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Abstract

When fuzzy time series include a seasonal component, conventional
fuzzy time series models are not sufficient. For such fuzzy time se-
ries, lagged variables which are around the period of the time series
should also be included in the model. Determining the lagged vari-
ables which will be in the forecasting model is a vital issue. Also,
defining fuzzy relations is another important issue in the fuzzy time
series approach. When the number of fuzzy lagged variables is large,
using artificial neural networks to define fuzzy relations makes the op-
erations easier and increases the forecasting accuracy. In this study, in
order to deal with the problem of determining the lagged variables, and
defining the fuzzy relations, a novel seasonal fuzzy time series approach
based on SARIMA and the multiplicative neuron model is proposed.
In the proposed method, the SARIMA method is exploited to choose
the fuzzy lagged variables and multiplicative neuron model is employed
to establish the fuzzy relations. To show the applicability of the pro-
posed method, it is applied to the invoice sum accrued to health service
providers. For comparison, the data is also analyzed with other fuzzy
time series approaches in the literature. It is observed that the pro-
posed method has the best forecasting accuracy with respect to other
methods.
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1. Introduction

Fuzzy time series approaches have received more and more attention in recent years
[2]. Fuzzy time series approaches have been successfully applied to data such as stock
exchange, temperature and enrollment which include uncertainty. The fuzzy time series
approach was first proposed by Song and Chissom [8, 9, 10]. The first fuzzy time series
model did not have the ability to model a seasonal component. However, Song [7] was
the first to suggest a seasonal fuzzy time series method. Also, Egrioglu et al. [3] proposed
a seasonal fuzzy time series approach. In [3], the fuzzy lagged variables are determined
by using SARIMA. Furthermore, in the method introduced in [3], the residuals obtained
from SARIMA are also used in the modelling process. Therefore, this fuzzy time series
approach in [3] is the first moving average type method in the literature. In order to
avoid complicated and time consuming computations, feed forward neural networks can
be used to define the fuzzy relations Aladag et al. [1]. Hence, Egrioglu et al. [3] also
utilized feed forward neural networks in the determination of the fuzzy relations.

In this study, to overcome problems in determining the lagged variables, defining the
fuzzy relations and to increase forecasting accuracy, a novel seasonal fuzzy time series
method is proposed by improving the method suggested by Egrioglu et al. [3]. In the
proposed method, to choose the fuzzy lagged variables, SARIMA is employed like in [3].
To determine the fuzzy relations, the multiplicative neuron model, which was proposed
by Yadav et al. [11], is used in the proposed approach. In addition, the particle swarm
optimization method is utilized in the training process of the multiplicative neuron model.
In order to show the performance of the proposed approach, the invoice sum accrued to
health service providers is analyzed with the method. The data is also forecasted by
using other fuzzy time series methods. As a result of the application, it is seen that the
proposed method produces the most accurate forecasts.

In the next section, basic definitions of fuzzy time series are given. In Sections 3 and 4,
the modified particle swarm optimization technique, and the multiplicative neuron model
are briefly presented, respectively. Section 5 introduces the proposed seasonal fuzzy time
series approach. The implementation and results obtained are given in Section 6. Finally,
the last section concludes the paper.

2. Fuzzy time series

The definition of fuzzy time series was firstly introduced by Song and Chissom [8, 9,
10]. In contrast to conventional time series methods, various theoretical assumptions do
not need to be checked in the fuzzy time series approach. The most important advantage
of the fuzzy time series approach is to be able to work with a very small set of data and
not to require the linearity assumption. General definitions of fuzzy time series are given
as follows:

Let U be the universe of discourse, where U = {u1, u2, . . . , ub}. A fuzzy set Ai of U is
defined as Ai = fAi

(u1)/u1+fAi
(u2)/u2+ · · ·+fAi

(ub)/ub, where fAi
is the membership

function of the fuzzy set Ai; fAi
: U → [0, 1]. ua is a generic element of the fuzzy set Ai;

fAi
(ua) represents the degree of belongingness of ua to Ai; fAi

(ua) ∈ [0, 1] and 1 ≤ a ≤ b.

