
Hacettepe Journal of Mathematics and Statistics
Volume 41 (4) (2012), 537 – 543

1-SOLITON SOLUTION OF THE THREE

COMPONENT SYSTEM OF WU-ZHANG

EQUATIONS

Houria Triki∗, T. Hayat†§, Omar M. Aldossary‡ and Anjan Biswas§¶

Received 13 : 08 : 2011 : Accepted 07 : 12 : 2011

Abstract

In this paper, the 1-soliton solution is obtained for the three-component
Wu-Zhang equation. The soliton components comprises both topolog-
ical as well as non-topological soliton solutions. The ansatz method is
employed to carry out the integration of this coupled system of nonlin-
ear evolution equations.
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1. Introduction

In the theoretical investigation of the dynamics of nonlinear waves, coupled nonlinear
partial differential equations (NLPDEs) are of great importance, due to their very wide
applications in many fields of physics. As a matter of fact, coupled NLPDEs are used
to model motions of waves in a great array of contexts, including plasma physics, fluid
mechanics, optical fibers, hydrodynamics, quantum mechanics and many other nonlinear
dispersive systems.

To understand the complex dynamics underlying coupled NLPDEs, it is instructive
to investigate the propagation behaviour of traveling waves and their stability in the
presence of perturbations. Traveling waves appear in many physical structures in solitary
wave theory such as solitons, kinks, peakons, and cuspons [12].
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Among the travelling waves solutions, envelope solitons are of general physical in-
terest because the soliton approach is universal in different fields of modern nonlinear
science. Solitons are defined as localized waves that propagate without change of its
shape and velocity properties and stable against mutual collisions [13]. Two different
types of envelope solitons, bright and dark, can propagate in nonlinear dispersive media
[8]. Compared with the bright soliton which is a pulse on a zero-intensity background,
the dark soliton appears as an intensity dip in an infinitely extended constant background
[6]. The formation of solitons has been regarded as a consequence of the delicate balance
between dispersion (or diffraction) and nonlinearity under certain conditions.

In recent years, various powerful methods of integrability have been established and
developed. These techniques are applied left and right to various NLPDEs to solve them
and obtain closed form of solutions of physical relevance. There are various solutions
that are obtained by incorporating these techniques of integrability. They are soliton
solutions, cnoidal waves, kinks and anti-kinks, peakons, cuspons and stumpons just to
name a few. In this paper, the focus is going to be on obtaining the soliton solutions
only. Some of these techniques are the Adomian decomposition method, the homotopy
analysis method, the solitary wave ansatz method, the subsidiary ordinary differential
equations method, Fan’s F-expansion method, the exponential function method, the
G′/G expansion method and many others.

It is very interesting to note that the solitary wave ansatz method has been successfully
applied to many kinds of NLPDEs with constant and varying coefficients, such as, for
example, the K(m,n) equation [2, 11], the BBM equation [10, 14], the B(m,n) equation
[4], the nonlinear Schrödinger’s equation [5, 7, 1], the Kawahara equation [3] and many
others. This new method has been proved by many to be reliable, effective and powerful.

Recent works in the literature analyze various evolution equations having important
applications. Examples include the Wu-Zhang equation equations, which are used for
modeling (2+1)-dimensional dispersive long wave [9]:

ut + uux + vuy + wx = 0,(1)

vt + uvx + vvy + wy = 0,(2)

wt + (uw)
x
+ (vw)

y
+

1

3
(uxxx + uxyy + vxxy + vyyy) = 0,(3)

where w is the elevation of the water, u is the surface velocity of water along the x-
direction, and v is the surface velocity of water along the y-direction.

A problem of our interest consists in solving the following form of Wu-Zhang equation:

ut + uux + vuy + wx + α1w = 0,(4)

vt + uvx + vvy + wy + α2w = 0,(5)

wt + (uw)
x
+ (vw)

y
+

1

3
(uxxx + uxyy + vxxy + vyyy) + α3wx = 0,(6)

where α1 and α2 are nonzero real constants related to the presence of the linear damping,
while α3 is a nonzero constant corresponding to the effect of the first-order dispersion of
the wave component w. If setting α1 = α2 = α3 = 0, equations (4)-(6) reduces to the
model equations (1)-(3).

The aim of this paper is to extend the solitary wave ansatz method of finding new
soliton solutions for the three component-nonlinear Wu-Zhang equations (4)-(6). We will
see that the proposed method is concise and effective in solving coupled NLPDEs. We
also find the necessary constraints of their existence in the case of nonzero linear damping
and first-order dispersion coefficients.
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2. Soliton solutions

To begin with let us assume the following solitary wave ansatze:

u(x, y, t) = A1 tanh
p1 τ,(7)

v(x, y, t) = A2 tanh
p2 τ,(8)

w(x, y, t) =
A3

coshp3 τ
,(9)

where

(10) τ = B1x+B2y − vt

and

(11) p1 > 0, p2 > 0, p3 > 0

for solitons to exist.

