
Hacettepe Journal of Mathematics and Statistics
Volume 41 (3) (2012), 387 – 395

A PREY PREDATOR MODEL

WITH FUZZY INITIAL VALUES
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Abstract

In this paper we consider a prey-predator model with fuzzy initial val-
ues. We use the concept of generalized differentiability and obtain
graphical solutions for the problem under consideration.
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1. Introduction

Differential equations are indispensable for modeling real world phenomena. Unfortu-
nately every time uncertainty can intervene with real world problems. The uncertainty
can arise from deficient data, measurement errors or when determining initial conditions.
Fuzzy set theory is a powerful tool to overcome these problems. Initially, the derivative
for fuzzy valued mappings was developed by Puri and Ralescu [8], and generalized and
extended the concept of Hukuhara differentiability for set-valued mappings to the class
of fuzzy mappings. Subsequently, using the Hukuhara derivative, Kaleva [5] started to
develop a theory for FDE. But it soon appeared that the Hukuhara derivative has a
shortcoming which fuzzifies the the solution as time goes on. To overcome this situation
in [1, 2] the concept of strongly generalized derivative was introduced and in [6] this
concept studied for higher order fuzzy differential equations. This concept allows us to
overcome the above mentioned shortcoming.

We first recall some basic concepts used in the present paper.

A fuzzy set A in a universe set X is a mapping A(x) : X → [0, 1]. We think of A as
assigning to each element x ∈ X a degree of membership, 0 ≤ A(x) ≤ 1. Let us denote
by F the class of fuzzy subsets of the real axis, A(x) : X → [0, 1] satisfying the following
properties:
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i) A is a convex fuzzy set, i.e. A(rλ+ (1− λ)s) ≥ min [A(r),A(s)] , λ ∈ [0, 1] and
r, s ∈ X

ii) A is normal, i.e. ∃x0 ∈ X with A(x0) = 1;
iii) A is upper semicontinuous, i.e. A(x0) ≥ lim

x→x
±
o

A(x);

iv) [A]0 = sup p(A) = {x ∈ R | A(x) ≥ 0} is compact, where A denotes the closure
of A.

Then F is called the space of fuzzy numbers.

If A is a fuzzy set, we define [A]α = {x ∈ X | µA(x) ≥ α}, the α-level (cut) of A, with
0 < α ≤ 1. For u, v ∈ F and λ ∈ R the sum u ⊕ v and the product λ ⊙ u are defined
by [u⊕ v]α = [u]α + [v]α , λ ⊙ u = λ [u]α ∀α ∈ [0, 1]. Additionally, u ⊕ v = v ⊕ u,
λ⊙ u = u⊙ λ. Also if u ∈ F the α-cut of u, denoted by [u]α = [uα, ua] ,∀α ∈ [0, 1].

Let D : F × F →R+ ∪ {0}, D(u, v) = supα∈[0,1] max {|uα − vα| , |ua − va|} be the

Hausdorff distance between fuzzy numbers, where [u]α = [uα, ua] and [v]α = [vα, va]. The
following properties are well-known [4, 9].

D(u⊕ w, v ⊕ w) = D(u, v), ∀ u, v, w ∈ F,

D(k ⊙ u, k ⊙ v) = |k|D(u, v), ∀ k ∈ R, u, v ∈ F,

D(u⊕ v, w ⊕ e) ≤ D(u, w) +D(v, e), ∀ u, v, w, e ∈ F,

and (F,D) is a complete metric space.

2. The fuzzy derivative

2.1. Definition. (H-Difference) Let be u, v ∈ F. If there exists w ∈ F such that
u = v ⊕ w, then w is called the H-difference of u and v and is denoted by u⊖ v.

2.2. Definition. (Hukuhara Derivative)[8] Consider a fuzzy mapping F : (a, b) → F

and t0 ∈ (a, b). We say that F is differentiable at t0 ∈ (a, b) if there exists an element
F ′(t0) ∈ F such that for all h > 0 sufficiently small ∃F (t0+h)⊖F (t0), F (t0)⊖F (t0−h)
and the limits (in the metric D)

lim
h→0+

F (t0 + h)⊖ F (t0)

h
= lim

h→0−

F (t0)⊖ F (t0 − h)

h

exist and are equal to F ′(t0).