2.1. Definition. The definition of a fuzzy time series.
Let Y (t) (t = . . . , 0, 1, 2, . . .), a subset of the real numbers, be the universe of discourse

on which fuzzy sets fj(t) are defined. If F (t) is the collection f1(t), f2(t), . . . then F (t)
is called a fuzzy time series defined on Y (t).

2.2. Definition. The definition of fuzzy relationship.
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Assume that F (t) is caused by F (t− 1). Then the relationship can be expressed as

F (t) = F (t− 1) ◦ R(t, t− 1),

where R(t, t− 1) is the fuzzy relationship between F (t) and F (t− 1), and “◦” represents
the “max-min” composition of fuzzy sets. To sum up, let F (t− 1) = Ai and F (t) = Aj .
Then the fuzzy logical relationship between F (t) and F (t− 1) can be denoted by AiøAj ,
where Ai refers to the left-hand side and Aj refers to the right-hand side of the fuzzy
logical relationship. Furthermore, these fuzzy logical relationships can be grouped to
establish different fuzzy relationships.

The definition of the first order seasonal fuzzy time series forecasting model can be
given as follows, see Song [7]:

2.3. Definition. Let F (t) be a fuzzy time series. Assuming there exists seasonality in
{F (t)}, the first order seasonal fuzzy time series forecasting model is defined as

(1) F (t−m) → F (t),

where m denotes the period.

In Egrioglu et al. [3], a seasonal fuzzy time series forecasting model is defined by
taking the MA structure into consideration. The definition of this model is given as
follows:

2.4. Definition. Let F and G be two fuzzy time series. F (t) is caused by F (t −
m1), . . . , F (t−mk−1), F (t−mk), G(t− n1), G(t− n2), . . . , G(t− nl−1), G(t− nl), where
mi (i = 1, 2, . . . , k) and nj (j = 1, 2, . . . , l) are integers (1 ≤ m1 ≤ mk, 1 ≤ n1 ≤ nl).

Thus, the (k, l)th order partial bivariate fuzzy time series forecasting model is repre-
sented by

(2)
F (t−m1), . . . , F (t−mk−1), F (t−mk), G(t− n1),

G(t− n2), . . . , G(t− nl−1), G(t− nl) → F (t).

3. Modified particle swarm optimization

Particle swarm optimization, which is a population based heuristic algorithm, was
first proposed by Kennedy and Eberhart [4]. A distinguishing feature of this heuristic
algorithm is that it simultaneously examines different points in different regions of the
solution space to find the global optimum solution. Local optimum traps can be avoided
because of this feature. In the proposed approach, a modified particle swarm optimization
algorithm is exploited as a training algorithm for the multiplicative neuron model. This
algorithm includes a time varying inertia weight like in Ma et al. [5]. In a similar way,
this algorithm also has a time varying acceleration coefficient like in Shi and Eberhart
[6]. The modified particle swarm optimization algorithm can be given as follows:

3.1. Algorithm. Modified particle swarm optimization

Step 1. The position of the kth (k = 1, 2, . . . , pn) particle is randomly determined and
kept in a vector Xk given as follows:

Xk = {xk,1, xk,2, . . . , xk,d}, k = 1, 2, . . . , pn,

where xk,i (i = 1, 2, . . . , d) represents the ith position of the kth particle. pn and d
represent the number of particles in a swarm and the number of positions, respectively.

Step 2. Velocities are randomly determined and stored in a vector Vk as given below.

Vk = {vk,1, vk,2, . . . , vk,d}, k = 1, 2, . . . , pn.
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Step 3. Depending on the evaluation function, particles Pbest and Gbest shown in (3)
and (4), respectively, are determined.

Pbestk = (pk,1, pk,2, . . . , pk,d), k = 1, 2, . . . , pn,(3)

Gbest = (pg,1, pg,2, . . . , pg,d),(4)

where Pbestk is a vector storing the positions corresponding to the kth particle’s best
individual performance, and Gbest represents the particle which has the best evaluation
function value found so far.