From (7)-(9), we obtain

ut = p1vA1

(

tanhp1+1 τ − tanhp1−1 τ
)

,(12)

uux = p1A
2
1B1

{

tanh2p1−1 τ − tanh2p1+1 τ
}

,(13)

uxxx = p1A1B
3
1

{

(p1 − 1) (p1 − 2) tanhp1−3 τ

− (p1 + 1) (p1 + 2) tanhp1+3 τ

−

{

2p21 + (p1 − 1) (p1 − 2)
}

tanhp1−1 τ

+
{

2p21 + (p1 + 1) (p1 + 2)
}

tanhp1+1 τ
}

,

(14)

uxyy = p1A1B1B
2
2

{

(p1 − 1) (p1 − 2) tanhp1−3 τ

− (p1 + 1) (p1 + 2) tanhp1+3 τ

−

{

2p21 + (p1 − 1) (p1 − 2)
}

tanhp1−1 τ

+
{

2p21 + (p1 + 1) (p1 + 2)
}

tanhp1+1 τ
}

,

(15)

vt = p2vA2

(

tanhp2+1 τ − tanhp2−1 τ
)

,(16)

vvy = p2A
2
2B2

{

tanh2p2−1 τ − tanh2p2+1 τ
}

,(17)

vxxy = p2A2B
2
1B2

{

(p2 − 1) (p2 − 2) tanhp2−3 τ

− (p2 + 1) (p2 + 2) tanhp2+3 τ

−

{

2p22 + (p2 − 1) (p2 − 2)
}

tanhp2−1 τ

+
{

2p22 + (p2 + 1) (p2 + 2)
}

tanhp2+1 τ
}

,

(18)

vyyy = p2A2B
3
2

{

(p2 − 1) (p2 − 2) tanhp2−3 τ

− (p2 + 1) (p2 + 2) tanhp2+3 τ

−

{

2p22 + (p2 − 1) (p2 − 2)
}

tanhp2−1 τ

+
{

2p22 + (p2 + 1) (p2 + 2)
}

tanhp2+1 τ
}

,

(19)
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vuy = p1A1A2B2

{

tanhp1+p2−1 τ − tanhp1+p2+1 τ
}

,(20)

uvx = p2A1A2B1

{

tanhp1+p2−1 τ − tanhp1+p2+1 τ
}

,(21)

(uw)
x
= A1A3B1

{

p1 tanh
p1−1 τ

coshp3 τ
−

(p1 + p3) tanh
p1+1 τ

coshp3 τ

}

,(22)

(vw)
y
= A2A3B2

{

p2 tanh
p2−1 τ

coshp3 τ
−

(p2 + p3) tanh
p2+1 τ

coshp3 τ

}

,(23)

wt =
p3vA3 tanh τ

coshp3 τ
,(24)

wx = −

p3A3B1 tanh τ

coshp3 τ
,(25)

wy = −

p3A3B2 tanh τ

coshp3 τ
.(26)

Substituting (12)-(26) into (4)-(6) yields

p1vA1

(

tanhp1+1 τ − tanhp1−1 τ
)

+ p1A
2
1B1

{

tanh2p1−1 τ − tanh2p1+1 τ
}

+ p1A1A2B2

{

tanhp1+p2−1 τ − tanhp1+p2+1 τ
}

−

p3A3B1 tanh τ

coshp3 τ
+

α1A3

coshp3 τ
= 0,

(27)

p2vA2

(

tanhp2+1 τ − tanhp2−1 τ
)

+ p2A1A2B1

{

tanhp1+p2−1 τ − tanhp1+p2+1 τ
}

+p2A
2
2B2

{

tanh2p2−1 τ − tanh2p2+1 τ
}

−

p3A3B2 tanh τ

coshp3 τ
+

α2A3

coshp3 τ
= 0 ,

(28)

and

p3vA3 tanh τ

coshp3 τ
+ A1A3B1

{

p1 tanh
p1−1 τ

coshp3 τ
−

(p1 + p3) tanh
p1+1 τ

coshp3 τ

}

+ A2A3B2

{

p2 tanh
p2−1 τ

coshp3 τ
−

(p2 + p3) tanh
p2+1 τ

coshp3 τ

}

p1A1B1

(

B2
1 +B2

2

)

3

{

(p1 − 1) (p1 − 2) tanhp1−3 τ

− (p1 + 1) (p1 + 2) tanhp1+3 τ

−

{

2p21 + (p1 − 1) (p1 − 2)
}

tanhp1−1 τ

+
{

2p21 + (p1 + 1) (p1 + 2)
}

tanhp1+1 τ
}

+
p2A2B2

(

B2
1 +B2

2

)

3

{

(p2 − 1) (p2 − 2) tanhp2−3 τ

− (p2 + 1) (p2 + 2) tanhp2+3 τ

−

{

2p22 + (p2 − 1) (p2 − 2)
}

tanhp2−1 τ

+
{

2p22 + (p2 + 1) (p2 + 2)
}

tanhp2+1 τ
}

−

α3p3A3B1 tanh τ

coshp3 τ
= 0.

