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Abstract

Near set theory provides a formal basis for observation, comparison and
classification of perceptual granules. In the near set approach, every
perceptual granule is a set of objects that have their origin in the phys-
ical world. Objects that have, in some degree, affinities are considered
perceptually near each other, i.e., objects with similar descriptions. In
this paper, firstly we introduce the concept of near groups, near sub-
groups, near cosets, near invariant sub-groups, homomorphisms and
isomorphisms of near groups in nearness approximation spaces. Then
we give some properties of these near structures.

Keywords: Near set, Rough set, Approximation space, Nearness approximation space,
Near group.
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1. Introduction

In 1982, the concept of a rough set was originally proposed by Pawlak [13] as a formal
tool for modelling incompleteness and imprecision in information systems. The theory
of rough sets is an extension of set theory, in which a subset of a universe is described
by a pair of ordinary sets called the lower and upper approximations. A basic notion in
the Pawlak rough set model is an equivalence relation. The equivalence classes are the
building blocks for the construction of the lower and upper approximations. The lower
approximation of a given set is the union of all the equivalence classes which are subsets
of the set, and the upper approximation is the union of all the equivalence classes which
have a non-empty intersection with the set.

An algebraic approach to rough sets has been given by Iwinski [7]. Afterwards, Biswas
and Nanda [1] introduced the notion of rough subgroups. Kuroki in [8], introduced the
notion of a rough ideal in a semigroup. Kuroki and Wang [9] gave some properties of
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the lower and upper approximations with respect to normal subgroups, and Davvaz [2],
introduced the notion of rough subring (respectively ideal) with respect to an ideal of
a ring. In recent years, there has been a fast growing interest in this new emerging
theory, ranging from work in pure theory such as topological and algebraic foundations
[3, 4, 15, 26, 24, 25, 11, 19, 20] and [21], to diverse areas of applications [5, 6].

In 2002, near set theory was introduced by J. F. Peters as a generalization of rough set
theory. In this theory, Peters depends on the features of objects to define the nearness
of objects [18] and consequently, the classification of our universal set with respect to
the available information of the objects. The concept of near set theory was motivated
by image analysis and inspired by a study of the perception of the nearness of familiar
physical objects was carried out in cooperation with Pawlak in a purely philosophical
manner in a poem entitled “How Near” written in 2002 and published in 2007 [14].
More recent work considers a generalized approach theory in the study of the nearness
of nonempty sets that resemble each other [20, 21] and a topological framework for the
study of nearness and apartness of sets (see, e.g., [11, 19]).

Near set theory begins with the selection of probe functions that provide a basis for
describing and discerning affinities between objects in distinct perceptual granules. A
probe function is a real valued function representing a feature of physical objects such as
images or behaviors of individual biological organisms or collections of artificial organisms
such as robot societies. But in this paper, in a more general setting that includes data
mining, probe functions ϕi will be defined to allow for non-numerical values, i.e., let
ϕi : X −→ V , where V is the value set for the range of ϕi [22]. This more general
definition of ϕi ∈ F is also better for setting forth the algebra and logic of near sets after
the manner of algebra and logic.

This paper begins by introducing the basic concepts of near set theory [16]. Our aim
in this article is to improve the concept of near group theory, which extends the notion
of a group to include the algebraic structures of near sets. Our definition of near group
is similar to the definition of rough groups [10]. Also, we introduce near subgroups,
near cosets, near invariant subgroups, homomorphism and isomorphism of near groups
in nearness approximation spaces, and we give some properties of these structures.

2. Preliminaries

In this section we give some definitions and properties regarding near sets [16].

2.1. Object Description.

Table 1. Description Symbols

Symbol Interpretation

R Set of real numbers,

O Set of perceptual objects,

X X ⊆ O, set of sample objects,

x x ∈ O, sample objects,

F A set of functions representing object features,

B B ⊆ F,

Φ Φ : O −→ RL, object description,

L L is a description length,

i i ≤ L,

Φ (x) Φ (x) = (ϕ1 (x) , ϕ2 (x) , ϕ3 (x) , . . . , ϕi (x) , . . . , ϕL (x)). (1)
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Objects are known by their descriptions. An object description is defined by means
of a tuple of function values Φ (x) associated with an object x ∈ X. The important
thing to notice is the choice of functions ϕi ∈ B used to describe an object of interest.
Assume that B ⊆ F (see Table 1) is a given set of functions representing features of
sample objects X ⊆ O. Let ϕi ∈ B, where ϕi : O −→ R. In combination, the functions
representing object features provide a basis for an object description Φ : O −→ RL, a
vector containing measurements (returned values) associated with each functional value
ϕi (x) in (1), where the description length |Φ| = L.

Object Description : Φ (x) = (ϕ1 (x) , ϕ2 (x) , ϕ3 (x) , . . . , ϕi (x) , . . . , ϕL (x)) .

The intuition underlying a description Φ (x) is a recording of measurements from sensors,
where each sensor is modelled by a function ϕi.