Step 4. Let c1 and c2 represent the cognitive and social coefficients, respectively, and
let w be the inertia parameter. Let (c1i, c1f ), (c2i, c2f ), and (w1, w2) be intervals which
includes possible values for c1, c2 and w, respectively. At each iteration, these parameters
are calculated by using the formulas (5), (6) and (7).

c1 = (c1f − c1i)
t

max t
+ c1i,(5)

c2 = (c2f − c2i)
t

max t
+ c2i(6)

w = (w2 − w1)
maxt− t

maxt
+w1,(7)

where maxt and t represent he maximum iteration number and the current iteration num-
ber, respectively.

Step 5. Values of the velocities and positions are updated by using the formulas (8) and
(9), respectively.

vt+1

i,d =
[

w × vti,d + c1 × rand1 × (pi,d − xi,d) + c2 × rand2 × (pg,d − xi,d)
]

(8)

xt+1

i,d = xi,d + vt+1

i,d ,(9)

where rand1 and rand2 are random values from the interval [0 1].

Step 6. Steps 3 to 5 are repeated until a predetermined maximum iteration number
(maxt) is reached.

4. Multiplicative neuron model

The multiplicative neuron model is one type of artificial neural network. This neural
network model was introduced in Yadav et al. [11] and it was shown that the model
produces better forecasts. The multiplicative neuron model contains only one neuron.
The structure of the model with five inputs is illustrated in Figure 1. In the model shown
in Figure 1, the inputs are represented by xi (i = 1, . . . , 5).

While inputs are summed in a feed forward neural network model, inputs are multi-
plied in a multiplicative neuron model. In other words, instead of using the sum function,
the multiplication function is used in a multiplicative neuron model when input and out-
put values are computed.
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Figure 1. The multiplicative neuron model

 

The aggregation function consists of product of weighted inputs. f and y represent the
activation function and the output of the model, respectively. In the literature, different
learning algorithms have been utilized in the training process of a multiplicative neuron
model. In this study, a particle swarm optimization method is used for training.

5. The proposed method

In the literature, there have been various methods which include first order, high
order or multivariable models for forecasting fuzzy time series (Aladag et al. [2]). Since
these models ignore seasonality, they can be insufficient for seasonal time series. A
systematic approach was proposed by Egrioglu et al. [3] to forecast seasonal time series.
The multiplicative neuron model can produce better results than a feed forward neural
networks (Yadav et al. [11]). Therefore, in this study, the method suggested in Egrioglu
et al. [3] is improved by using a multiplicative neuron model instead of a feed forward
neural network. The proposed seasonal fuzzy time series forecasting approach is presented
below.

5.1. Algorithm. The proposed approach.

Step 1. By using the Box-Jenkins method, determine the SARIMA model.

The residuals are calculated from this SARIMA model and then the inputs are deter-
mined.

For example, assume that the SARIMA(1,1,1)(0,1,1)12 model is found by analyzing a
time series. Then, if f is considered as a linear function, the model can be symbolically
written as follows:

(10)
SARIMA(1, 1, 1)(0, 1, 1)12 :

Xt = f(Xt−1, Xt−2, Xt−12, Xt−13, Xt−14, at−1, at−12),

where the residuals of time series are denoted by at.

Step 2. Determine the order (k, l) of the model and the parameters m1, . . . ,mk and
n1, . . . , nl due to the inputs of the SARIMA model.

For example, for the model SARIMA(1,1,1)(0,1,1)12(Xt = f(Xt−1, Xt−2, Xt−12,
Xt−13, Xt−14, at−1, at−12)) the parameters, which also indicate the order, are k = 5 and
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l = 2. A (5,2)th order partial bivariate fuzzy time series forecasting model can be given
as follows:

F (t− 1), F (t− 2), F (t− 12), F (t− 13), F (t− 14),

G(t− 1), G(t− 12) → F (t),

where m1 = 1, m2 = 2,m3 = 12, m4 = 13,m5 = 14, n1 = 1, and n2 = 12. F (t) and G(t)
denotes the fuzzy set Xt and fuzzy set at, respectively.

