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Abstract

The classical F-test to compare several populations means depends on
the assumption of homogeneity of variances of the population and on
normality. When these assumptions - especially the equality of variance
- is dropped, the classical F-test fails to reject the null hypothesis even if
the data actually provide strong evidence for it. This can be considered
a serious problem in some applications especially when the sample sizes
are not large. To deal with this problem, a number of tests are avail-
able in the literature. Recently Pal, Lim and Ling (A computational

approach to statistical inferences, J. Appl. Probab. Stat. 2 (1), 13–35,
2007) developed a computational technique, called the Computational
Approach Test (CAT), which looks similar to a parametric bootstrap
for hypothesis testing. Chang and Pal (A revisit to the Behren-Fisher

Problem: Comparison of five test methods, Communications in Statis-
tics - Simulation and Computation 37 (6), 1064–1085, 2008) applied
CAT to test the equality of two population means when the variances
are unknown and arbitrary. In this study we apply a developed CAT
to test the equality of k population means when the variances are un-
equal. Also the Brown-Forsythe, Weerahandi’s Generalized F, Para-
metric Bootstrap and Welch tests are recalled and a simulation study
performed to compare these tests according to type one errors and pow-
ers in different combinations of parameters and various sample sizes.
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1. Introduction

In applied statistics an experimenter wants to compare two or more populations mea-
sured on independent samples. The classical F (CF ) test is used under the assumption
that the populations have normal distributions with the same variances. Bishop and
Dudewicz [1] showed that the CF test is not robust when the population variances are
unequal, especially if the sample sizes are not equal. Also Krutchkoff [8] and Lee and
Ahn [9] showed that the empirical type I errors are much greater than the nominal level
α, especially when sample sizes are negatively related with their population variances.

Alternative methods are developed due to this problem. For some of these test sta-
tistics the distribution is not known and the p-value can be found by simulation [13, 14].
Approximate methods are used quite often with the development of computer technol-
ogy. Also these tests have been applied to solve a number of problems when conventional
methods are difficult to apply or fail to provide exact solutions. In practice, some exact
procedures such as the CF, Welch (W ) and Brown-Forsythe (BF ) tests are widely used
[2, 15].

Tsui and Weerahandi [11] generalized the conventional definition of the p value so that
problems such as the Behrens-Fisher problem can be resolved. Weerahandi [12] defined
the notion of generalized p-value for comparing the means of k populations when the
variances are not equal. Krishnamoorthy et al. [7] proposed a Parametric Bootstrap test
(PB); Xu and Wang [16, 17] developed a generalized F-test based on the generalized
value p (XW ).

Recently Pal et al. [10] developed a computational technique, called the Computa-
tional Approach Test (CAT ) which looks similar to the parametric bootstrap for hypoth-
esis testing. Chang and Pal [3] applied CAT to test the equality of two population means
when the variances are unknown and arbitrary. Also Chang et al. [4] have demonstrated
that for homoscedastic one-way ANOVA the CAT is as powerful as the classical F test.

In this paper we apply CAT to test the equality of k population means when the
variances are unknown and arbitrary. In the following section, we describe the W, BF,
generalized F (GF ) due to Weerahandi [13], PB and CAT tests. Monte Carlo comparison
studies by Gamage and Weerahandi [5], Gerami and Zahiden [6] and Yiğit and Gökpınar
[18] showed that, out of these and other tests, only the W, GF and PB tests emerged
satisfactory provided the sample sizes are moderate or large. So we chose these tests for
the simulation study. These methods are compared according to type I errors and powers
in different combinations of parameters and various sample sizes.

2. Tests for one way ANOVA

Let Xi1, . . . , Xini
be a random sample from N(µi, σ

2
i ), i = 1, . . . , k. The problem of

interest involves testing

(1) H0 : µ1 = µ2 = . . . = µk against HA : Not all µis are equal , i = 1, . . . , k.