2.2. Nearness of Objects.

Table 2. Relation and Partition Symbols

Symbol Interpretation

∼B ∼B= {(x, x′) | f (x) = f (x′) ∀ f ∈ B}, indiscernibility relation,

[x]
B

[x]
B
= {x′ ∈ X | x ∼B x′}, elementary set (class),

O� ∼B O� ∼B=
{

[x]
B
| x ∈ O

}

, quotient set,

ξB Partition ξB = O� ∼B ,

∆ϕi
∆ϕi

= |ϕi (x
′)− ϕi (x)|, probe function difference.

Sample objects X ⊆ O are near each if and only if the objects have similar descriptions.
Recall that each ϕ defines a description of an object (see Table 1). Then let ∆ϕi

denote

∆ϕi
=

∣

∣ϕi

(

x′
)

− ϕi (x)
∣

∣ ,

where x, x′ ∈ O. The difference ∆ϕ leads to a definition of the indiscernibility relation
∼B introduced by Z. Pawlak [12]. (See Definition 2.1).

2.1. Definition. Let x, x′ ∈ O, B ⊆ F. Then

∼B=
{(

x, x′
)

∈ O× O | ∀ϕi ∈ B, ∆ϕi
= 0

}

is called the indiscernibility relation on O, where the description length i ≤ |Φ|.

2.2. Definition. Let B ⊆ F be a set of functions representing features of objects x, x′ ∈
O. Objects x, x′ are called minimally near each other if there exists ϕi ∈ B such that
x ∼{ϕi} x′, ∆ϕi

= 0. We call it the “Nearness Description Principle - NDP” [16].

2.3. Theorem. The objects in a class [x]
B
∈ ξB are near objects. �

2.3. Near Sets. The basic idea in the near set approach to object recognition is to
compare object descriptions. Sets of objects X,X ′ are considered near each other if the
sets contain objects with at least partial matching descriptions.

2.4. Definition. Let X,X ′ ⊆ O, B ⊆ F. Set X is called near X ′, if there exists x ∈ X,
x′ ∈ X ′, ϕi ∈ B such that x ∼{ϕi} x′.

2.5. Remark. If X is near X ′, then X is a near set relative to X ′ and X ′ is a near set
relative to X. Notice that if we replace X ′ by X in Definition 2.4, this leads to what is
known as reflexive nearness.

2.6. Definition. Let X ⊆ O and x, x′ ∈ X. If x is near x′, then X is called a near set

relative to itself or the reflexive nearness of X.
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2.7. Theorem. A class in a partition ξB is a near set. �

2.8. Theorem. A partition ξB is a near set. �

2.9. Definition. Let X ⊆ O , X ′, X ′′ ⊆ X. If X ′, X ′′ are near sets, then X is a near
set. We call it the “Hierarchy of Near Sets”.

2.10. Theorem. A set containing a near set is itself a near set. �

2.4. Fundamental Approximation Space. This subsection presents a number of
near sets resulting from the approximation of one set by another set. Approximations are
carried out within the context of a fundamental approximation space FAS = (O,F,∼B),
where O is a set of perceived objects, F is a set of probe functions representing object
features, and ∼B is an indiscernibility relation defined relative to B ⊆ F. The space
FAS is considered fundamental because it provided a framework for the original rough
set theory [12]. It has also been observed that an approximation space is the formal
counterpart of perception.

Approximation starts with the partition ξB of O defined by the relation ∼B. Next,
any set X ⊆ O is approximated by considering the relation between X and the classes
[x]

B
∈ ξB , x ∈ O. To see this, consider first the lower approximation of a set.

2.4.1. Lower Approximation of a Set.

Table 3. Approximation Notation

Symbol Interpretation

(O,F,∼B) Fundamental approximation space (FAS), B ⊆ F,

B∗X
⋃

x:[x]B⊆X
[x]

B
, B-lower approximation of X,

B∗X
⋃

x:[x]B∩X 6=∅
[x]

B
, B-upper approximation of X,

BndBX BndBX = B∗X \B∗X = {x | x ∈ B∗X and x /∈ B∗X}.

Affinities between objects of interest in the set X ⊆ O and classes in the partition ξB
can be discovered by identifying those classes that have objects in common with X.
Approximation of the set X begins by determining which elementary sets [x]B ∈ O� ∼B

are subsets of X. This discovery process leads to the construction of what is known as
the B-lower approximation of X ⊆ O, which is denoted by B∗X:

B∗X =
⋃

x:[x]B∩X 6=∅

[x]
B
.

2.11. Lemma. The lower approximation B∗X of a set X is a near set. �

2.12. Theorem. If a set X has a non-empty lower approximation B∗X, then X is a

near set. �

2.4.2. Upper Approximation of a Set. To begin, assume that X ⊂ O, where X contains
perceived objects that are in some sense interesting. Also assume that B contains func-
tions representing features of objects in O. A B-upper approximation of X is defined as
follows:

B∗X =
⋃

x:[x]B∩X 6=∅

[x]
B
.

2.13. Theorem. The upper approximation B∗X and the set X are near sets. �
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2.4.3. Boundary Region. Let BndBX denote the boundary region of an approximation
defined as follows:

BndBX = B∗X \B∗X = {x | x ∈ B∗X and x /∈ B∗X} .

