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Abstract

Polygonal designs, a class of partially balanced incomplete block de-
signs with regular polygons, are useful in survey sampling in terms
of balanced sampling plans excluding contiguous units (BSECs) when
neighboring units in a population provide similar information. In this
paper, the method of cyclic shifts is used to construct cyclic polygonal
designs (in terms of BSECs) with block size k = 3 for single distance,
and a complete solution for v ∈ {9, 10, . . . , 100} treatments is compiled.

Keywords: Cyclic BSEC, Cyclic polygonal design, Cyclic shifts, Distance between the
units, Single distance, PBIBD.
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1. Introduction

The use of balanced sampling plans is essential in situations where the units in a pop-
ulation (or in an experimental region) are found physically close (as neighbors) to each
other. Studies in ecological and environmental sciences are often conducted to investi-
gate the abundance and diversities of species, where a balanced sampling plan serves the
purpose of generating samples from the population by avoiding the selection of neighbor-
ing (contiguous or adjacent) units which essentially provide redundant information. In
other words, these neighboring units are deliberately prevented (or excluded) from being
selected under the situation that they provide little new information to the sampling
effort. These plans attempt to provide ways of sampling the units from geographical
region when a spatial pattern in the response is expected (see Christman [2] and See et

al. [12]).
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Now we consider an example which highlight the usefulness of cyclic polygonal designs
(CPDs) (or balanced sampling plans) in practical situations.

1.1. Example. A study was conducted to investigate the species abundance, diversity
and richness, of certain insects in a forest. For the selected plots, a net was placed under
the trees, the trees were fogged with the insecticide and the insects of the species of
interest that landed on the net were counted. This is an expensive and time-consuming
procedure that can be applied to only a relatively small number of plots with small areas.
In this study, it is expected that counts from neighboring plots would be very similar,
and that “fogging” one plot could alter the responses in neighboring plots. There were
certain regions in the forest where a low insect count was expected from all trees due to
recent fires, and other regions, near a creek, where a relatively high count was expected.
Therefore, a sampling plan that avoids the simultaneous selection of neighboring plots
within a region was utilized (See and Song [10]).

Let a population consists of circular ordered units labeled as 0, 1, . . . , v − 1. Then
i and i + 1 are said to be contiguous for all i such that 0 ≤ i ≤ v − 2, as are v − 1
and 0. Let δ(i,j) be the distance between the sampling units (or design points) i and j
in this circular population such that δ(i,j) = min(|i − j|, v − |i − j|) and the maximum
distance between any pair of units cannot exceed [v/2]. For simplicity, denote the dis-
tance between sampling units (or design points) i and j by δ(i,j) = 1, 2, . . . , [v/2]. The
notation cyclic BSEC(v, k, λ) is used to denote a cyclic polygonal design CPD(v, k, λ; 1).
Similarly, the notation cyclic BSA(v, k, λ;α) is used to denote a cyclic polygonal de-
sign CPD(v, k, λ;α). A simple cyclic polygonal design with minimal distance α = 1
is denoted by CPD(v, k, λ; 1). According to [4, 11, 15], a CPD(v, k, λ;α) is actually a
PBIBD(v, b, r, k, λ;α) for which association relations between the treatments are defined
through the distance.

Hedayat, Rao and Stufken [5, 6] introduced balanced sampling plans excluding con-
tiguous units (BSECs) in which the contiguous units do not appear together in a sam-
ple, whereas all other pairs of units appear equally often. The first - and second -

order inclusion probabilities are πi = n
N
; i = 1, 2, . . . , N and πij = n(n−1)

N(N−3)
;∀ i 6= j =

1, 2, . . . , N, |i − j| > 1, and πij = 0 when |i − j| ≤ 1, respectively. Hedayat et al. [5]
showed that the variance of the Horvitz-Thompson estimator of the population mean

µ =
∑

Yi is given by {1 − (n−1)(1−ρ1)
N−3

}σ2

n
, where σ2 denotes the population variance

and ρ1 is the first order serial correlation between the units. Hedayat et al. [5] proved
that their sampling plan is more efficient than the simple random sampling without
replacement provided that ρ1 > − 1

N−1
.

Ultimately, the objective of BSEC plans is to provide more representative samples
and to provide more efficient estimators of the population mean, when neighboring (or
contiguous) units are expected to provide similar responses. Simply, in a sampling plan
the entire sample of units is selected such that no two neighboring units are included.

Stufken [13] generalized the concept of BSECs to balanced sampling plans excluding
adjacent units (BSAs) where all those adjacent pairs of units are excluded whose distance
is less than or equal to α (or m). The first - and second - order inclusion probabilities

are πi = n
N
; i = 1, 2, . . . , N and πij = n(n−1)

N(N−2α−1)
; ∀ i 6= j = 1, 2, . . . , N, |i − j| > α,

and πij = 0 when |i − j| ≤ α, respectively. Two units i and j are called adjacent when
their distance is less than a specified number α whose choice depends on the surveyor
or experimenter (see Mandal et al. [9]). It is obvious that BSEC(v, k, λ) is equivalent to
BSA(v, k, λ; 1) or BSA(1) ([13, 16]).

A polygonal design (PD) is a PBIBD with 2-class associate scheme (i.e. with λ1 and
λ2) such that the two units which are the ith associate of each other occur together in



Polygonal designs 589

λi (distinct) blocks. Thus a PBIBD(v, b, r, k;λ1 = 0, λ2 = λ), satisfying the necessary
condition of PD having the first of the λ’s equal to zero. We will add one more parameter
α in PBIBD if represented in terms of PD as PBIBD(v, b, r, k, λ1, λ2;α), where α denotes
the distance between the units.

Some definitions of polygonal designs which exist in the literature are presented as
follows.

1.2. Definition. (Stufken et al. [15]) A polygonal design PD(v, k, λ;α) for v treatments,
k blocks (k < v) and minimum distance α+1 is a binary block design in which treatments
i and j appear together in precisely λ blocks, say, if α < |i − j| < v − α, while they do
not appear together in any block otherwise. For α = 0, this class of designs consists of
BIBDs, while the designs are PBIBDs for α > 0.

1.3. Definition. (Stufken and Wright [14]) A block design for v treatments in b blocks of
size k is called a polygonal design with minimum distance 1 (a simple polygonal design)
if (i) for any i ∈ {0, 1, . . . , v − 1}, treatments i and i + 1 do not appear together in a
block, and (ii) any two treatments appear together in precisely λ blocks for some positive
integer λ.

1.4. Definition. (Mandal et al. [8]) A polygonal design with minimum distance α is
an incomplete block design in which v treatments are arranged in b blocks of size k if (i)
every treatment {0, 1, . . . , v − 1} appears in r blocks, and (ii) every pair of treatments
which differs more than the distance α appears in exactly λ blocks, whereas other pairs
do not appear at all in any block and every block contains k distinct treatments.

A polygonal design with parameter v, k, b, r, λ and α must satisfy the following
conditions:

(i) bk = vr,
(ii) λ[v − (2α+ 1)] = r(k − 1).

Thus, in a PD the necessary divisibility condition is λ = r(k−1)
v−(2α+1)

.

For block size k = 3 and single distance α = 1, the existence and construction of
CPDs (in terms of cyclic BSECs) has only been considered by See et al. [11], Colbourn
and Ling [3], Wei[10], Zhang and Chang [17] and Mandal et al. [8], but for some λ and
limited v only. Bhattacharyya et al. [1] used a λ-triple fold system and resolved the
existence of PD(6α+ 3, 3, 1;α).

Stufken and Wright [14] suggested a further extension to the existing work and also the
deduction of simpler (or additional) techniques for the construction of polygonal designs.
Stufken and Wright ([14], p.180) pointed out that

· · · it would of course be interesting to know, for any combination of v
and k, all possible values of b for which a polygonal design exists, and
in particular for smallest value.

and also in Stufken and Wright ([14], p.183) that

· · · additional techniques are needed to learn more about designs for
other combinations of v, b, and k. There is especially a need for simpler
construction methods that apply for arbitrary values of the block size
k.