If the σ2
i ’s are unequal, then the testing procedure given in equation (1) defines the

standardized between–group sum of squares in equation (2) and the standardized error
sum of squares in equation (3).
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where S2
i is the unbiased estimator of σ2

i and X̄i is the estimator of µi. Most of the
test statistics to test the equality of means under heteroscedasticity are based on the
standardized between-group sum of squares and standardized error sum of squares. In
the rest of this section some test statistics are briefly introduced.

The Welch Test

If wi =
ni

S2
i

, Welch [15] gives the following test statistics [14]:
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where X̄ is the estimator of the overall mean. If H0 is true, then the distribution of W
is Fk−1,f , where

f =
1

3
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)2 .

For a given level α, and an observed value Wh of W , this test rejects the H0 in equation
(1) whenever the p-value is given as P (Fk−1,f > Wh) < α.

The Brown-Forsythe Test

Brown and Forsythe [2] give the following test statistics.
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If H0 is true, then the distribution of B is Fk−1,v, where
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For a given level α and an observed value Bh of B, this test rejects the H0 in equation
(1) whenever the p-value is given as P (Fk−1,v > Bh) < α.

The Weerahandi’s Generalized F test

The sample variances (MLEs) of the k populations are denoted by S2
i , where S2
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Therefore, the generalized p value can be expressed as

(5)

p = 1−E
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where Hk−1,n−k is the cumulative distribution function of the F -distribution with k − 1
and N − k degrees of freedom. This test rejects the H0 in equation (1) whenever p < α
[12].

The parametric boostrap test

The PB approach is defined as follows. In the case where the population variances σ2
i ’s

are unknown; a test statistic can be obtained by replacing σ2
i in equation (2) by S2

i and
is given by
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As the test statistic in equation (6) is location invariant, without loss of generality, we
can take the common mean to be zero [7].

Let X̄Bi ∼ Zi

(
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, where Zi is a standard normal random variable and S2
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H0 is rejected if P
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2
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; s2i
)

> s̃b
}

< α.

The test based on CAT

In this section, we give a test procedure based on CAT for one-way ANOVA when the
population variances are unequal. The main point in using the CAT approach in this
problem is to obtain the Restricted Maximum Likelihood (RML) estimators of the pa-
rameters. The RML estimators can be obtained as follows.

The RML method gives the ML estimator of µ and σ2
i based on the assumption that

H0 (µ1 = µ2 = · · · = µk = µ). The likelihood function of the sample (X11, . . . , Xknk
)

can be given as below.
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By differentiating Equation (7) with respect to µ and σ2
i , the following equations can be

obtained.
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where Dij = X̄i − X̄j and S2
i is the sample variance (MLEs) of the ith population.

To apply the developed CAT we first express H0 in terms of a suitable scalar η. Define
η as

η = η(µ1, . . . , µk) =

k
∑

i=1

ni (µi − µ̄)2 , µ̄ =

k
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k
∑
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It is seen that testing H0 against HA in equation (1) is equivalent to testing H∗
0 : η = 0

against H∗
A = η > 0. To test the hypothesis in equation (1) we use η as a test statistic.

If H0 is true then η = 0 otherwise η becomes larger than 0.

The test procedure is as follows:

1) The ML estimators of the parameter are µ̂i(ML) = X̄i., σ̂
2
i(ML) = S2

i . Also the test

statistic is η̂ML =
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As seen from these equations, the RML estimates of the µ and σ2
i parameters have no

closed forms. Therefore, the RML estimates of these parameters can be obtained using
iteration.

3) Generate X̄i M times such that

(8) X̄i. ∼ N
(

µ̂RML, σ̂i(RML)/ni

)

.

4) For each replication of X̄i, calculate η̂∗
ML =

∑k
i=1 ni

(

µ̂i(ML) − ˆ̄µML

)2
.

5) Calculate p =
#(η̂ML>η̂∗

ML)
M

; when p < α, H0 is rejected.