Step 3. Define the universe of discourses and subintervals for the time series and resid-
uals.

The min and max values of the time series are denoted by Dmin and Dmax, respectively.
Then two positive numbers D1 and D2 can be chosen in order to define the universe of
discourse U = [Dmin −D1, Dmax +D2].

To express this step more clearly, a small example is given as follows:

Assuming that Dmin = 13055 and Dmax = 19377, the two positive numbers D1 = 55
and D2 = 663 can be chosen in order to divide the universe of discourse U evenly. Then,
U = [13000, 20000] is obtained. By choosing the length of the interval as 1000, subinter-
vals u1 = [13000, 14000], u2 = [14000, 15000], u3 = [15000, 16000], u4 = [16000, 17000],
u5 = [17000, 18000], u6 = [18000, 19000], u7 = [19000, 20000] are defined. In a similar
manner, the universe of discourse V and subintervals vj for the residuals are defined.

Step 4. Define fuzzy sets based on the universes of discourse.

Based on the defined universe of discourse U and the subintervals V , fuzzy sets
A1, A2, . . . , Ak1

and B1, B2, . . . , Bk2
are defined as given below for the time series and

residuals, respectively.

A1 = a11/u1 + a12/u2 + · · ·+ a1n1
/ur1 ,

A2 = a11/u1 + a12/u2 + · · ·+ a1n1
/ur1 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Ak1
= a11/u1 + a12/u2 + ...+ a1n1

/ur1 ,

B1 = b11/v1 + b12/v2 + · · ·+ b1n2
/vr2 ,

B2 = b11/v1 + b12/v2 + · · ·+ b1n2
/vr2 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Bk2
= b11/v1 + b12/v2 + · · ·+ b1n2

/vr2 ,

where aij is the degree of membership of ui and aij ∈ [0, 1], 1 ≤ i ≤ k1 and 1 ≤ j ≤ r1
are defined in the given interval. r1 and k1 are the number of subintervals and of fuzzy
sets, respectively. In a similar way, where bij gives the degrees of membership of vj ,
bij ∈ [0, 1], 1 ≤ i ≤ k2, and 1 ≤ j ≤ r2 are defined in the given interval. r2 and k2 are
the numbers of subintervals and of fuzzy sets, respectively.

Step 5. Fuzzify the actual data to fuzzy data.

The residuals obtained from the SARIMA model and time series are fuzzified. The
fuzzy time series is denoted by F (t), the fuzzy residuals from SARIMA by G(t).

Step 6. Establish the fuzzy relationship.

When establishing the fuzzy relationship the multiplicative neuron model can be em-
ployed. The data for training consists of the fuzzy time series lagged variables
F (t − m1), . . . , F (t − mk−1), F (t − mk) and the fuzzy residuals lagged variables G(t −
n1), . . . , G(t − nl−1), G(t − nl) which are taken as the inputs of the network. The fuzzy
time series F (t) is used for the output of the network. The multiplicative neuron model
is trained by modified particle swarm optimization in terms of these inputs and outputs.
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Step 7. Calculate the forecast.

Prepare the data for forecasting: F (t+ k −m1), . . . , F (t+ k −mk−1), F (t+ k −mk)
and G(t + k − n1), . . . , G(t + k − nl−1), G(t + k − nl) are taken as the inputs for the
trained multiplicative neuron model and the output from the model is the fuzzy forecast
for F (t+ k).

For example, for the model in (??), the inputs of the trained feed forward neural
network are F (t+k−1), F (t+k−2), F (t+k−12), F (t+k−13), F (t+k−14), G(t+k−1)
and G(t+ k − 12). Then, the forecast is F (t+ k).

Step 8. Defuzzify each fuzzy forecast F (t+ k).