2.14. Theorem. A set X with an approximation boundary |BndBX| ≥ 0 is a near

set. �

2.5. Nearness Approximation Spaces.

Table 4. Nearness Approximation Space Symbols

Symbol Interpretation

B B ⊆ F,

Br r ≤ |B| probe functions in B,

∼Br Indiscernibility relation defined using Br,

[x]Br
[x]Br

= {x′ ∈ O | x ∼Br x′}, equivalence class,

O� ∼Br O� ∼Br=
{

[x]
Br

| x ∈ O

}

, quotient set,

ξO,Br Partition ξO,Br = O� ∼Br ,

r
(

|B|
r

)

, i.e. |B| probe functions ϕi ∈ B taken r at a time,

Nr (B) Nr (B) = {ξO,Br | Br ⊆ B}, set of partitions,

νNr νNr : ℘ (O)× ℘ (O) −→ [0, 1], overlap function,

Nr (B)∗ X Nr (B)∗ X =
⋃

x:[x]Br
⊆X

[x]
Br

, lower approximation,

Nr (B)∗ X Nr (B)∗ X =
⋃

x:[x]Br
∩X 6=∅

[x]
Br

, upper approximation,

BndNr(B) (X) Nr (B)∗ X�Nr (B)∗ X =
{

x ∈ Nr (B)∗ X | x /∈ Nr (B)∗ X
}

.

A nearness approximation space (NAS) is a tuple NAS = (O,F,∼Br , Nr, νNr ) where the
approximation space NAS is defined with a set of perceived objects O, a set of probe
functions F representing object features, an indiscernibility relation ∼Br defined relative
to Br ⊆ B ⊆ F, a collection of partitions (families of neighbourhoods) Nr (B), and
a neighbourhood overlap function νNr . The relation ∼Br is the usual indiscernibility
relation from rough set theory restricted to a subset Br ⊆ B. The subscript r denotes

the cardinality of the restricted subset Br, where we consider
(

|B|
r

)

, i.e., |B| functions
φi ∈ F taken r at a time to define the relation ∼Br .

This relation defines a partition of O into non-empty, pairwise disjoint subsets that are
equivalence classes denoted by [x]

Br
, where [x]

Br
= {x′ ∈ O | x ∼Br x′}. These classes

form a new set called the quotient set O� ∼Br , where O� ∼Br=
{

[x]
Br

| x ∈ O

}

. In

effect, each choice of probe functions Br defines a partition ξO,Br on a set of objects O,
namely, ξO,Br = O� ∼Br . Every choice of the set Br leads to a new partition of O.

Let F denote a set of features for objects in a set X, where each φi ∈ F maps X to some
value set Vφi

(range of φi). The value of φi (x) is a measurement associated with a feature
of an object x ∈ X. The overlap function νNr is defined by νNr : ℘ (O)×℘ (O) −→ [0, 1],
where ℘ (O) is the powerset of O. The overlap function νNr maps a pair of sets to a number
in [0, 1], representing the degree of overlap between sets of objects with features defined
by he probe functions Br ⊆ B [23]. For each subset Br ⊆ B of probe functions, define
the binary relation ∼Br= {(x, x′) ∈ O× O | ∀φi ∈ Br, φi (x) = φi (x

′)}. Since each ∼Br

is, in fact, the usual indiscernibility relation [12], for Br ⊆ B and x ∈ O, let [x]
Br

denote

the equivalence class containing x, i.e., [x]Br
= {x′ ∈ O | ∀ f ∈ Br, f (x′) = f (x)}. If

(x, x′) ∈∼Br , then x and x′ are said to be B-indiscernible with respect to all feature
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probe functions in Br. Then define a collection of partitions Nr (B), where Nr (B) =
{ξO,Br | Br ⊆ B}. Families of neighborhoods are constructed for each combination of

probe functions in B using
(

|B|
r

)

, i.e., the probe functions |B| taken r at a time.

3. Near groups and near subgroups

3.1. Definition. Let NAS = (O,F,∼Br , Nr, νNr ) be a nearness approximation space
and let · be a binary operation defined on O. A subset G of perceptual objects O is called
a near group if the following properties are satisfied.

(1) ∀x, y ∈ G, x · y ∈ Nr (B)∗ G;
(2) ∀x, y ∈ G, (x · y) · z = x · (y · z) property holds in Nr (B)∗ G;
(3) ∃e ∈ Nr (B)∗ G such that ∀x ∈ G, x · e = e · x = x, e is called the near identity

element of the near group G;
(4) ∀ x ∈ G, ∃y ∈ G such that x · y = y · x = e, y is called the near inverse element

of x in G.

3.2. Example. Let O = {0, a, b, c, d, e, f, g, h, ı}, B = {φ1, φ2, φ3} ⊆ F denote a set of
perceptual objects and a set of functions, respectively. Sample values of the φ1 function
φ1 : O −→ V1 = {α1, α2, α3}, φ2 function φ2 : O −→ V2 = {α1, α2} and φ3 function
φ3 : O −→ V3 = {α1, α2, α3, α4} are shown in Table 5.