In the literature, different combinatorial tools have been used to show the existence and
construction of PDs such as the association schemes, d-class association schemes, partial
triple system PTS(v, λ), λ-fold system, Fisher’s inequality, Langford sequence, symmet-
rically repeated differences, linear programming, linear algebraic and design theoretic,
etc.
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Taking into consideration the limitations in the existing literature and the suggestions
of Stufken and Wright [14] mentioned above, a simple method of construction, the method
of cyclic shifts, is used to extend the existence and construction of CPDs for block size
k = 3 and single distance α = 1. The interesting feature, in addition to the simplicity,
of the proposed method is that the properties of a CPD from the sets of shifts (used
in a CPD) can easily be obtained without constructing the actual blocks of a CPD.
The pattern of off-diagonal zero elements (in bold form) from the main-diagonal in a
concurrence matrix (or first row of the concurrence matrix) is helpful in the identification
of the distance α (or m) in a CPD. Further, the off-diagonal elements in a concurrence
matrix can easily be obtained from the sets of shifts or from concurrence set(s) of shifts.
For more detail see Iqbal et al. [7].

In this paper, we used the method of cyclic shifts (which the authors have described
in Iqbal et al. [7]) for the construction of CPD(v; 3;λ; 1)’s. In Section 2, some algorithms
are given to search CPD(v, 3, λ; 1)’s with λ = 1, 2, 3, 4, 6, 12. In Section 3, the sets of
shifts are given for the construction of CPD(v, 3, λ; 1)’s with λ = 1, 2, 3, 4, 6, 12, and a
complete solution (in terms of cyclic BSEC) is given for v ∈ {9, 10, . . . , 100} treatments.
The concluding remarks are given in Section 4.

2. Algorithms for the construction of CPD(v, 3, λ; 1)’s

Let a% b denote the residue (nonnegative least remainder) r of a modulo b; that is,
a% b = r if and only if a is congruent r modulo b.

Now, suppose that Sj = {q1j , q2j} is the set of shifts, where α ≤ q1j , q2j ≤ v − α, and
q1j and q2j may be repeated any number of times. Then

S⋆
j = {q1j , q2j , (q1j + q2j)% v, v − q1j , v − q2j , v − (q1j + q2j)% v}.

Here v − qj is the complement of qj .

A design will be a CPD(v, 3, λ; 1) if

(i) S⋆
j consists of 2, . . . , v − 2 an equal number of times, say λ;

(ii) (q1j + q2j)% v 6= 0.

Some algorithms for the construction of CPD(v, 3, λ; 1)’s with λ = 1, 2, 3, 4, 6, 12 are pre-
sented with the conditions

(i) 2 ≤ q1j , q2j ≤ v − 2;

(ii) (q1j + q2j) % v 6= 0, 1, v − 1.

2.1. Algorithm A CPD(v, 3, λ; 1) with λ = 1 can be constructed, if v = 3i; i (> 1) is
odd, from the following (i− 1)/2 sets of shifts

Sj = [q1j , q2j ]; j=1,2,. . . ,(i-1)/2,

such that 2, 3, . . . , v−2 appear once among q1j , q2j , (q1j+q2j)% v and their complements.

2.2. Algorithm A CPD(v, 3, λ; 1) with λ = 2 can be constructed, if v = 12i; i (≥ 1) is
an integer, from the following (4i− 1) sets of shifts

Sj = [q1j , q2j ]; j = 1, 2, . . . , (4i− 1)

such that 2, 3 . . . , (v − 2)/2, (v + 2)/2, . . . , v − 2 appear twice but (v/2) appears once
among q1j , q2j , (q1j + q2j)% v and their complements.

2.3A. Algorithm A CPD(v, 3, λ; 1) with λ = 3 can be constructed, if v = 6i+1; i (> 1)
is an integer, from the following (3i− 1) sets of shifts

Sj = [q1j , q2j ]; j = 1, 2, . . . , (3i− 1)
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such that 2, 3, . . . , v − 2 appear thrice among q1j , q2j , (q1j + q2j)% v and their comple-
ments.

2.3B Algorithm A CPD(v, 3, λ; 1) with λ = 3 can be constructed, if v = 6i+5; i (≥ 1)
is an integer, from the following (3i+ 1) sets of shifts

Sj = [q1j , q2j ]; j = 1, 2, . . . , (3i+ 1)

such that 2, 3, . . . , v − 2 appear thrice among q1j , q2j , (q1j + q2j)% v and their comple-
ments.

2.4. Algorithm A CPD(v, 3, λ; 1) with λ = 4 can be constructed, if v = 12i + 6; i ≥ 1
is an integer, from the following (8i+ 2) sets of shifts

Sj = [q1j , q2j ]; j = 1, 2, . . . , (8i+ 2)

such that 2, 3 . . . , (v−2)/2, (v+2)/2, . . . , v−2 appear four times but (v/2) appears twice
among q1j , q2j , (q1j + q2j)% v and their complements.

2.5A. Algorithm A CPD(v, 3, λ; 1) with λ = 6 can be constructed, if v = 12i+4; i (≥ 1)
is an integer, from the following (12i+ 1) sets of shifts

Sj = [q1j , q2j ]; j = 1, 2, . . . , (12i+ 1)

such that 2, 3 . . . , (v− 2)/2, (v+2)/2, . . . , v− 2 appear six times but (v/2) appears three
times among q1j , q2j , (q1j + q2j)% v and their complements.

2.5B. Algorithm A CPD(v, 3, λ; 1) with λ = 6 can be constructed, if v = 12i+8; i (≥ 1)
is an integer, from the following (12i+ 5) sets of shifts

Sj = [q1j , q2j ]; j = 1, 2, . . . , (12i+ 5)

such that 2, 3 . . . , (v− 2)/2, (v+2)/2, . . . , v− 2 appear six times but (v/2) appears three
times among q1j , q2j , (q1j + q2j)% v and their complements.

2.6A Algorithm A CPD(v, 3, λ; 1) with λ = 12 can be constructed, if v = 12i−2; i (≥ 1)
is an integer, from the following (24i− 10) sets of shifts

Sj = [q1j , q2j ]; j = 1, 2, . . . , (24i− 10)

such that 2, 3 . . . , (v − 2)/2, (v + 2)/2, . . . , v − 2 appear twelve times but (v/2) appears
six times among q1j , q2j , (q1j + q2j)% v and their complements.

2.6B. Algorithm A CPD(v, 3, λ; 1) for λ = 12 can be constructed, if v = 12i+2; i (≥ 1)
is an integer, from the following (24i− 2) sets of shifts

Sj = [q1j , q2j ]; j = 1, 2, . . . , (24i− 2)

such that 2, 3 . . . , (v − 2)/2, (v + 2)/2, . . . , v − 2 appear twelve times but (v/2) appears
six times among q1j , q2j , (q1j + q2j)% v and their complements.

3. Detection of the properties in CPD(v, 3, λ; 1)’s

In this section, it is shown how CPD(v, 3, λ; 1)’s (in terms of BSECs) for some λ can
be constructed, and their concurrence matrix (or first row of the concurrence matrix)
derived from the set(s) of shifts or from concurrence set(s) of shifts. To demonstrate
this, some examples of CPD(v, 3, λ; 1)’s, along with their concurrence matrices (or first
row of the concurrence matrices), for λ = 1, 2, 3, 4, 6, 12 and for v ∈ {9, 10, 11, 12, 13, 14}
are given below.

3.1. Example. The set of shifts for CPD(9, 3, λ; 1) with λ = 1 and r = 3 is [2, 3].

The corresponding CPD(9, 3, 1; 1) and the concurrence matrix are
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0 1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 0 1

5 6 7 8 0 1 2 3 4

and

NN′ =





























3 0 1 1 1 1 1 1 0
0 3 0 1 1 1 1 1 1
1 0 3 0 1 1 1 1 1
1 1 0 3 0 1 1 1 1
1 1 1 0 3 0 1 1 1
1 1 1 1 0 3 0 1 1
1 1 1 1 1 0 3 0 1
1 1 1 1 1 1 0 3 0
0 1 1 1 1 1 1 0 3





























From the above design and the corresponding concurrence matrix, we can see that the
treatments 0 and 1, 1 and 2, . . ., 7 and 8, and 8 and 0 do not appear together within
blocks. Therefore, we can say that the above design is a CPD of distance α = 1. The
concurrence set of shifts for the above design is 2, 3 and 5. In this set, treatment 1 (and
its complement 8) does not appear and in other shifts, treatments 2, 3 and 5 (and their
complements treatments 7, 6 and 4) appear once. In the above concurrence matrix, the
elements are 0 and 1. 0 for treatment 1 and 8, and 1 for the rest of the treatments.