(29)

From (27), equating the exponents 2p1 + 1 and p1 + p2 + 1 gives

(30) 2p1 + 1 = p1 + p2 + 1,

so that

(31) p1 = p2,
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which is also obtained by equating the exponents 2p1 − 1 and p1 + p2 − 1. It should
be noted that the relation (31) is also yielded when the exponents pairs 2p2 − 1 and
p1 + p2 − 1, 2p2 + 1 and p1 + p2 + 1 are equated with each other in (28).

The linearly independent functions in (27)-(29) are tanhp+j τ where j = −3,−1, 1, 3.
So, from (27)-(29), each of the coefficients of these linearly independent functions must
be zero. Now, setting the coefficient of tanhp1−3 τ in (29) to zero yields (with p1 = p2):

(32) p1 = 1

and

(33) p1 = 2.

Let us firstly consider the case p1 = 1. This gives the same value of p2 = 1 as seen from
(31). If we put p1 = 1 in (27), the equation reduces to

(34)
vA1

(

tanh2 τ − 1
)

+ A2
1B1

{

tanh τ − tanh3 τ
}

+A1A2B2

{

tanh τ − tanh3 τ
}

−

p3A3B1 tanh τ

coshp3 τ
+

α1A3

coshp3 τ
= 0

Expanding the tanh terms to the 1/ cosh τ terms, the equation (34) becomes

(35) −

vA1

cosh2 τ
+

A2
1B1 tanh τ

cosh2 τ
+

A1A2B2 tanh τ

cosh2 τ
−

p3A3B1 tanh τ

coshp3 τ
+

α1A3

coshp3 τ
= 0.

From (35), equating the exponents of the functions tanh τ/ coshp3 τ and tanh τ/ cosh2 τ
gives

(36) p3 = 2.

Now, from (35), the linearly independent functions are 1/ cosh2 τ and tanh τ/ cosh2 τ .
Therefore, setting their respective coefficients to zero yields

v =
α1A3

A1

,(37)

A2
1B1 + A1A2B2 − 2A3B1 = 0.(38)

If we put p1 = p2 = 1 and p3 = 2 in (28), the equation reduces to

(39) −

vA2

cosh2 τ
+

A1A2B1 tanh τ

cosh2 τ
+

A2
2B2 tanh τ

cosh2 τ
−

2A3B2 tanh τ

cosh2 τ
+

α2A3

cosh2 τ
= 0.

In (39), the linearly independent functions are 1/ cosh2 τ and tanh τ/ cosh2 τ , which gives

v =
α2A3

A2

,(40)

A2
2B2 + A1A2B1 − 2A3B2 = 0.(41)

On setting p1 = p2 = 1 and p3 = 2 in (29), and after expanding the 1/ cosh τ terms to
the tanh terms, the equation reduces to

(42)

2vA3

(

tanh τ − tanh3 τ
)

+ (A1A3B1 + A2A3B2)
{

1− 4 tanh2 τ + 3 tanh4 τ
}

−

2

3

(

B2
1 +B2

2

)

(A1B1 + A2B2)
{

1− 4 tanh2 τ + 3 tanh4 τ
}

+ 2α3A3B1

(

tanh τ − tanh3 τ
)

= 0.

Now from (42), setting the coefficients of the linearly independent functions tanhj τ for
j = 0, 2, 3, 4 to zero yields

v = −α3B1,(43)

A3 =
2

3

(

B2
1 +B2

2

)

.(44)
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We clearly see from (44) that the amplitude A3 of the w-soliton is only dependent on B1

and B2.

Also, from (38) and (41), it is possible to recover

(45)
A2

1 −A2
2

A1A2

=
B2

1 −B2
2

B1B2

,

which gives the constraint relation between the free parameters A1,2 and B1,2 of the
u-soliton and v-soliton.

Finally equating the three values of the solitons v from (37), (40) and (43), gives

(46)
α1

A1

=
α2

A2

= −

α3B1

A3

,

which serves as a constraint relation between the coefficients and the soliton parameters.
Notice that the second case p1 = 2 is not considered here as it does not give unique
values of the soliton parameters.

Thus, the soliton solutions to the Wu-Zhang- type equation (4)-(6) are given by

u(x, y, t) = A1 tanh τ,(47)

v(x, y, t) = A2 tanh τ,(48)

w(x, y, t) =
A3

cosh2 τ
,(49)

where the solitons velocity is given by (37) or (40) or (43), while the amplitude A3 of the
w-soliton is given by (44). Finally the constraint relations between the soliton parameters
and the model coefficient are displayed in (45) and (46).

3. Conclusions

In this paper the three component Wu-Zhang equations are studied. The 1-soliton
solution solution is obtained for this coupled system of nonlinear evolution equation. The
ansatz method was employed to carry out the integration. The solution is comprised of
topological as well as non-topological soliton solutions.

In future, this study will be explored further. This equation will be studied with time-
dependent coefficients. The perturbation terms will also be considered. The conservation
laws will also be established for this coupled system. Finally, the quasi-stationary soliton
solution will also be obtained for the perturbed equation. These results will be reported
in future publications.
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