Table 5

O φ1 φ2 φ3

0 α2 α1 α3

a α3 α2 α1

b α2 α1 α3

c α2 α2 α3

d α1 α1 α4

e α1 α1 α2

f α3 α2 α2

g α1 α1 α4

h α2 α1 α3

ı α3 α2 α1

And let · be a binary operation of perceptual objects on O with the following table:

Table 6

· 0 a b c d e f g h ı

0 0 a b c d e f g h ı

a a b c d e f g h ı 0

b b c d e f g h ı 0 a

c c d e f g h ı 0 a b

d d e f g h ı 0 a b c

e e f g h ı 0 a b c d

f f g h ı 0 a b c d e

g g h ı 0 a b c d e f

h h ı 0 a b c d e f g

ı ı 0 a b c d e f g h
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We can easily shown that (O, ·) is a group. Let G = {0, a, b, e, h, ı} be a subset of the
perceptual objects. Then let · be a binary operation of perceptual objects on G ⊆ O with
the following table:

Table 7

· 0 a b e h ı

0 0 a b e h ı

a a b c f ı 0

b b c d g 0 a

e e f g 0 c d

h h ı 0 c f g

ı ı 0 a d g h

Now,

[0]{ϕ1}
=

{

x′ ∈ O | ϕ1

(

x′
)

= ϕ1 (0) = α2

}

= {0, b, c, h} = [b]{ϕ1}
= [c]{ϕ1}

= [h]{ϕ1}
,

[a]{ϕ1}
=

{

x′ ∈ O | ϕ1

(

x′
)

= ϕ1 (a) = α3

}

= {a, f, ı} = [f ]{ϕ1}
= [ı]{ϕ1}

,

[d]{ϕ1}
=

{

x′ ∈ O | ϕ1

(

x′) = ϕ1 (d) = α1

}

= {d, e, g} = [e]{ϕ1}
= [g]{ϕ1}

.

Hence ξ(ϕ1) =
{

[0]{ϕ1}
, [a]{ϕ1}

, [d]{ϕ1}

}

. Also,

[0]{ϕ2}
=

{

x′ ∈ O | ϕ2

(

x′) = ϕ2 (0) = α1

}

= {0, b, d, e, g, h} = [b]{ϕ2} = [d]{ϕ2}
= [e]{ϕ2}

= [g]{ϕ2}
= [h]{ϕ2}

,

[a]{ϕ2}
=

{

x′ ∈ O | ϕ2

(

x′
)

= ϕ2 (a) = α2

}

= {a, c, f, ı} = [c]{ϕ2} = [f ]{ϕ2}
= [ı]{ϕ2}

.

Thus ξ(ϕ2) =
{

[0]{ϕ2}
, [a]{ϕ2}

}

. Lastly,

[0]{ϕ3}
=

{

x′ ∈ O | ϕ3

(

x′) = ϕ1 (0) = α3

}

= {0, b, c, h} = [b]{ϕ3}
= [c]{ϕ3}

= [h]{ϕ3}
,

[a]{ϕ3}
=

{

x′ ∈ O | ϕ3

(

x′
)

= ϕ3 (a) = α1

}

= {a, ı} = [ı]{ϕ3}
,

[d]{ϕ3}
=

{

x′ ∈ O | ϕ3

(

x′) = ϕ3 (d) = α4

}

= {d, g} = [g]{ϕ1}
,

[e]{ϕ3}
=

{

x′ ∈ O | ϕ3

(

x′
)

= ϕ3 (e) = α2

}

= {e, f} = [f ]{ϕ3},

and so ξ(ϕ3) =
{

[0]{ϕ3}
, [a]{ϕ3}

, [d]{ϕ3}
, [e]{ϕ3}

}

.

Therefore, for r = 1, a classification of O is N1 (B) =
{

ξ(ϕ1), ξ(ϕ2), ξ(ϕ3)

}

.
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Then, we can write

N1 (B)∗ G =
⋃

x:[x]{ϕi}
∩G6=∅

[x]{ϕi}

= {0, b, c, h} ∪ {a, f, ı} ∪ {d, e, g} ∪ {0, b, d, e, g, h}

∪ {a, c, f, ı} ∪ {a, ı} ∪ {e, f}

= {0, a, b, c, d, e, f, g, h, ı} = O.

Since

(1) ∀x, y ∈ G, x · y ∈ Nr (B)∗ G = {0, a, b, c, d, e, f, g, h, ı};
(2) the property ∀x, y ∈ G, (x · y) · z = x · (y · z) holds in Nr (B)∗ G;
(3) ∃ 0 ∈ Nr (B)∗ G such that ∀x ∈ G, x · 0 = 0 · x = x (0 is called the near identity

element of the near group G);
(4) the properties ∀x ∈ G, ∃ y ∈ G such that x · y = y · x = e (y is called a near

inverse element of x in G) are satisfied,

the subset G of the perceptual objects O is indeed a near group.

3.3. Example. Let H = {0, b, e, h} be a subset of the near group G = {0, a, b, e, h, ı}.
Let · be a binary operation of perceptual objects on H ⊂ G with the following table:

Table 8

· 0 b e h

0 0 b e h

b b d g 0

e e g 0 c

h h 0 c f

We know from Example 3.2, for r = 1, a classification of O is

N1 (B) =
{

ξ(ϕ1), ξ(ϕ2), ξ(ϕ3)

}

.