3.2. Example. The sets of shifts for CPD(10, 3, λ; 1) with λ = 12 and r = 42 are
[2, 2] + [2, 3](6) + [2, 4](4) + [3, 3](3).

The corresponding CPD(10, 3, 12; 1) and the first row of concurrence matrix are

1×{0 1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 0 1

4 5 6 7 8 9 0 1 2 3}

6×{0 1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 0 1

5 6 7 8 9 0 1 2 3 4}

4×{0 1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 0 1

6 7 8 9 0 1 2 3 4 5}

3×{0 1 2 3 4 5 6 7 8 9

3 4 5 6 7 8 9 0 1 2

6 7 8 9 0 1 2 3 4 5}

and

(42 0 12 12 12 12 12 12 12 0)′.

3.3. Example. The sets of shifts for CPD(11, 3, λ; 1) with λ = 3 and r = 12 are
[2, 3](2) + [2, 4] + [4, 4].

The corresponding CPD(11, 3, 3; 1) and the first row of the concurrence vector are
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2×{0 1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 0 1

5 6 7 8 9 10 0 1 2 3 4}

1×{0 1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 0 1

6 7 8 9 10 0 1 2 3 4 5}

1×{0 1 2 3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 0 1 2 3

8 9 10 0 1 2 3 4 5 6 7}

and

(12 0 3 3 3 3 3 3 3 3 0)′.

3.4. Example. The sets of shifts for CPD(12, 3, λ; 1) with λ = 2 and r = 9 are
[2, 3] + [2, 4] + [3, 4].

The corresponding CPD(12, 3, 2; 1) and the first row of the concurrence matrix are

0 1 2 3 4 5 6 7 8 9 10 11

2 3 4 5 6 7 8 9 10 11 0 1

5 6 7 8 9 10 11 0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11

2 3 4 5 6 7 8 9 10 11 0 1

6 7 8 9 10 11 0 1 2 3 4 3

0 1 2 3 4 5 6 7 8 9 10 11

3 4 5 6 7 8 9 10 11 0 1 2

7 8 9 10 11 0 1 2 3 4 3 4

and

( 9 0 2 2 2 2 2 2 2 2 2 0)′.

3.5. Example. The sets of shifts for CPD(13, 3, λ; 1) with λ = 3 and r = 15 are
[2, 3] + [2, 4](2) + [3, 4] + [5, 5].

The first row of concurrence matrix for CPD(13, 3, 3; 1) is

(15 0 3 3 3 3 3 3 3 3 3 3 0)′.

3.6. Example. The sets of shifts for CPD(14, 3, λ; 1) with λ = 12 and r = 66 are
[2, 3](4) + [2, 4](5) + [2, 5](3) + [3, 4](3) + [3, 5](5) + [4, 4](2).

The first row of the concurrence matrix for CPD(14, 3, 12; 1) is

(66 0 3 3 3 3 3 3 3 3 3 3 3 0)′.

Similarly, the remaining CPD(v, 3, λ; 1)’s with some λ can be constructed and their con-
currence matrices (or the first row of the concurrence matrices) can also be developed.

4. Construction of CPD(v, 3, λ; 1)’s with λ = 1, 2, 3, 4, 6, 12

In this section, the CPD(v, 3, λ; 1)’s with λ = 1, 2, 3, 4, 6, 12 are constructed, and a
complete solution for treatments v ∈ {9, 10, . . . , 100} are given. These CPDs exist under

the necessary condition λ = βk(k−1)
v−(2α+1)

, where β = λ(v−3)
6

denotes the number of shifts

required for a CPD with α = 1.
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The sets of shifts have been searched through the Algorithms given in Section 2 to
construct the CPD(v, 3, λ; 1)’s with λ = 1, 2, 3, 4, 6, 12 for treatments v ∈ {9, 10, . . . , 100}.

The following Lemmas give the complete constructions.

4.1. Lemma. There exists a CPD(v, 3, 1; 1) if and only if v ≡ 3%6 and v ≥ 9.

Proof. Using Algorithm 2.1, the sets of shifts are searched to construct the CPD(v, 3, 1; 1)’s
for v ∈ {9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99}, which satisfy the necessary

condition λ =
[

r(k−1)
v−3

]

.

v = 9 : [2, 3]

v = 15 : [2, 4] + [3, 5]

v = 21 : [2, 4] + [3, 8] + [5, 7]

v = 27 : [2, 3] + [4, 9] + [6, 10] + [7, 8]

v = 33 : [2, 4] + [3, 13] + [5, 9] + [7, 8] + [10, 11]

v = 39 : [2, 16] + [3, 8] + [4, 15] + [5, 9] + [6, 7] + [10, 12]

v = 45 : [2, 19] + [3, 17] + [4, 5] + [6, 7] + [8, 10] + [11, 12] + [14, 15]

v = 51 : [2, 16] + [3, 6] + [4, 21] + [5, 8] + [7, 15] + [10, 14] + [11, 17] + [12, 19]

v = 57 : [2, 21] + [3, 13] + [4, 11] + [5, 22] + [6, 12] + [7, 19] + [8, 17] + [9, 20]

+ [10, 14]

v = 63 : [2, 9] + [3, 25] + [4, 26] + [5, 24] + [6, 13] + [7, 16] + [8, 10] + [12, 15]

+ [14, 17] + [20, 21]

v = 69 : [2, 22] + [3, 23] + [4, 31] + [5, 15] + [6, 8] + [7, 25] + [9, 19] + [10, 11]

+ [12, 18] + [13, 27] + [16, 17]

v = 75 : [2, 21] + [3, 10] + [4, 26] + [5, 6] + [7, 27] + [8, 24] + [9, 22] + [12, 28]

+ [14, 15] + [16, 20] + [17, 25] + [18, 19]

v = 81 : [2, 3] + [4, 23] + [6, 32] + [7, 8] + [9, 13] + [10, 30] + [11, 25] + [12, 17]

+ [14, 33] + [16, 21] + [18, 28] + [19, 20] + [24, 26]

v = 87 : [2, 42] + [3, 16] + [4, 20] + [5, 29] + [6, 11] + [7, 31] + [8, 27] + [9, 28]

+ [10, 22] + [12, 18] + [13, 33] + [14, 26] + [15, 21] + [23, 25]

v = 93 : [2, 43] + [3, 44] + [4, 34] + [5, 36] + [6, 20] + [7, 14] + [8, 25] + [9, 28]

+ [10, 13] + [11, 29] + [12, 15] + [16, 19] + [17, 22] + [18, 24] + [30, 31]

v = 99 : [2, 48] + [3, 41] + [4, 35] + [5, 14] + [6, 21] + [7, 24] + [8, 15] + [9, 16] + [10, 32]

+ [11, 31] + [12, 26] + [13, 20] + [17, 37] + [18, 28] + [22, 39] + [29, 30] �

4.2. Lemma. There exists a CPD(v, 3, 2; 1) if and only if v ≡ 0%12 and v ≥ 12.

Proof. Using Algorithm 2.2, the sets of shifts are searched to construct CPD(v, 3, 2; 1)’s
for treatments v ∈ {12,24,36,48,60,72,84,96}, which satisfy the necessary condition λ =
[

r(k−1)
v−3

]

.

v = 12 : [2, 3] + [2, 4] + [3, 4]

v = 24 : [2, 3] + [2, 9] + [3, 7] + [4, 6] + [4, 8] + [5, 6] + [7, 8]

v = 36 : [2, 3] + [2, 14] + [3, 12] + [4, 7] + [4, 14] + [5, 10] + [6, 7] + [6, 10]

+ [8, 9] + [8, 9] + [11, 12]
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v = 48 : [2, 6] + [2, 11] + [3, 17] + [3, 20] + [4, 8] + [4, 9] + [5, 14] + [5, 16]

+ [6, 18] + [7, 15] + [7, 18] + [9, 10] + [10, 11] + [12, 14] + [15, 16]

v = 60 : [2, 6] + [2, 6] + [3, 12] + [3, 21] + [4, 18] + [4, 22] + [5, 20] + [5, 23]

+ [7, 10] + [7, 24] + [9, 10] + [9, 25] + [11, 12] + [11, 17] + [13, 14]

