). Moreover, if we can obtain a new bound µ1 ≥ α ≥ M1
m

, then
we can improve the bounds in Theorems 2.11 and 2.15.
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Let t(G) be the number of spanning trees of a connected graph G.

2.18. Lemma. [6] If G is a connected bipartite graph on n vertices, then
∏n−1

i=1 qi =
∏n−1

i=1 ui = nt(G). If G is a connected non-bipartite graph on n vertices, then
∏n

i=1 qi =

2 t(G×K2)
t(G)

. �

2.19. Theorem. Let α be a real number with α 6= 0, 1, and set t1 = 2 t(G×K2)
t(G)

and

t2 = nt(G).

(i) If G is a connected non-bipartite (n,m) graph with n ≥ 3, then

Sα(G) ≥
(

M1

m

)α

+ (n− 1)

(

t1m

M1

) α

n−1

,

where equality holds if and only if G ∼= Kn.

(ii) If α > 0 and G is a connected bipartite (n,m) graph with n ≥ 3, then

(2.8) sα(G) = Sα(G) ≥
(

M1

m

)α

+ (n− 2)

(

t2m

M1

) α

n−2

,

where equality holds if and only if G ∼= K1,n−1 or G ∼= Kn

2
,n
2
.

Proof. Here we only prove (i), (ii) can be shown similarly.

By Lemma 2.18 and the arithmetic-geometric mean inequality, it follows that

Sα(G) = q
α
1 +

n
∑

i=2

q
α
i ≥ q

α
1 + (n− 1)

(

n
∏

i=2

q
α
i

) 1
n−1

= q
α
1 + (n− 1)

(

t1

q1

) α

n−1

,

where equality holds if and only if q2 = q3 = · · · = qn. Let ϕ(x) = xα + (n− 1)
(

t1
x

) α

n−1 .
By solving

ϕ
′(x) = α

(

x
α−1 − (t1)

α

n−1 x
−

α

n−1
−1
)

≥ 0,

we conclude that ϕ(x) is increasing for x ≥ (t1)
1
n whether α > 0 or α < 0. On the other

hand, by Lemmas 2.9 and 2.10 we have

q1 ≥ M1

m
>

2m

n
=

∑n

i=1 qi

n
≥
(

n
∏

i=1

qi

) 1
n

= (t1)
1
n .

Thus, Sα(G) ≥ ϕ(M1
m

), and hence (i) follows. The equality holds in (i) if and only if

q2 = q3 = · · · = qn and q1 = M1
m

, namely, if and only if G ∼= Kn by Lemmas 2.8 and
2.9. �

2.20. Remark. With an observation to the proof of Theorem 2.19, it is easy to see that
bound (2.8) also holds for sα(G) when G is a connected bipartite (n,m) graph and α < 0.

2.21. Lemma. [18] Let G be a graph with signless Laplacian spectrum (q) = (q1, q2, . . . , qn)
and degree sequence (d) = (d1, d2, . . . , dn). Then, (d)� (q). �

The first general Zagreb index of G, denoted by Zα(G), is defined as [19] Zα(G) =
∑n

i=1 d
α
i , where α is an arbitrary real number other than 0 or 1. The first general Zagreb

index is also called the general zeroth-order Randić index [23]. Clearly, Z2(G) =M1(G).
The next result presents a relation between Zα(G) and Sα(G).

2.22. Theorem. Let G be a connected graph with n ≥ 2 vertices.

(i) If 0 < α < 1, then Sα(G) < Zα(G);
(ii) If α > 1, then Sα(G) > Zα(G).
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Proof. Here we only prove (i), (ii) can be shown similarly.

Let (q) = (q1, q2, . . . , qn) and (d) = (d1, d2, . . . , dn). Since G is connected, q1 ≥ µ1 ≥
d1 +1 > d1 (see [21]). Thus, (d)� (q) follows from Lemma 2.21. Observe that for x > 0,
−xα is a strictly convex function if 0 < α < 1. By Lemma 2.4, the result follows. �

3. Bounds for IE(G)

Note that IE(G) = S 1
2
(G). By inequalities (2.2) and (2.4), it follows that

3.1. Theorem.

(i) Let G be a connected non-bipartite (n,m) graph, where n ≥ 3. Then

IE(G) ≤
√

M1

m
+

√

(n− 1)

(

2m− M1

m

)

.

where equality holds if and only if G ∼= Kn.

(ii) Let G be a connected bipartite (n,m) graph, where n ≥ 3. Then

LEL(G) = IE(G) ≤
√

M1

m
+

√

(n− 2)

(

2m− M1

m

)

.

where equality holds if and only if G ∼= K1,n−1 or G ∼= Kn

2
,n
2
. �

In [10], Gutman et al. proved that

(3.1) IE(G) ≤
√
2

4

√

M1

n
+

√

√

√

√(n− 1)

(

2m− 2

√

M1

n

)

.

Note that the function h(x) =
√
x +

√

(n− 1)(2m− x) decreases on x > 2m
n
. By

Lemma 2.10 and the fact that (n− 1)
(

2m− M1
m

)

> (n− 2)
(

2m− M1
m

)

, we have

3.2. Remark. The bounds of Theorem 3.1 are always better than bound (3.1).

Denote by ∆ and δ the maximum and minimum degrees of G, respectively. In the

following, we set β = 1
2

(

∆+ δ +
√

(∆− δ)2 + 4∆
)

for convenience.

3.3. Lemma. [3] If G is a connected graph of order n ≥ 3, then q1(G) ≥ β, where

equality holds if and only if G ∼= K1,n−1. �

By Lemma 3.3, it can be proved similarly to Theorems 2.11 and 2.15 that

3.4. Theorem.

(i) Let G be a connected non-bipartite (n,m) graph, where n ≥ 3. Then,

IE(G) <
√

β +
√

(n− 1) (2m− β).

(ii) Let G be a connected bipartite (n,m) graph, where n ≥ 3. Then

LEL(G) = IE(G) ≤
√

β +
√

(n− 2) (2m− β),

where equality holds if and only if G ∼= K1,n−1.

In [10], the next upper bound for IE(G) was given as:

(3.2) IE(G) <
√
1 + ∆+

√

(n− 1) (2m − 1−∆).

3.5. Remark. Note that β ≥ ∆+ 1 > 2m
n

for any connected graph. Thus, the bounds
of Theorem 3.4 are always finer than the bound (3.2).

Finally, we shall introduce the lower bounds for IE(G), which are a consequence of
Theorem 2.19:
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3.6. Theorem. Let t1 = 2 t(G×K2)
t(G)

and t2 = nt(G).

(i) If G is a connected non-bipartite (n,m) graph with n ≥ 3, then

IE(G) ≥
√

M1

m
+ (n− 1)

(

t1m

M1

) 1
2(n−1)

,

where equality holds if and only if G ∼= Kn.

(ii) If G is a connected bipartite (n,m) graph with n ≥ 3, then

LEL(G) = IE(G) ≥
√

M1

m
+ (n− 2)

(

t2m

M1

) 1
2(n−2)

,

where equality holds if and only if G ∼= K1,n−1 or G ∼= Kn

2
,n
2
.
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