And we can write

N1 (B)∗ H =
⋃

x:[x]{ϕi}
∩H 6=∅

[x]{ϕi}

= {0, b, c, h} ∪ {d, e, g} ∪ {0, b, d, e, g, h} ∪ {e, f}

= {0, b, c, d, e, f, g, h} 6= O.

From Theorem 3.8, since the conditions

(1) ∀ x, y ∈ H, x · y ∈ Nr (B)∗ H ;
(2) ∀ x ∈ H, x−1 ∈ H

hold, H is a near subgroup of the near group G.

3.4. Example. Let O = {0, a, b, c, d, e, f, g, h, ı}, B = {φ1, φ2, φ3} ⊆ F denote a set of
perceptual objects and set of functions, respectively. Sample values of the φ1 function
φ1 : O −→ V1 = {α1, α2, α3}, the φ2 function φ2 : O −→ V2 = {α1, α2} and the φ3

function φ3 : O −→ V3 = {α1, α2, α3, α4} are as shown in Table 5.

Additionally, · is a binary operation of perceptual objects on O with the following
table:
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Table 9

· 0 a b c d e f g h ı

0 0 a b c d e f g h ı

a a b c d e f g h ı 0

b b c d e f g h ı 0 a

c c d e f g h ı 0 a b

d d e f g h ı 0 a b c

e e f g h ı 0 a b c e

f f g h ı 0 a b c d e

g g h ı 0 a b c d e f

h h ı 0 a b c d e f g

ı ı 0 a b c e e f g h

Since a · (d · ı) 6= (a · d) · ı, (O, ·) is not a group. Let H = {0, b, e, h} be a subset of the
perceptual objects. Then, let · be a binary operation of the perceptual objects in H ⊆ O

with the following table:

Table 10

· 0 b e h

0 0 b e h

b b d g 0

e e g 0 c

h h 0 c f

We know from Example 3.2, for r = 1, a classification of O isN1 (B) =
{

ξ(ϕ1), ξ(ϕ2), ξ(ϕ3)

}

.

And, we can write

N1 (B)∗ H = {0, b, c, d, e, f, g, h} 6= O.

From Theorem 3.8, since the conditions

(1) ∀ x, y ∈ H , x · y ∈ Nr (B)∗ H ;
(2) ∀ x ∈ H , x−1 ∈ H ,

hold, H is a near subgroup of the near group G.

3.5. Proposition. Let G be a near group.

(1) There is one and only one identity element in near group G.

(2) ∀ x ∈ G, there is only one y such that x · y = y · x = e; we denote it by x−1.

(3)
(

x−1
)−1

= x.

(4) (x · y)−1 = y−1 · x−1. �

3.6. Proposition. Let G be a near group. For all a, x, x′, y, y′ ∈ G,

(1) if a · x = a · x′ then x = x′,

(2) if y · a = y′ · a then x = x′. �

3.7. Definition. A non-empty subset H of a near group G is called its near subgroup,
if it is a near group itself with respect to the operation ·.

There is only one guaranteed trivial near subgroup of near group G, i.e. G itself. A
necessary and sufficient condition for {e} to be a trivial near subgroup of near group G
is e ∈ G.
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3.8. Theorem. A necessary and sufficient condition for a subset H of a near group G
to be a near subgroup is that:

(1) ∀x, y ∈ H, x · y ∈ Nr (B)∗ H;

(2) ∀ x ∈ H, x−1 ∈ H.

Proof. The necessary condition is obvious. We prove only the sufficient condition. By
(1) we have ∀x, y ∈ H , x · y ∈ Nr (B)∗ H , by (2) we have ∀x ∈ H , x−1 ∈ H , so we have
∀x ∈ H , x · x−1 ∈ Nr (B)∗ H by (1) and (2). And, since association holds in Nr (B)∗ G,
so it holds in Nr (B)∗ H . Hence the theorem is proved. �

An important difference between a near group and group is the following:

3.9. Theorem. Let H1 and H2 be two near subgroups of the near group G. A sufficient

condition for the intersection of these two near subgroups of G to be a near subgroup of

G is Nr (B)∗ H1 ∩Nr (B)∗ H2 = Nr (B)∗ (H1 ∩H2).

Proof. Suppose H1 and H2 are two near subgroups of the near group G. It is obvious
that H1 ∩ H2 ⊂ G. Consider x, y ∈ H1 ∩ H2. Since H1 and H2 are near subgroups,
we have x · y ∈ Nr (B)∗ H1, x · y ∈ Nr (B)∗ H2, and x−1 ∈ H1, x

−1 ∈ H2, i.e. x · y ∈
Nr (B)∗ H1 ∩ Nr (B)∗ H2 and x−1 ∈ H1 ∩ H2. Assuming Nr (B)∗ H1 ∩ Nr (B)∗ H2 =
Nr (B)∗ (H1 ∩H2), we have x ·y ∈ Nr (B)∗ (H1 ∩H2) and x−1 ∈ H1∩H2. Thus H1∩H2

is a near subgroup of G. �

3.10. Definition. A near group is called a commutative near group if x · y = y ·x for all
x, y ∈ G.

3.11. Example. Example 3.2 and Example 3.3 are commutative near groups.

4. Near cosets

Let NAS = (O,F,∼Br , Nr, νNr ) be a nearness approximation space, G ⊂ O a near
group and H a near subgroup of G. Let us define a relationship on the elements of the
near group G as follows:

∼ : a ∼ b if and only if a · b−1 ∈ H ∪ {e} .