+ [13, 16] + [14, 16] + [15, 18] + [19, 20]

v = 72 : [2, 26] + [2, 31] + [3, 24](2) + [4, 7] + [4, 28] + [5, 12] + [5, 20] + [6, 9]

+ [6, 12] + [7, 23] + [8, 17] + [8, 23] + [9, 20] + [10, 22] + [10, 26] + [11, 22]

+ [13, 16] + [13, 21] + [14, 16] + [14, 21] + [15, 19] + [18, 19]

v = 84 : [2, 29] + [2, 33] + [3, 16] + [3, 34] + [4, 5] + [4, 38] + [5, 23] + [6, 21]

+ [6, 30] + [7, 18] + [7, 33] + [8, 16] + [8, 26] + [9, 28] + [10, 15]

+ [10, 22] + [11, 29] + [11, 30] + [12, 19] + [12, 24] + [13, 14]

+ [13, 26] + [14, 18] + [15, 20] + [17, 21] + [17, 22] + [20, 23]

v = 96 : [2, 29] + [2, 33] + [3, 12] + [3, 28] + [4, 37] + [4, 42] + [5, 11] + [5, 29]

+ [6, 33] + [6, 36] + [7, 34] + [7, 39] + [8, 22] + [8, 32] + [9, 28] + [9, 38]

+ [10, 11] + [10, 38] + [12, 23] + [13, 14] + [13, 27] + [14, 16] + [15, 17]

+ [17, 19] + [18, 26](2) + [19, 24] + [20, 23] + [20, 25]

+ [21, 24] + [22, 25] �

4.3. Lemma. There exists a CPD(v, 3, 3; 1) if and only if v ≡ 1%6 and v ≥ 13.

Proof. Using Algorithm 2.3A, the sets of shifts are searched to construct CPD(v, 3, 3; 1)’s
for treatments v ∈ {13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97}, which satisfy

the necessary condition λ =
[

r(k−1)
v−3

]

.

v = 13 : [2, 3] + [2, 4](2) + [3, 4] + [5, 5]

v = 19 : [2, 5] + [2, 6](2) + [3, 4] + [3, 5] + [3, 7] + [4, 5] + [4, 6]

v = 25 : [2, 8] + [2, 9](2) + [3, 4] + [3, 6] + [3, 7] + [4, 6] + [4, 8] + [5, 6]

+ [5, 7] + [5, 8]

v = 31 : [2, 10] + [2, 11] + [2, 12] + [3, 7] + [3, 11] + [3, 12] + [4, 5] + [4, 6]

+ [4, 7] + [5, 8] + [5, 9] + [6, 7] + [6, 9] + [8, 8]

v = 37 : [2, 12] + [2, 13] + [2, 14] + [3, 10] + [3, 11] + [3, 15] + [4, 5] + [4, 6]

+ [4, 12] + [5, 7] + [5, 13] + [6, 11](2) + [7, 8] + [7, 9] + [8, 9] + [8, 10]

v = 43 : [2, 4] + [2, 10] + [2, 15] + [3, 14] + [3, 16](2) + [4, 8] + [4, 16]

+ [5, 13](2) + [5, 14] + [6, 7] + [6, 15] + [7, 8] + [7, 11] + [8, 9] + [9, 11]

+ [9, 14] + [10, 11] + [10, 12]

v = 49 : [2, 12] + [2, 20](2) + [3, 9] + [3, 16] + [3, 18] + [4, 11] + [4, 14] + [4, 17]

+ [5, 6] + [5, 8] + [5, 10] + [6, 16] + [6, 17] + [7, 10] + [7, 12] + [7, 18]

+ [8, 13] + [8, 15] + [9, 14] + [9, 16] + [10, 19] + [11, 13]

v = 55 : [2, 8] + [2, 19](2) + [3, 14] + [3, 19] + [3, 21] + [4, 12] + [4, 20](2)

+ [5, 17](2) + [5, 23] + [6, 7](2) + [6, 9] + [7, 18] + [8, 12] + [8, 18] + [9, 14]

+ [9, 16] + [10, 16] + [10, 18] + [11, 12] + [11, 14] + [11, 15] + [13, 15]
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v = 61 : [2, 12] + [2, 26](2) + [3, 17] + [3, 19](2) + [4, 14] + [4, 25] + [4, 26]

+ [5, 7](2) + [5, 23] + [6, 15] + [6, 17](2) + [7, 14] + [8, 16](2) + [8, 21]

+ [9, 13] + [9, 18](2) + [10, 15](2) + [10, 20] + [11, 13] + [11, 16]

+ [11, 20] + [13, 19]

v = 67 : [2, 15](2) + [2, 21] + [3, 27](3) + [4, 19] + [4, 22] + [4, 25] + [5, 10] + [5, 13]

+ [5, 28] + [6, 12] + [6, 13] + [6, 19] + [7, 21] + [7, 22](2) + [8, 10]

+ [8, 16](2) + [9, 23] + [9, 26](2) + [10, 14] + [11, 14] + [11, 20](2)

+ [12, 16] + [12, 21] + [13, 20] + [14, 17]

v = 73 : [2, 15] + [2, 24] + [2, 25] + [3, 19](2) + [3, 21] + [4, 29](3) + [5, 17] + [5, 26]

+ [5, 27] + [6, 13] + [6, 28] + [6, 30] + [7, 8](2) + [7, 16] + [8, 12] + [9, 18]

+ [9, 23](2) + [10, 18] + [10, 25] + [10, 28] + [11, 20](2) + [11, 25]

+ [12, 14] + [12, 24] + [13, 21](2) + [14, 16](2) + [17, 18]

v = 79 : [2, 17] + [2, 28](2) + [3, 6](2) + [3, 27] + [4, 32](3) + [5, 21](2) + [5, 23] + [6, 12]

+ [7, 15] + [7, 17](2) + [8, 23] + [8, 29](2) + [9, 25] + [10, 23] + [10, 24]

+ [10, 25] + [11, 27](2) + [11, 29] + [12, 19](2) + [13, 20](2) + [13, 26]

+ [14, 21] + [14, 25] + [15, 20] + [15, 2] + [16, 18](2) + [16, 22]

v = 85 : [2, 14] + [2, 16] + [2, 32] + [3, 24] + [3, 35](2) + [4, 6](2) + [4, 29] + [5, 31](2)

+ [5, 36] + [6, 32] + [7, 18] + [7, 23](2) + [8, 15] + [8, 20] + [8, 25] + [9, 19](2)

+ [9, 25] + [10, 19] + [11, 26](2) + [11, 31] + [12, 20] + [12, 29] + [12, 30]

+ [13, 21] + [13, 27](2) + [14, 21] + [14, 26] + [15, 18] + [15, 24]

+ [16, 21] + [17, 22](2) + [17, 24] + [20, 22]

v = 91 : [2, 32](2) + [2, 36] + [3, 25](2) + [3, 37] + [4, 7](2) + [4, 33] + [5, 17] + [5, 25]

+ [5, 39] + [6, 17] + [6, 35] + [6, 39] + [7, 26] + [8, 16] + [8, 35](2) + [9, 19]

+ [9, 22](2) + [10, 16] + [10, 30](2) + [11, 34] + [12, 29](2) + [12, 33]

+ [13, 14] + [13, 18] + [13, 24] + [14, 24] + [14, 29] + [15, 17]

+ [15, 21](2) + [16, 35] + [18, 20] + [18, 21]

+ [19, 23](2) + [20, 27](2)

v = 97 : [2, 36] + [2, 39](2) + [3, 18](2) + [3, 30] + [4, 26] + [4, 38] + [4, 43] + [5, 22]

+ [5, 24](2) + [6, 17](2) + [6, 39] + [7, 11] + [7, 19] + [7, 33] + [8, 20]

+ [8, 37](2) + [9, 25](2) + [9, 32] + [10, 22](2) + [10, 34] + [11, 35](2)

+ [12, 25] + [12, 31](2) + [13, 35] + [13, 36](2) + [14, 15]

+ [14, 19] + [14, 24] + [15, 27](2) + [16, 28](2) + [16, 31]

+ [17, 23] + [19, 21] + [20, 26] + [20, 30] �

4.4. Lemma. There exists a CPD(v, 3, 3; 1) if and only if v ≡ 5%6 and v ≥ 11.

Proof. Using Algorithm 2.3B, the sets of shifts are searched to construct CPD(v, 3, 3; 1)’s
for treatments v ∈ {11,17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95}, which satisfy

the necessary condition λ =
[

r(k−1)
v−3

]