3. Simulation study

In this section we compare the CF, BF, W, GF, PB and CAT tests according to type I
errors and powers in different combinations of parameters and sample sizes. We consider
the balanced and unbalanced cases from smaller to larger sample sizes where k = 3 and
k = 5 for comparing the tests. The values for the variances vary over a large range so
that σ2

1 < . . . < σ2
k and σ2

1 > . . . > σ2
k.

For each combination of ni and σ2
i the rejection rate of each testing procedure is

calculated and compared with the nominal level 0.05 when the means are all equal. To
estimate the type I error rates of the CF, W and BF tests, we used simulation consisting
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of 5000 runs for each of the sample sizes and parameter configurations. The CF, W
and BF test statistics are calculated from these generated data and type I errors are
estimated by the proportion of test statistics that exceed the critical values calculated
from the distributions. To estimate the type I error rates of the GF, PB and CAT tests,
we use a two-step simulation. For estimating the type I error rates of the CAT test we
generate 5000 observed vectors in equation (8) and use 5000 runs for each observed vector
to estimate the p value.

Finally the type I error rates of the CAT test are estimated by the proportion of the
5000 p-values that are less than the nominal level α. The type I error rates of the PB
and GF tests are similarly estimated. In both cases of equal and unequal variances for
k = 3 and k = 5 simulated type I error rates are given in Tables 1 and 2 respectively.

We observed the following from the numerical results in Tables 1 and 2.

As seen from Table 1 the new test based on CAT has empirical type I error rates close
to 0.05 when k = 3. Also the BF, GF, PB, W tests are close to 0.05 in this situation.
But the W, PB and GF tests appear to be more powerful than the CAT test when k = 3
and the sample sizes are small ((n1, n2, n3) = (7, 9, 11)).

When the ni ’s and σ2
i ’s are in reverse order the CF test’s type I error rate is getting

far away from its nominal level. When the differences between the means of the groups
increase, the power of the new CAT test is superior to the other test for almost every
combination of sample sizes and population variances. When the group size is 5 and the
ni ’s and σ2

i ’s are in reverse order the type I error rate of CF is approximately around
0.10. This is not a acceptable level for a type I error. Also the type I error rate of GF
is greater than its nominal level, especially when the sample sizes are small. The type I
error of the new test based on CAT is smaller than its nominal level especially if the ni ’s
and σ2

i ’s are in reverse order. When we investigate the power of the tests we can easily
see that the new test is superior to the other tests.

4. Conclusion

In this simulation study for a range of choices of sample sizes and parameter configu-
rations we compared the performance of the above tests for testing the equality of means
of one-way ANOVA models under heteroscedasticity. The CF test is not an appropriate
test for heteroscedasticity because its type I error rates exceed the nominal level. The
type I errors of the new test based on CAT are close to the nominal level. The CAT test
appears to be more powerful than the other tests under almost every situation except
when k = 3 and the sample sizes are small ((n1, n2, n3) = (7, 9, 11)).
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Table 1. Simulated type I error rates and powers when k = 3 for α = 0.05

ni σi (µ1, µ2, µ3) CF BF GF PB W CAT

(0, 0, 0) 0.061 0.058 0.045 0.048 0.049 0.047

(0, 0.2, 0.4) 0.089 0.086 0.076 0.084 0.084 0.085

(0, 0.4, 0.8) 0.221 0.209 0.196 0.21 0.208 0.222

10, 10, 10 1, 1.25, 1.5 (0, 0.6, 1.2) 0.423 0.412 0.383 0.396 0.398 0.482

(0, 0.8, 1.6) 0.655 0.642 0.621 0.632 0.633 0.757

(0, 1, 2) 0.857 0.847 0.844 0.854 0.854 0.920

(0, 1.2, 2.4) 0.955 0.949 0.945 0.953 0.952 0.984

(0, 0, 0) 0.051 0.050 0.047 0.050 0.048 0.047

(0, 0.2, 0.4) 0.193 0.191 0.180 0.185 0.186 0.214

(0, 0.4, 0.8) 0.571 0.569 0.574 0.579 0.579 0.677

30, 30, 30 1, 1.25, 1.5 (0, 0.6, 1.2) 0.908 0.908 0.911 0.913 0.914 0.964

(0, 0.8, 1.6) 0.995 0.995 0.995 0.995 .0995 0.999

(0, 1, 2) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 1.2, 2.4) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 0, 0) 0.046 0.055 0.039 0.048 0.047 0.039