4.1. Theorem. “∼” is a compatible relation over the elements of the near group G.

Proof. ∀ a ∈ G, since G is a near group, a−1 ∈ G. Since a · a−1 = e, we have a ∼ a.
Further, ∀a, b ∈ G, if a ∼ b, then a · b−1 ∈ H ∪ {e}, i.e. a · b−1 ∈ H or a · b−1 ∈ {e}. If

a ·b−1 ∈ H , then, since H is a near subgroup of G, we have
(

a · b−1
)−1

= b ·a−1 ∈ H , and

thus b ∼ a. If a · b−1 ∈ {e}, then a · b−1 = e. That means b ·a−1 =
(

a · b−1
)−1

= e−1 = e,
and thus b ∼ a. Hence, “∼” is compatible. �

4.2. Definition. A compatible category defined by the relation “∼” is called a near

right coset. The near right coset that contains the element a is denoted by H · a, i.e.,

H · a = {h · a | h ∈ H, a ∈ G, h · a ∈ G} ∪ {a} .

Let (O,F,∼Br , Nr , νNr ) be a nearness approximation space, G ⊂ O a near group and
H a near subgroup of G. Consider the relation “∼′” on the elements of G defined as
follows:

∼′ : a ∼′ b if and only if a−1 · b ∈ H ∪ {e} .

4.3. Theorem. “∼′” is a compatible relation over the elements of the near group G. �
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4.4. Definition. A compatible category defined by the relation “∼′” is called a near left

coset. The near left coset that contains the element a is denoted by a ·H , i.e.,

a ·H = {a · h | h ∈ H, a ∈ G, a · h ∈ G} ∪ {a} .

4.5. Remark. Generally speaking, the binary operation of a near group does not satisfy
the commutative law, so the compatible relations “∼” and “∼′” are different. As a result,
the near left and right cosets are different.

4.6. Theorem. The near left cosets and near right cosets are equal in number.

Proof. Denote by S1, S2 the families of near right and and left cosets, respectively. Define
ϕ : S1 −→ S2 such that ϕ (H · a) = a−1 ·H . We prove that ϕ is a bijection.

(1) If H · a = H · b (a 6= b), then a · b−1 ∈ H . Because H is a near subgroup, we have
b · a−1 ∈ H , that means a−1 ∈ b−1 ·H , i.e. a−1 ·H = b−1 ·H . Hence, ϕ is a mapping.

(2) Any element a ·H of S2 is the image of H · a−1, an element of S1, hence ϕ is an
onto mapping.

(3) If H · a 6= H · b, then a · b−1 /∈ H , i.e. a−1 ·H 6= b−1 ·H . Hence, ϕ is a one-to-one
mapping.

Thus the near left cosets and near right cosets are equal in number. �

4.7. Definition. The number of both near left cosets and near right cosets is called the
index of the subgroup H in G.

5. Near normal subgroups

5.1. Definition. A near subgroup N of a near group G is called a near normal subgroup

if a ·N = N · a for all a ∈ G.

5.2. Theorem. A necessary and sufficient condition for a near subgroup N of near group

G to be a near normal subgroup is that a ·N · a−1 = N for all a ∈ G.

Proof. Suppose N is a near normal subgroup of G. By definition, ∀ a ∈ G we have
a ·N = N · a. Because G is a near group, we have

(a ·N) · a−1 = (N · a) · a−1,

a ·N · a−1 = N ·
(

a · a−1
)

,

i.e. a ·N · a−1 = N .

SupposeN is a near subgroup of G and ∀ a ∈ G, a·N ·a−1 = N . Then
(

a ·N · a−1
)

·a =
N · a, i.e. a ·N = N · a. Thus N is a near invariant subgroup of G. �

5.3. Theorem. A necessary and sufficient condition for a near subgroup N of the near

group G to be a near normal subgroup is that a · n · a−1 ∈ N for all a ∈ G and n ∈ N .

Proof. Suppose N is a near normal subgroup of the near group G. We have a·N ·a−1 = N
for all a ∈ G. For any n ∈ N , therefore, we have a · n · a−1 ∈ N .

Suppose N is a near subgroup of the near group G. Suppose a · n · a−1 ∈ N for
all a ∈ G and n ∈ N . We have a · n · a−1 ⊂ N . Because a−1 ∈ G, we further have
a ·n ·a−1 ⊂ N . It follows that a ·

(

a−1 · n · a
)

·a−1 ⊂ a ·n ·a−1, i.e. N ⊂ a ·n ·a−1. Since

a · n · a−1 ⊂ N and N ⊂ a · n · a−1, we have a · n · a−1 = N . Thus N is a near normal
subgroup. �
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6. Homomorphisms of near groups

Let
(

O1,F1,∼Br1
, Nr1 , νNr1

)

and
(

O2,F2,∼Br2
, Nr2 , νNr2

)

be two nearness approxi-
mation spaces, and let ·,◦ be binary operations over O1 and O2, respectively.