.

v = 11 : [2, 3](2) + [2, 4] + [4, 4]

v = 17 : [2, 4] + [2, 6](2) + [3, 4](2) + [3, 5] + [5, 5]
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v = 23 : [2, 6] + [2, 7] + [2, 8] + [3, 5] + [3, 7] + [3, 9] + [4, 5] + [4, 6] + [4, 7] + [5, 6]

v = 29 : [2, 6] + [2, 7] + [2, 10] + [3, 10](2) + [3, 12] + [4, 7] + [4, 8]

+ [4, 9] + [5, 6](2) + [5, 9] + [7, 8]

v = 35 : [2, 6] + [2, 13](2) + [3, 7] + [3, 11](2) + [4, 5] + [4, 12](2) + [5, 7]

+ [5, 9] + [6, 10] + [6, 11] + [7, 13] + [8, 9] + [8, 10]

v = 41 : [2, 6] + [2, 15] + [2, 17] + [3, 11] + [3, 12] + [3, 13] + [4, 12]

+ [4, 14] + [4, 17] + [5, 6] + [5, 13](2) + [6, 8] + [7, 8]

+ [7, 9] + [7, 12] + [9, 10] + [9, 11] + [10, 10]

v = 47 : [2, 11] + [2, 17] + [2, 19] + [3, 6] + [3, 7] + [3, 17] + [4, 9] + [4, 14]

+ [4, 15] + [5, 12] + [5, 16] + [5, 20] + [6, 9] + [6, 16] + [7, 11] + [7, 15]

+ [8, 10] + [8, 12] + [8, 16] + [10, 14] + [11, 13] + [12, 14]

v = 53 : [2, 22](2) + [2, 24] + [3, 11] + [3, 14] + [3, 15] + [4, 14] + [4, 18]

+ [4, 19] + [5, 10](2) + [5, 16] + [6, 7] + [6, 19](2) + [7, 16](2) + [8, 12](2)

+ [8, 13] + [9, 11] + [9, 17](2) + [10, 11] + [12, 13]

v = 59 : [2, 19] + [2, 22] + [2, 28] + [3, 13] + [3, 16] + [3, 23] + [4, 14]

+ [4, 22] + [4, 23] + [5, 6] + [5, 7] + [5, 12] + [6, 18] + [6, 19] + [7, 13]

+ [7, 14] + [8, 15] + [8, 17](2) + [9, 12] + [9, 15] + [9, 22]

+ [10, 18] + [10, 20](2) + [11, 15] + [11, 16] + [13, 14]

v = 65 : [2, 20](2) + [2, 27] + [3, 15] + [3, 23] + [3, 28] + [4, 13]

+ [4, 17](2) + [5, 23](2) + [5, 25] + [6, 9] + [6, 27](2) + [7, 14]

+ [7, 18](2) + [8, 8] + [8, 12] + [9, 10] + [9, 15] + [10, 24](2)

+ [11, 19](2) + [11, 22] + [12, 14](2) + [13, 16](2)

v = 71 : [2, 21](2) + [2, 27] + [3, 29](2) + [3, 31] + [4, 12] + [4, 26](2) + [5, 14]

+ [5, 17](2) + [6, 7] + [6, 15] + [6, 24] + [7, 18] + [7, 28] + [8, 10] + [8, 17]

+ [8, 18] + [9, 14] + [9, 19](2) + [10, 27](2) + [11, 14] + [11, 22]

+ [11, 24] + [12, 20] + [12, 24] + [13, 20](2) + [15, 16](2)

v = 77 : [2, 6] + [2, 17] + [2, 28] + [3, 6] + [3, 17] + [3, 32] + [4, 19] + [4, 20] + [4, 25]

+ [5, 7] + [5, 28](2) + [6, 27] + [7, 27](2) + [8, 18](2) + [9, 22](2) + [10, 11]

+ [10, 21] + [10, 30] + [11, 24](2) + [12, 20] + [12, 26] + [13, 16](2) + [13, 23]

+ [14, 23] + [14, 25](2) + [15, 21] + [15, 22] + [15, 30] + [16, 18] + [17, 19]

v = 83 : [2, 14](2) + [2, 28] + [3, 31](3) + [4, 16] + [4, 32] + [4, 37] + [5, 11]

+ [5, 19] + [5, 30] + [6, 27] + [6, 29] + [6, 33] + [7, 8](2) + [7, 14] + [8, 17]

+ [9, 10] + [9, 27](2) + [10, 22](2) + [11, 28] + [11, 30] + [12, 23]

+ [12, 26] + [12, 29] + [13, 15] + [13, 16] + [13, 20] + [14, 23](2)

+ [17, 21](2) + [18, 22] + [18, 25](2) + [19, 20]

v = 89 : [2, 17] + [2, 31](2) + [3, 35](3) + [4, 18] + [4, 23](2) + [5, 7] + [5, 23]

+ [5, 36] + [6, 14](2) + [6, 21] + [7, 30] + [7, 37] + [8, 17] + [8, 29] + [8, 33]

+ [9, 17] + [9, 19](2) + [10, 22](2) + [10, 32] + [11, 25](2) + [11, 31]

+ [12, 34](2) + [13, 26] + [13, 29] + [13, 30] + [14, 20]
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+ [15, 26] + [15, 29] + [15, 30] + [16, 24](3) + [18, 21](2)

v = 95 : [2, 21] + [2, 26](2) + [3, 11] + [3, 27](2) + [4, 5] + [4, 21](2) + [5, 38](2)

+ [6, 34] + [6, 35](2) + [7, 22](2) + [7, 36] + [8, 20] + [8, 25] + [8, 30] + [9, 10]

+ [9, 37] + [10, 34] + [10, 35] + [11, 31](2) + [12, 20] + [12, 24](2) + [13, 16]

+ [13, 32](2) + [14, 19](2) + [15, 26] + [15, 31] + [15, 34]

+ [16, 23](2) + [17, 27](2) + [18, 24] + [18, 30](2) + [20, 27] �

4.5. Lemma. There exists a CPD(v, 3, 4; 1) if and only if v ≡ 6%12 and v ≥ 18.

Proof. Using Algorithm 2.4, the sets of shifts are searched to construct CPD(, 3, 4; 1)’s
for treatments v ∈ {18, 30, 42, 54, 66, 78, 90} which satisfy the necessary condition λ =
[

r(k−1)
v−3

]

.

v = 18 : [2, 5](2) + [2, 6](2) + [3, 4](2) + [3, 5] + [3, 6] + [4, 5] + [4, 6]

v = 30 : [2, 5] + [2, 6] + [2, 9] + [2, 10] + [3, 8] + [3, 10] + [3, 11] + [3, 12]

+ [4, 5] + [4, 8] + [4, 10] + [4, 11] + [5, 7] + [5, 9] + [6, 7](2) + [6, 10] + [8, 9]

v = 42 : [2, 3] + [2, 8] + [2, 11] + [2, 16] + [3, 12] + [3, 13] + [3, 17] + [4, 6] + [4, 11]

+ [4, 14](2) + [5, 12] + [5, 15] + [5, 16] + [6, 11] + [6, 13] + [6, 14] + [7, 8]

+ [7, 9] + [7, 12] + [7, 14] + [8, 9] + [8, 12] + [9, 10](2) + [11, 13]

v = 54 : [2, 14] + [2, 17] + [2, 21] + [2, 22] + [3, 4] + [3, 11] + [3, 13] + [3, 18] + [4, 9]

+ [4, 20] + [4, 23] + [5, 15] + [5, 17](2) + [5, 19] + [6, 7] + [6, 15] + [6, 19]

+ [6, 20] + [7, 15] + [7, 16] + [8, 10] + [8, 17] + [8, 18](2) + [9, 10] + [9, 11]

+ [9, 12] + [10, 14] + [10, 16] + [11, 12] + [11, 14] + [12, 13] + [12, 15]

v = 66 : [2, 3] + [2, 16] + [2, 18] + [2, 22] + [3, 27](2) + [3, 29] + [4, 12] + [4, 17] + [4, 23]

+ [4, 29] + [5, 8] + [5, 19] + [5, 23] + [6, 11] + [6, 15] + [6, 24] + [6, 25]