We applied the “Centroid” method to get the results. This procedure (also called center
of area, center of gravity) is the most often adopted method of defuzzification. Suppose
that the fuzzy forecast of F (t+ k) is Ak. The defuzzified forecast is equal to the midpoint
of the interval which corresponds to Ak.

6. The implementation

The proposed seasonal fuzzy time series forecasting approach is applied to the invoice
amount accrued to health service providers. Observations of this time series contains
monthly observations are between January, 2008 and May, 2011. The graph of the time
series can be seen in Fig. 2. The vertical and horizontal axes represent the invoice
amount and observation number, respectively. The time series also analyzed with other
fuzzy time series methods available in the literature for the aim of comparison. In all
computations, Matlab version 2011 is utilized. Observations between January, 2008 and
December, 2010 and between January, 2011 and May, 2011 are used for the training and
test sets, respectively. In other words, the training and test sets consist of 36 and 5
observations, respectively.

Figure 2. The invoice sum accrued to health service providers
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In the analysis, SARIMA and Winters additive seasonal exponential smoothing methods
which are conventional time series approaches are used. Also, the method proposed by
Egrioglu et al. [3], which is a fuzzy time series approach, is exploited. When SARIMA is
used, it is found that SARIMA(0,1,0)(0,1,0) is the best model. Thus, F (t−1), F (t−12),
and F (t − 13) are taken as the fuzzy lagged variables in the proposed method. The
forecasting model used in the proposed method can be obtained by taking k = 3, m1 = 1,
m2 = 2, m3 = 12, and l = 0 in (2).

In the fuzzification stage, the length of the interval is taken as 80 for both the method
proposed in Egrioglu et al. [3] and that proposed in this study. In the phase of defining
the fuzzy relations, the optimum weights of the multiplicative neuron model obtained by
using modified particle swarm optimization are presented in Table 1. When feed forward
neural networks are employed to determine the fuzzy relations in the method proposed
by Egrioglu et al. [3], the inputs of the network are taken as F (t − 1), F (t − 12), and
F (t − 13) due to the SARIMA(0,1,0)(0,1,0) model, and the number of neurons in the
hidden layer is picked as 3.

All forecasts obtained from the methods and corresponding root mean square error
values (RMSE) are presented in Table 2. RMSE can be calculated by using the formula
given below.

RMSE =

√

∑n

t=1
(forecastt − actualt)

2

n
,

where t represents the time and n is the number of observations in the test sets. forecastt
is the forecast at t from any mentioned model and actualt is the actual value at t.

Table 1. Optimal weights of the multiplicative neuron model

W b

2.56026808 -0.19308419

2.32612553 -0.60713836

-2.52094883 3.52470690

Table 2. The Results Obtained for the Test Set

Test Data SARIMA Winters Additive Model Egrioglu et al. [3] Proposed Method

1811,26 1821,44 1691,87 1708,65 1708,65

1790,43 1881,68 1701,79 1868,65 1788,65

1874,52 2059,22 1861,73 1868,65 1788,65

1785,58 2012,33 1837,67 1868,65 1788,65

1857,00 2019,85 1844,62 1868,65 1788,65

RMSE 155,23 70,90 68,87 67,21

7. Conclusion and discussion

The method proposed by Egrioglu et al. [3] is an effective method to forecast seasonal
fuzzy time series. It was the first model that takes a moving average structure into
consideration. In the model suggested in Egrioglu et al. [3], feed forward neural networks
are exploited in the determination of the fuzzy relations.
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By improving the method proposed by Egrioglu et al. [3], a new seasonal fuzzy time
series forecasting method is proposed in this study in order to reach a high forecasting
accuracy level. In the proposed approach, a multiplicative neuron model is utilized to
define the fuzzy relations instead of a feed forward neural network. In addition, to train
the multiplicative neuron model, a modified particle swarm optimization is employed.

To evaluate the forecasting performance of the proposed approach, the invoice sum
accrued to health service providers is forecasted with both the proposed method and the
other methods available in the literature. As a result of the implementation, it is seen
that the most accurate forecasts are obtained when the proposed approach is used.
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