6.1. Definition. Let G1 ⊂ O1, G2 ⊂ O2 be near groups. If there exists a surjection ϕ :
Nr1 (B)∗ G1 → Nr2 (B)∗ G2 such that ϕ (x · y) = ϕ (x) ◦ ϕ (y) for all x, y ∈ Nr1 (B)∗ G1

then ϕ is called a near homomorphism and G1, G2 are called near homomorphic groups.

Throughout this section ϕ is a near homomorphism such that ϕ : Nr1(B)∗G1 →
Nr2(B)∗G2, ϕ(x · y) = ϕ(x) ◦ ϕ(y) for all x, y ∈ Nr1(B)∗G1.

6.2. Theorem. Let G1 and G2 be near homomorphic groups. If · satisfies the commu-

tative law, then ◦ also satisfies it.

Proof. ConsiderG1, G2, and ϕ such that ϕ (x · y) = ϕ (x)◦ϕ (y) for all x, y ∈ Nr1 (B)∗ G1.
For every ϕ (x), ϕ (y) ∈ Nr2 (B)∗ G2 since ϕ is surjective, there exist x, y ∈ Nr1 (B)∗ G1

such that x 7→ ϕ (x), y 7→ ϕ (y). Thus ϕ (x · y) = ϕ (x)◦ϕ (y), and ϕ (y · x) = ϕ (y)◦ϕ (x).
Now, assuming x · y = y · x, we obtain ϕ (x) ◦ ϕ (y) = ϕ (y) ◦ ϕ (x). That means that ◦
satisfies the commutative law. �

6.3. Theorem. Let G1 ⊂ O1, G2 ⊂ O2 be near groups that are near homomorphic and

let Nr (B)∗ ϕ (G1) = Nr (B)∗ G2. Then ϕ (G1) is a near group.

Proof. (1) ∀x′, y′ ∈ ϕ (G1), consider x, y ∈ G1 such that x 7→ x′, y 7→ y′. We have
ϕ (x · y) = ϕ (x) ◦ ϕ (y) ∈ Nr (B)∗ G2 = Nr (B)∗ ϕ (G1), that is x

′ ◦ y′ ∈ Nr (B)∗ ϕ (G1).

(2) Since e ∈ Nr (B)∗ G1, ϕ (e) ∈ Nr (B)∗ G2 and ∀ϕ (x) ∈ ϕ (G1), ϕ (e) ◦ ϕ (x) =
ϕ (x · e) = ϕ (x).

(3) G1 is a near group, so ∀x, y, z ∈ G1, x · (y · z) = (x · y) · z. Hence,

ϕ (x · (y · z)) = ϕ (x) ◦ ϕ (y · z) = ϕ (x) ◦ (ϕ (y) ◦ ϕ (z)) ,

ϕ ((x · y) · z) = ϕ (x · y) ◦ ϕ (z) = (ϕ (x) ◦ ϕ (y)) ◦ ϕ (z) ,

i.e., (ϕ (x) ◦ ϕ (y)) ◦ ϕ (z) = ϕ (x) ◦ (ϕ (y) ◦ ϕ (z)).

(4) ∀ x′ ∈ ϕ (G1), consider x ∈ G1 such that x 7→ x′. Since G1 is a near group,
x−1 ∈ G1. Hence, ϕ

(

x−1
)

∈ ϕ (G1) and ϕ (x) ◦ ϕ
(

x−1
)

= ϕ
(

x−1
)

◦ ϕ (x) = ϕ (e).

Therefore, we can put (x′)
−1

= ϕ
(

x−1
)

. Consequently, we can conclude that ϕ (G1) is a
near group. �

6.4. Theorem. Let G1 ⊂ O1, G2 ⊂ O2 be near groups that are near homomorphic. Let

e and e′ be the near identity elements of G1 and G2, respectively. Then ϕ (e) = e′ and

ϕ
(

a−1
)

= ϕ (a)−1
, for all a ∈ Nr(B)∗G1. �

6.5. Definition. Let G1 ⊂ O1, G2 ⊂ O2 be near groups that are near homomor-
phic. Let e and e′ be the near identity elements of G1 and G2 respectively. The set
{x | ϕ (x) = e′, x ∈ G1} is called the near homomorphism kernel, denote by N .

6.6. Theorem. Let G1 ⊂ O1, G2 ⊂ O2 be near groups that are near homomorphic. The

near homomorphism kernel N is a near invariant subgroup of G1.

Proof. Let ϕ be an onto mapping from Nr1 (B)∗ G1 to Nr2 (B)∗ G2. Then ∀ x, y ∈ N we
have ϕ (x) = e′, ϕ (y) = e′. Thus ϕ (x · y) = ϕ (x) ◦ ϕ (y) = e′ ◦ e′ = e′, i.e. x · y ∈ N .