+ [7, 19](3) + [7, 21] + [8, 15] + [8, 22] + [8, 25] + [9, 11] + [9, 12] + [9, 13]

+ [9, 23] + [10, 15] + [10, 17] + [10, 18] + [10, 22] + [11, 13] + [11, 20]

+ [12, 14] + [12, 16] + [13, 16] + [14, 15] + [14, 17] + [14, 18] + [20, 21]

v = 78 : [2, 19] + [2, 21] + [2, 34] + [2, 35] + [3, 22] + [3, 28] + [3, 31](2) + [4, 15]

+ [4, 20] + [4, 29] + [4, 31] + [5, 7] + [5, 14] + [5, 16] + [5, 32] + [6, 17]

+ [6, 24] + [6, 27] + [6, 30] + [7, 15] + [7, 17] + [7, 32] + [8, 16] + [8, 20]

+ [8, 22] + [8, 30] + [9, 17] + [9, 18] + [9, 27](2) + [10, 18] + [10, 23]

+ [10, 25] + [10, 28] + [11, 14](2) + [11, 18] + [11, 23] + [12, 20]

+ [12, 26](2) + [13, 16] + [13, 20] + [13, 22] + [13, 26] + [14, 15]

+ [15, 17] + [16, 21] + [18, 19]

v = 90 : [2, 11] + [2, 14] + [2, 24] + [2, 41] + [3, 15] + [3, 21] + [3, 32] + [3, 36] + [4, 13]

+ [4, 28](2) + [4, 35] + [5, 14] + [5, 21] + [5, 25] + [5, 29] + [6, 34](2)

+ [6, 36] + [6, 37] + [7, 27] + [7, 31](2) + [7, 36] + [8, 17] + [8, 25] + [8, 29]

+ [8, 37] + [9, 15] + [9, 22] + [9, 33] + [9, 36] + [10, 21] + [10, 29](2)

+ [10, 30] + [11, 16] + [11, 19] + [11, 21] + [12, 14] + [12, 26]

+ [12, 28] + [12, 30] + [13, 20] + [13, 22] + [14, 23] + [15, 18]
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+ [15, 23] + [16, 19] + [16, 25] + [17, 27](2) + [18, 23]

+ [18, 28] + [19, 22] + [20, 22] + [20, 23] + [20, 24] �

4.6. Lemma. There exists a CPD(v, 3, 6; 1) if and only if v ≡ 4%12 and v ≥ 16.

Proof. By using Algorithm 2.5A, the sets of shifts are searched to construct CPD(v, 3, 6; 1)’s
for treatments v ∈ {16, 28, 40, 52, 64, 76, 88, 100} which satisfy the necessary condition

λ =
[

r(k−1)
v−3

]

.

v = 16 : [2, 3] + [2, 4] + [2, 5](2) + [2, 6] + [2, 7] + [3, 3] + [3, 4](2)

+ [3, 5] + [4, 4] + [4, 6] + [5, 5]

v = 28 : [2, 6](2) + [2, 7] + [2, 8] + [2, 10] + [2, 11] + [3, 6] + [3, 9](3) + [3, 10](2)

+ [4, 7](3) + [4, 8] + [4, 10](2) + [5, 6](2) + [5, 7] + [5, 8](2) + [5, 9] + [6, 7]

v = 40 : [2, 8] + [2, 9] + [2, 12] + [2, 15] + [2, 18](2) + [3, 4] + [3, 12] + [3, 13](2)

+ [3, 14](2) + [4, 9] + [4, 12] + [4, 15](3) + [5, 9] + [5, 10] + [5, 11] + [5, 12](3)

+ [6, 7](2) + [6, 8](2) + [6, 10] + [6, 13] + [7, 9] + [7, 11](2) + [8, 10](2)

+ [8, 11] + [9, 10] + [9, 11]

v = 52 : [2, 10](3) + [2, 20](3) + [3, 8](3) + [3, 20](3) + [4, 13](2) + [4, 14](3) + [4, 17]

+ [5, 7](2) + [5, 8] + [5, 16](3) + [6, 6] + [6, 7] + [6, 19](3) + [7, 22](3)

+ [8, 13](3) + [10, 14](3) + [11, 15](3) + [16, 17](3)

v = 64 : [2, 14](3) + [2, 25](3) + [3, 12](3) + [3, 26](3) + [4, 18](3) + [4, 23](3)

+ [5, 10](3) + [6, 11] + [6, 14] + [6, 22](3) + [6, 24] + [7, 7]+]7, 10]

+ [7, 19](3) + [8, 16](3) + [8, 17](3) + [9, 12](3) + [9, 21](3) + [10, 24](2)

+ [11, 18](3) + [11, 20](2) + [13, 19](3) + [13, 20](3) + [14, 17]

v = 76 : [2, 13](3) + [2, 16](3) + [3, 14](3) + [3, 21](3) + [4, 29](3) + [4, 34](3)

+ [5, 20](3) + [5, 26](3) + [6, 6] + [6, 9](2) + [6, 23](2) + [7, 26](3) + [7, 27](3)

+ [8, 19](3) + [8, 22](3) + [9, 22](2) + [9, 23](2) + [10, 18](2) + [10, 29]

+ [10, 30](3) + [11, 17](3) + [11, 24](3) + [12, 19] + [12, 20](2)

+ [12, 23](2) + [13, 19](2) + [13, 28] + [14, 25](3) + [15, 21]

+ [16, 20] + [16, 21](2) + [18, 22]

v = 88 : [2, 18](3) + [2, 29](3) + [3, 15](3) + [3, 33](3) + [4, 23](3) + [4, 30] + [4, 37](2)

+ [15, 17](3) + [15, 19](3) + [6, 17](3) + [6, 19](3) + [7, 25](3) + [7, 28](3)

+ [8, 32](3) + [8, 35](3) + [9, 12](3) + [9, 29](3) + [10, 20](2) + [10, 31](3)

+ [10, 37] + [11, 28](3) + [11, 33](3) + [12, 34](3) + [13, 26](3)

+ [13, 27](3) + [14, 22](3) + [14, 24](3) + [15, 30](3)

+ [16, 21](3) + [16, 26](3) + [20, 34]

v = 100 : [2, 20] + [2, 22](2) + [2, 43](3) + [3, 34](3) + [3, 41](3) + [4, 30](3) + [4, 42](3)

+ [5, 20](3) + [5, 31] + [5, 33](2) + [6, 16](2) + [6, 27] + [6, 38](3) + [7, 14](3)

+ [7, 14](3) + [7, 21](3) + [8, 24](3) + [8, 25](3) + [9, 13](2) + [9, 41]

+ [10, 13](2) + [10, 39](3) + [10, 40] + [11, 19](3) + [11, 37](3) + [12, 23]

+ [12, 29](2) + [12, 35](2) + [12, 38] + [13, 29](3) + [14, 26](3)

+ [15, 31](3) + [15, 36](3) + [16, 23](3) + [16, 23](3) + [16, 32]
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+ [17, 18](3) + [17, 26](3) + [17, 26](3) + [18, 27](3)

+ [19, 28](3) + [20, 32](2) + [24, 29] �

4.7. Lemma. There exists a CPD(v, 3, 6; 1) if and only if v ≡ 8%12 and v ≥ 20.

Proof. Using Algorithm 2.5B, the sets of shifts are searched to construct CPD(v, 3, 6; 1)’s
for treatments v ∈ {20, 32, 44, 56, 68, 80, 92} which satisfy the necessary condition

λ =
[

r(k−1)
v−3

]

.

v = 20 : [2, 5](2) + [2, 6](2) + [2, 7] + [2, 8] + [3, 4] + [3, 5] + [3, 6](3) + [3, 7]

+ [4, 4] + [4, 5](2) + [4, 6] + [5, 7]

v = 32 : [2, 7] + [2, 8] + [2, 9] + [2, 10] + [2, 12] + [2, 14] + [3, 6] + [3, 9] + [3, 10](2)

+ [3, 12] + [3, 13] + [4, 7](2) + [4, 10] + [4, 11](2) + [4, 12] + [5, 6] + [5, 7]

+ [5, 8](2) + [5, 9] + [5, 10] + [6, 7] + [6, 8](2) + [6, 9] + [7, 8]

v = 44 : [2, 8] + [2, 12] + [2, 15] + [2, 18] + [2, 19](2) + [3, 6] + [3, 10] + [3, 11](2)