(0, 0.2, 0.4) 0.067 0.072 0.068 0.073 0.073 0.064

(0, 0.4, 0.8) 0.165 0.183 0.171 0.186 0.187 0.184

1, 1.25, 1.5 (0, 0.6, 1.2) 0.328 0.357 0.337 0.368 0.365 0.413

(0, 0.8, 1.6) 0.561 0.593 0.565 0.596 0.594 0.665

(0, 1, 2) 0.758 0.787 0.760 0.781 0.779 0.862

7, 9, 11 (0, 1.2, 2.4) 0.903 0.918 0.903 0.915 0.913 0.962

(0, 0, 0) 0.064 0.048 0.043 0.048 0.045 0.041

(0, 0.2, 0.4) 0.103 0.077 0.077 0.083 0.083 0.072

(0, 0.4, 0.8) 0.217 0.172 0.170 0.177 0.183 0.177

1.5, 1.25, 1 (0, 0.6, 1.2) 0.396 0.330 0.326 0.337 0.338 0.385

(0, 0.8, 1.6) 0.613 0.541 0.532 0.538 0.536 0.611

(0, 1, 2) 0.820 0.758 0.769 0.771 0.771 0.823

(0, 1.2, 2.4) 0.935 0.894 0.890 0.894 0.895 0.943

(0, 0, 0) 0.044 0.054 0.054 0.056 0.057 0.043

(0, 0.2, 0.4) 0.128 0.148 0.151 0.155 0.158 0.177

(0, 0.4, 0.8) 0.435 0.477 0.477 0.486 0.487 0.578

1, 1.25, 1.5 (0, 0.6, 1.2) 0.826 0.849 0.847 0.852 0.852 0.919

(0, 0.8, 1.6) 0.970 0.976 0.978 0.979 0.980 0.997

(0, 1, 2) 0.998 0.999 0.998 0.998 0.998 1.000

(0, 1.2, 2.4) 1.000 1.000 1.000 1.000 1.000 1.000

20, 25, 30 (0, 0, 0) 0.065 0.051 0.051 0.052 0.051 0.049

(0, 0.2, 0.4) 0.167 0.140 0.141 0.146 0.143 0.161

(0, 0.4, 0.8) 0.496 0.446 0.459 0.461 0.461 0.554

1.5, 1.25, 1 (0, 0.6, 1.2) 0.815 0.815 0.827 0.828 0.825 0.910

(0, 0.8, 1.6) 0.979 0.971 0.973 0.975 0.975 0.993

(0, 1, 2) 0.999 0.998 0.999 0.999 0.999 1.000

(0, 1.2, 2.4) 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2. Simulated type I error rates and powers when k = 5 for α = 0.05

ni σi (µ1, µ2, µ3, µ4, µ5) CF BF GF PB W CAT

(0, 0, 0, 0, 0) 0.055 0.049 0.054 0.049 0.049 0.038

(0, 0.2, 0.4, 0.6, 0.8) 0.135 0.124 0.147 0.123 0.131 0.154

(0, 0.4, 0.8, 1.2, 1.6) 0.461 0.440 0.525 0.482 0.493 0.624

10, 10, 10, 1, 1.25, 1.5, 1.75, 2 (0, 0.6, 1.2, 1.8, 2.4) 0.847 0.832 0.847 0.853 0.859 0.959

10, 10 (0, 0.8, 1.6, 2.4, 3.2) 0.984 0.982 0.988 0.983 0.985 0.999

(0, 1, 2, 3, 4) 0.999 0.999 1.000 0.999 0.998 1.000

(0, 1.2, 2.4, 3.6, 4.8) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 0, 0, 0, 0) 0.055 0.054 0.048 0.044 0.045 0.045