Moreover, ∀x ∈ N , we have ϕ (x) = e′. Because ϕ
(

x−1
)

= ϕ (y)−1 = e′−1 = e′, we get

x−1 ∈ N . We can conclude that N is a near invariant subgroup of G1. �
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6.7. Theorem. Let G1 ⊂ O1, G2 ⊂ O2 be near groups that are near homomorphic. Let

H1, N1 be a near subgroup and a near normal subgroup of G1, respectively. Then;

(1) ϕ (H1) is near subgroup of G2 if ϕ (Nr1 (B)∗ H1) = Nr2 (B)∗ ϕ (H1);
(2) ϕ (N1) is near normal subgroup of G2 if ϕ (G1) = G2 and ϕ (Nr1 (B)∗ N1) =

Nr2 (B)∗ ϕ (N1).

Proof. (1) Consider an onto mapping ϕ from Nr1 (B)∗ G1 to Nr2 (B)∗ G2 such that
ϕ (x · y) = ϕ (x) ◦ ϕ (y) for all x, y ∈ Nr1 (B)∗ G1. For all ϕ (x), ϕ (y) ∈ ϕ (H1), by the
definition of ϕ, there exists x, y ∈ H1 such that x 7→ ϕ (x) and ϕ (x) ◦ ϕ (y) = ϕ (x · y) ∈
ϕ (Nr1 (B)∗ H1). Because ϕ (Nr1 (B)∗ H1) = Nr1 (B)∗ ϕ (H1), we have ϕ (x) ◦ ϕ (y) ∈
ϕ (Nr1 (B)∗ H1).

Further, for all ϕ (x) ∈ ϕ (H1), by the definition of ϕ there exists x ∈ H1 such that
x 7→ ϕ (x), y 7→ ϕ (y). Because H1 is a near subgroup of G1, we have x−1 ∈ H1. Thus

ϕ (a)−1 = ϕ
(

a−1
)

∈ ϕ (H1). We can conclude that ϕ (H1) is a near subgroup of G2.

(2) By (1), it is easy to see that ϕ (N1) is a near subgroup of G2 if ϕ (Nr1 (B)∗ N1) =
Nr2 (B)∗ ϕ (N1). For all ϕ (x) ∈ G2, because ϕ (G1) = G2, we have ϕ (x) ∈ ϕ (G1).

Thus x ∈ G1, x
−1 ∈ G1 and ϕ

(

x−1
)

∈ ϕ (G1) = G2. Because for all ϕ (x) ∈ G2,

ϕ (n) ∈ ϕ (N1) we have ϕ (x) ◦ ϕ (n) ◦ ϕ
(

x−1
)

= ϕ
(

x · n · x−1
)

and N1 is near normal

subgroup of G1, we have x ·n ·x−1 ∈ N1. Hence ϕ (x) ◦ϕ (n) ◦ϕ
(

x−1
)

∈ ϕ (N1). We can
conclude that ϕ (N1) is a near normal subgroup of G2. �

6.8. Theorem. Let G1 ⊂ O1, G2 ⊂ O2 be near groups that are near homomorphic. Let

H2, N2 be a near subgroup and a near normal subgroup of G2, respectively. Then;

(1) H1, which is the inverse image of H2, is a near subgroup of G1 if ϕ (Nr1 (B)∗ H1)
= Nr2 (B)∗ H2.

(2) N1, which is the inverse image of N2, is a near normal subgroup of G1 if ϕ (G1) =
G2 and ϕ (Nr1 (B)∗ N1) = Nr2 (B)∗ N2.

Proof. (1) H1 is certainly the inverse image of H2, and moreover we have ϕ (H1) = H2.
That is, we have ϕ (x), ϕ (y) ∈ H2 for all x, y ∈ H1. Because H2 is a near subgroup
of G2, we have ϕ (x · y) = ϕ (x) ◦ ϕ (y) ∈ Nr2 (B)∗ H2 = ϕ (Nr1 (B)∗ H1). Thus x ∗ y ∈
Nr1 (B)∗ H1. We have ϕ (x) ∈ H2 for all x ∈ H1. Because H2 is a near subgroup of G2,

we have ϕ (x)−1 = ϕ
(

x−1
)

∈ H2. Thus x
−1 ∈ H1.

(2) From (1), we can easily shown thatN1 is a near subgroup ofG2 if ϕ (Nr1 (B)∗ N1) =

Nr2 (B)∗ ϕ (N1). We have ϕ (x) ∈ ϕ (G1) = G2, ϕ (x)−1 = ϕ
(

x−1
)

∈ ϕ (G1) = G2,
ϕ (n) ∈ N2 for all x ∈ G1, n ∈ N1. Because N2 is a near normal subgroup of G2, we
have ϕ (x) ◦ ϕ (n) ◦ ϕ

(

x−1
)

= ϕ
(

x · n · x−1
)

∈ N2. Thus x · n · x−1 ∈ N1. Hence, N1,
which is the inverse image of N2, is a near normal subgroup of G1 if ϕ (G1) = G2 and
ϕ (Nr1 (B)∗ N1) = Nr2 (B)∗ N2. �

7. Conclusion

In this paper, we have studied near groups and the algebraic properties of near groups.
This work is focused on near groups, near subgroups, near cosets, near invariant sub-
groups and homomorphism of near groups. To extend this work, one could study the
properties of other algebraic structures arising from near set theory.
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