+ [3, 15] + [3, 16] + [4, 9](2) + [4, 12] + [4, 14](2) + [4, 16] + [5, 8] + [5, 11]

+ [5, 15] + [5, 16](2) + [5, 17] + [6, 9] + [6, 11] + [6, 12] + [6, 13] + [6, 15]

+ [7, 10](3) + [7, 12] + [7, 13] + [7, 15] + [8, 10] + [8, 11]

+ [8, 12] + [8, 14] + [9, 11] + [9, 12]

v = 56 : [2, 19] + [2, 20](5) + [3, 3](2) + [3, 16] + [3, 22] + [4, 71](6) + [5, 16](5)

+ [5, 20] + [6, 19](4) + [8, 18](6) + [9, 15](6) + [10, 13](6) + [12, 17](6)

+ [14, 14](3)

v = 68 : [2, 28](6) + [3, 4](5) + [3, 18] + [4, 17] + [5, 18](5) + [5, 24] + [6, 25](6)

+ [7, 22] + [8, 13] + [8, 14](5) + [9, 10] + [9, 17](5) + [10, 13] + [10, 19](4)

+ [11, 16](6) + [12, 14] + [12, 24](5) + [13, 19] + [13, 21](3) + [15, 20](6)

v = 80 : [2, 21](6) + [3, 27] + [3, 33](4) + [3, 37] + [4, 27](3) + [4, 32] + [4, 33] + [4, 36]

+ [5, 12](6) + [6, 12](2) + [6, 19] + [6, 33] + [6, 34] + [6, 37] + [7, 18](5)

+ [7, 31] + [8, 20] + [8, 22](5) + [9, 19](5) + [9, 22] + [10, 16] + [10, 27](2)

+ [10, 32](3) + [11, 24](6) + [13, 16](5) + [13, 18]

+ [14, 15] + [14, 20](5) + [15, 26](5)

v = 92 : [2, 8] + [2, 32](5) + [3, 39](6) + [4, 15](5) + [4, 36] + [5, 13] + [5, 14] + [5, 18](2)

+ [5, 27] + [5, 35] + [6, 25](6) + [7, 23] + [7, 28](5) + [8, 10](2) + [8, 16]

+ [8, 36] + [8, 38] + [9, 9] + [9, 24](3) + [9, 27] + [10, 23](3) + [11, 13]

+ [11, 26](5) + [12, 22] + [12, 26] + [12, 36](4) + [13, 27](4) + [14, 29](5)

+ [15, 29] + [16, 22](4) + [16, 27] + [17, 28]

+ [17, 30](5) + [20, 21](6) + [22, 24]

�

4.8. Lemma. There exists a CPD(v, 3, 12; 1) if and only if v ≡ 10%12) and v ≥ 10.

Proof. By using Algorithm 2.6A, the sets of shifts are searched to construct CPD(v, 3, 12; 1)’s
for treatments v ∈ {10, 22, 34, 46, 58, 70, 82, 94} which satisfy the necessary condition

λ =
[

r(k−1)
v−3

]

.

v = 10 : [2, 2] + [2, 3](6) + [2, 4](4) + [3, 3](3)
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v = 22 : [2, 3] + [2, 5](2) + [2, 6](3) + [2, 7](2) + [2, 8](4) + [3, 5](2) + [3, 6](5)

+ [3, 7](2) + [3, 8](2) + [4, 5](4) + [4, 6](4) + [4, 7](4) + [5, 7](2) + [5, 8]

v = 34 : [2, 7](2) + [2, 8] + [2, 9](2) + [2, 12](3) + [2, 13](2) + [2, 15](2) + [3, 3]

+ [3, 8](2) + [3, 9](4) + [3, 13](4) + [4, 7](2) + [4, 8](2) + [4, 10](6)

+ [4, 13](2) + [5, 7](2) + [5, 8](2) + [5, 10](4) + [5, 11](4) + [6, 7](2)

+ [6, 8](3) + [6, 9](2) + [6, 10] + [6, 11](2) + [6, 12] + [7, 8](2) + [7, 9](2)

v = 46 : [2, 10](2) + [2, 11] + [2, 12] + [2, 18] + [2, 20](5) + [2, 21](2) + [3, 5] + [3, 11](7)

+ [3, 14](2) + [3, 20](2) + [4, 13](7) + [4, 15](2) + [4, 16](2) + [4, 17]

+ [5, 16](9) + [5, 17](2) + [6, 8](2) + [6, 12](9) + [6, 16] + [7, 8](7) + [7, 11](2)

+ [7, 13](2) + [7, 15] + [8, 15](2) + [9, 10](10) + [9, 13](2) + [11, 11]

v = 58 : [2, 9](6) + [2, 19](6) + [3, 4](6) + [3, 15] + [3, 25](5) + [4, 18](5) + [4, 23]

+ [5, 11](6) + [5, 12](6) + [6, 15](2) + [6, 16](6) + [6, 23](2) + [6, 25](2)

+ [7, 19](6) + [8, 18](6) + [8, 21](4) + [8, 23](2) + [9, 15](6) + [10, 13](6)

+ [10, 20](6) + [12, 13](5) + [12, 15] + [13, 22]

+ [14, 17](6) + [14, 20](6) + [15, 15]

v = 70 : [2, 12](6) + [2, 14](6) + [3, 3](2) + [3, 20](7) + [3, 21] + [4, 27](11) + [4, 29]

+ [5, 8](6) + [5, 17](5) + [5, 26] + [6, 24](10) + [7, 15] + [7, 18](6) + [7, 20]

+ [7, 26](4) + [8, 15](5) + [8, 29] + [9, 19](10) + [9, 20](2) + [10, 25](6)

+ [10, 26](6) + [11, 13] + [11, 21](11) + [12, 17](6) + [13, 13] + [13, 17]

+ [13, 28](2) + [15, 22](6) + [16, 18](6) + [19, 19] + [20, 20]

v = 82 : [2, 19] + [2, 24](5) + [2, 25](6) + [3, 8](2) + [3, 17](4) + [3, 23](6) + [4, 22]

+ [4, 30](6) + [4, 32](5) + [5, 33](6) + [5, 35](6) + [6, 16](6) + [6, 19](6)

+ [7, 29](6) + [7, 31](6) + [8, 9](8) + [8, 21](2) + [9, 11](2) + [9, 24] + [9, 32]

+ [10, 11](2) + [10, 18] + [10, 19](4) + [10, 22](5) + [11, 20](6) + [12, 27](6)

+ [12, 30](6) + [13, 19] + [13, 24](6) + [13, 28](5) + [14, 21](6)

+ [14, 23](6) + [15, 18](5) + [15, 21] + [15, 28](6) + [16, 18](6)

v = 94 : [2, 19](6) + [2, 36](6) + [3, 22](6) + [3, 32](6) + [4, 9] + [4, 11] + [4, 22](4)

+ [4, 31](6) + [5, 17] + [5, 31](5) + [5, 41](6) + [6, 12](5) + [6, 21](6) + [6, 24]

+ [7, 8](6) + [7, 33](6) + [8, 29](6) + [9, 9] + [9, 11] + [9, 17](2) + [9, 32](6)

+ [10, 33](6) + [10, 34](6) + [11, 11] + [11, 17] + [17, 29](5) + [11, 31]

+ [11, 34] + [12, 18](6) + [12, 24] + [13, 24](6) + [13, 25](6) + [14, 24]

+ [14, 26] + [14, 28](5) + [14, 29] + [14, 34] + [15, 30](5) + [16, 23](6)

+ [16, 28](6) + [17, 17] + [17, 26](5) + [17, 29] + [19, 23](6)

+ [20, 27](6) + [20, 29](5) + [24, 24] + [24, 25]

�

4.9. Lemma. There exists a CPD(v, 3, 12; 1) if and only if v ≡ 2%12 and v ≥ 14.

Proof. Using Algorithm 2.6B, the sets of shifts are searched to construct CPD(v, 3, 12; 1)’s
for treatments v ∈ {14, 26, 38, 50, 62, 74, 86, 98} which satisfy the necessary condition
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λ =
[

r(k−1)
v−3

]

.