(0, 0.2, 0.4, 0.6, 0.8) 0.376 0.375 0.421 0.407 0.409 0.559

(0, 0.4, 0.8, 1.2, 1.6) 0.955 0.955 0.971 0.968 0.969 0.996

30, 30, 30, 1, 1.25, 1.5, 1.75, 2 (0, 0.6, 1.2, 1.8, 2.4) 1.000 1.000 1.000 1.000 1.000 1.000

30, 30 (0, 0.8, 1.6, 2.4, 3.2) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 1, 2, 3, 4) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 1.2, 2.4, 3.6, 4.8) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 0, 0, 0, 0) 0.042 0.062 0.065 0.053 0.063 0.045

(0, 0.2, 0.4, 0.6, 0.8) 0.099 0.142 0.156 0.141 0.145 0.177

(0, 0.4, 0.8, 1.2, 1.6) 0.415 0.504 0.537 0.512 0.519 0.659

1, 1.25, 1.5,1.75,2 (0, 0.6, 1.2, 1.8, 2.4) 0.815 0.870 0.908 0.886 0.889 0.968

(0, 0.8, 1.6, 2.4, 3.2) 0.982 0.991 0.994 0.994 0.994 0.998

(0, 1, 2, 3, 4) 1.000 1.000 1.000 0.999 0.999 0.999

7, 9, 11, (0, 1.2, 2.4, 3.6, 4.8) 1.000 1.000 1.000 1.000 1.000 1.000

13, 15 (0, 0, 0, 0, 0) 0.102 0.053 0.063 0.054 0.057 0.036

(0, 0.2, 0.4, 0.6, 0.8) 0.207 0.133 0.158 0.132 0.141 0.150

(0, 0.4, 0.8, 1.2, 1.6) 0.553 0.428 0.505 0.455 0.466 0.604

2, 1.75, 1.5, 1.25, 1 (0, 0.6, 1.2, 1.8, 2.4) 0.906 0.808 0.900 0.857 0.869 0.937

(0, 0.8, 1.6, 2.4, 3.2) 0.994 0.978 0.989 0.986 0.986 0.995

(0, 1, 2, 3, 4) 1.000 0.999 1.000 0.999 0.999 0.999

(0, 1.2, 2.4, 3.6, 4.8) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 0, 0, 0, 0) 0.037 0.047 0.053 0.048 0.050 0.048

(0, 0.2, 0.4, 0.6, 0.8) 0.273 0.325 0.362 0.352 0.353 0.460

(0, 0.4, 0.8, 1.2, 1.6) 0.872 0.898 0.932 0.927 0.927 0.988

1, 1.25, 1.5, 1.75, 2 (0, 0.6, 1.2, 1.8, 2.4) 0.999 0.999 1.000 1.000 1.000 1.000

(0, 0.8, 1.6, 2.4, 3.2) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 1, 2, 3, 4) 1.000 1.000 1.000 1.000 1.000 1.000

19, 22, 25, (0, 1.2, 2.4, 3.6, 4.8) 1.000 1.000 1.000 1.000 1.000 1.000

28, 30 (0, 0, 0, 0, 0) 0.078 0.056 0.058 0.052 0.052 0.044

(0, 0.2, 0.4, 0.6, 0.8) 0.356 0.306 0.335 0.326 0.326 0.435

(0, 0.4, 0.8, 1.2, 1.6) 0.923 0.891 0.932 0.924 0.925 0.985

2, 1.75, 1.5, 1.25, 1 (0, 0.6, 1.2, 1.8, 2.4) 0.999 0.998 1.000 0.999 1.000 1.000

(0, 0.8, 1.6, 2.4, 3.2) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 1, 2, 3, 4) 1.000 1.000 1.000 1.000 1.000 1.000

(0, 1.2, 2.4, 3.6, 4.8) 1.000 1.000 1.000 1.000 1.000 1.000
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