v = 14 : [2, 3](4) + [2, 4](5) + [2, 5](3) + [3, 4](3) + [3, 5](5) + [4, 4](2)

v = 26 : [2, 5](2) + [2, 6](2) + [2, 7](2) + [2, 9](4) + [2, 10](2) + [3, 5](2) + [3, 7](2)

+ [3, 8](4) + [3, 9](4) + [4, 6](6) + [4, 7] + [4, 8](2) + [4, 9](2) + [4, 10]

+ [5, 6](2) + [5, 7](3) + [5, 8](2) + [5, 10] + [6, 7](2)

v = 38 : [2, 8] + [2, 9](2) + [2, 11] + [2, 13](6) + [2, 16](2) + [3, 5] + [3, 6](2) + [3, 7]

+ [3, 9](2) + [3, 14](4) + [3, 15](2) + [4, 6] + [4, 7](2) + [4, 9](2) + [4, 12](4)

+ [4, 14](3) + [5, 9](2) + [5, 10](2) + [5, 11](4) + [5, 12](2) + [5, 13] + [6, 8](3)

+ [6, 11](2) + [6, 12](2) + [6, 13](2) + [7, 8] + [7, 9](2)

+ [7, 10](4) + [7, 12](2) + [8, 10](3) + [8, 11](2)

v = 50 : [2, 5] + [2, 7] + [2, 15](2) + [2, 16](2) + [2, 18](2) + [2, 19](2) + [2, 21](2)

+ [3, 4](2) + [3, 10] + [3, 13](3) + [3, 18](2) + [3, 19](4) + [4, 10](2) + [4, 11](2)

+ [4, 17](2) + [4, 18](2) + [4, 20](2) + [5, 7](4) + [5, 12] + [5, 13](2)

+ [5, 14](2) + [5, 17](2) + [6, 9](2) + [6, 13](2) + [6, 14](2) + [6, 15](2)

+ [6, 17](2) + [6, 18](2) + [7, 10] + [7, 12](2) + [7, 16] + [8, 15](4)

+ [8, 16](6) + [8, 17](2) + [9, 11](6) + [9, 13] + [9, 14](2) + [10, 11](2)

+ [10, 12](3) + [10, 13] + [10, 14](2) + [11, 14](2) + [12, 13](2)

v = 62 : [2, 6] + [2, 14](6) + [2, 26](5) + [3, 19](6) + [3, 23](6) + [4, 17](6) + [4, 27](6)

+ [5, 15] + [5, 20](5) + [5, 24](6) + [6, 11](6) + [6, 15] + [6, 18] + [6, 23]

+ [6, 27](2) + [7, 8](5) + [7, 13](6) + [7, 21] + [8, 16](5) + [8, 18]

+ [9, 12](4) + [9, 16] + [9, 18] + [9, 19](6) + [10, 13](6) + [10, 15]

+ [10, 22](6) + [11, 14](5) + [11, 18] + [12, 15](2)

+ [12, 18](6) + [13, 14] + [15, 18](2)

v = 74 : [2, 13] + [2, 16](5) + [2, 23](5) + [2, 31] + [3, 16](5) + [3, 24] + [3, 28](6)

+ [4, 19](6) + [4, 25](6) + [5, 15] + [5, 28](6) + [5, 32](5) + [6, 11](5)

+ [6, 15](5) + [6, 25] + [6, 30] + [7, 8] + [7, 13](5) + [7, 17] + [7, 27](5)

+ [8, 21](5) + [8, 24](6) + [9, 12] + [9, 26](6) + [9, 30](5) + [10, 10]

+ [10, 11] + [10, 13] + [10, 17](6) + [10, 24](2) + [11, 13] + [11, 15]

+ [11, 22](5) + [12, 18](6) + [12, 26](5) + [13, 18] + [13, 19] + [13, 22]

+ [13, 24] + [14, 15] + [14, 20](5) + [14, 22](6) + [15, 16](2)

v = 86 : [2, 17](5) + [2, 22] + [2, 32](6) + [3, 3](2) + [3, 10] + [3, 27] + [3, 28](6)

+ [4, 19](6) + [4, 24](5) + [4, 36] + [5, 29](6) + [5, 37](6) + [6, 10](4)

+ [6, 20](6) + [7, 18](6) + [7, 36](6) + [8, 8](2) + [8, 9] + [8, 11]

+ [8, 30](6) + [9, 22](5) + [9, 32] + [9, 36](5) + [10, 21] + [10, 29](6)

+ [11, 21](5) + [11, 26](6) + [12, 21](6) + [12, 23](6) + [13, 27](11)

+ [14, 25](6) + [14, 28] + [14, 30](5) + [15, 18](6)

+ [15, 20](6) + [16, 22](6) + [17, 24](6)

v = 98 : [2, 17](5) + [2, 39](6) + [2, 43] + [3, 18](6) + [3, 39](6) + [4, 22] + [4, 25](6)

+ [4, 32](5) + [5, 9](2) + [5, 40](4) + [5, 43](6) + [6, 9] + [6, 22](5) + [6, 26]
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+ [6, 37](5) + [7, 19] + [7, 28](6) + [7, 30](4) + [7, 40] + [8, 16](6)

+ [8, 26](6) + [9, 17] + [9, 22](6) + [9, 27] + [9, 28] + [10, 27](2)

+ [10, 31](4) + [10, 34](6) + [11, 30] + [11, 31] + [11, 38](6) + [11, 40](4)

+ [12, 15] + [12, 23](6) + [12, 30](5) + [13, 20](6) + [13, 27]

+ [13, 32](5) + [14, 26](2) + [14, 27] + [14, 31] + [14, 36](6)

+ [15, 15] + [15, 23](6) + [15, 30] + [15, 32] + [16, 17](6)

+ [18, 29](6) + [19, 27](6) + [20, 24](6) + [21, 25](6)

�

5. Concluding remarks

Hedayat et al. [5] first introduced CPDs (in terms of BSECs) and gave constructions of
CPD(9, 3, 1; 1), CPD(10, 3, 12; 1) and CPD(11, 3, 3; 1). See et al. [11] constructed CPDs
(in terms of PBIBDs) for CPD(v, 3, 1; 1)’s for v ∈ {9, 15, 21, 27, 33}, and CPD(v, 3, 2; 1)’s
for v ∈ {9, 12, 15}.

Colbourn and Ling [3] used PTS(v, λ) and gave a complete solution for CPD(v, 3, λ; 1)
with some λ for v ∈ {9, 11, 12, 13, 14, 15, 16, 17, 18,19, 20, 21, 22, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 37, 39, 42, 45, 51, 88}. Wei [16] used the Langford sequence to
show the existence of CPDs (in terms of CBSEs) with block size k = 3 and λ = 1, 2.
Zhang and Chang [17] gave the existence and construction of CPDs (in terms of BSAs)
for k = 3 and α = 1 for some v.

Mandal et al. [8] used symmetrically repeated differences and a linear programming
technique to construct CPDs with k = 3 and α = 1 for some v ∈ {16, 18, 19, 20, 2, 22,
23, 24, 25, 26, 27, 29, 32, 33, 35}.

It can be noted from the work of Colbourn and Ling [3], Zhang and Chang [17] and
Mandal et al. [8] that CPD(v, 3, λ; 1)’s are available only for some λ and limited v. In
this paper, CPD(v, 3, λ; 1)’s (in terms of BSECs) with λ = 1, 2, 3, 4, 6, 12 are constructed
to provide complete solution for treatments v ∈ {9, 10, . . . , 100} (see Table 1).

Table 1. Proposed CPD(v, 3, λ; 1)’s with λ = 1, 2, 3, 4, 6, 12 for
v ∈ {9, 10, . . . , 100}

λ v (CPDs using the method of cyclic shifts) Existence

1 {9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99} v ≡ 3%6

2 {12, 24, 36, 48, 60, 72, 84, 96} v ≡ 0%12

3 {13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97} v ≡ 1%6

3 {11,17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95} v ≡ 5%6

4 {18, 30, 42, 54, 66, 78, 90} v ≡ 6%12

6 {16, 28, 40, 52, 64, 76, 88, 100} v ≡ 4%12

6 {20, 32, 44, 56, 68, 80, 92} v ≡ 8%12

12 {10, 22, 34, 46, 58, 70, 82, 94} v ≡ 10%12

12 {14, 26, 38, 50, 62, 74, 86, 98} v ≡ 2%12
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