Note that this definition of the derivative is very restrictive; for instance in [1,2] the
authors showed that if F (t) = c.g(t) where c is a fuzzy number and g : [a, b] → R+ is a
function with g′(t) < 0, then F is not differentiable. To avoid this difficulty, the authors
of [1, 2] introduce a more general definition of the derivative for fuzzy mappings.

2.3. Definition. (Generalized Fuzzy Derivative)[1, 2] Let F : (a, b) → F and t0 ∈ (a, b).
We say that F is strongly generalized differentiable at t0 if there exists an element F ′(t0) ∈
F such that

i. for h > 0 sufficiently small ∃F (t0+h)⊖F (t0), F (t0)⊖F (t0−h), and the limits
satisfy

lim
h→0

F (t0 + h)⊖ F (t0)

h
= lim

h→0

F (t0)⊖ F (t0 − h)

h
= F

′(t0),

or
ii. for h > 0 sufficiently small ∃F (t0)⊖F (t0 + h), F (t0 − h)⊖F (t0) and the limits

satisfy

lim
h→0

F (t0)⊖ F (t0 + h)

(−h)
= lim

h→0

F (t0 − h) ⊖ F (t0)

(−h)
= F

′(t0),

or
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iii. for h > 0 sufficiently small ∃F (t0+h)⊖F (t0), F (t0−h)⊖F (t0), and the limits
satisfy

lim
h→0

F (t0 + h)⊖ F (t0)

h
= lim

h→0

F (t0 − h) ⊖ F (t0)

(−h)
= F

′(t0),

or
iv. for h > 0 sufficiently small ∃F (t0)⊖F (t0 + h), F (t0)⊖F (t0 − h) and the limits

satisfy

lim
h→0

F (t0)⊖ F (t0 + h)

(−h)
= lim

h→0

F (t0)⊖ F (t0 − h)

h
= F

′(t0).

In [3], a definition equivalent to Definition 2.3. is given. We will use this in our work.

2.4. Definition. Let F : (a, b) → F and t0 ∈ (a, b).

(1) for h > 0 sufficiently small ∃F (t0 + h)⊖ F (t0), F (t0)⊖ F (t0 − h) and

lim
h→0+

F (t0 + h)⊖ F (t0)

h
= lim

h→0+

F (t0)⊖ F (t0 − h)

h
= F

′(t0)

or
(2) for h > 0 sufficiently small ∃F (t0 + h)⊖ F (t0), F (t0)⊖ F (t0 − h) and

lim
h→0−

F (t0 + h) ⊖ F (t0)

h
= lim

h→0−

F (t0)⊖ F (t0 − h)

h
= F

′(t0).

2.5. Theorem. [3, 5] Let F : T → F be a function and set [F (t)]α = [fα(t), gα(t)] for
each α ∈ [0, 1]. Then

1. If F is differentiable in the first form (1), then fα(t) and gα(t) are differentiable
functions and [F ′(t)]

α
= [f ′

α(t), g
′

α(t)].
2. If F is differentiable in the second form (2), then fα(t) and gα(t) are differen-

tiable functions and [F ′(t)]
α
= [g′α(t), f

′

α(t)]. �

This theorem is fundamental in solving fuzzy differential equations.

3. Solving fuzzy differential equations with fuzzy initial values

Consider the equation

(3.1) x
′(t) = F (t, x(t)), x(0) = x0,

where F : [0, α] × F → F and x0 is a fuzzy number, [x(t)]α = [uα(t), vα(t)] , [x0]
α =[

u0
α, v

0
α

]
and [F (t, x(t))]α = [fα(t, uα(t), vα(t)), gα(t, uα(t), vα(t))].

Then, we have the following alternatives for solving the initial value problem (3.1):

1- If we consider x′(t) by using the derivative in the first form (1), then from
Theorem 2.5 [x′(t)]

α
= [u′

α(t), v
′

α(t)]. So we get the following equalities:

u
′

α(t) = fα(t, uα(t), vα(t)), uα(0) = u
0
α,

v
′

α(t) = gα(t, uα(t), vα(t)), vα(0) = v
0
α.

By solving the above system for uα and vα, we get the fuzzy solution [x(t)]α =
[uα(t), vα(t)]. Finally we ensure that [x(t)]α = [uα(t), vα(t)] and [x′(t)]

α
=

[u′

α(t), v
′

α(t)] are valid level sets.
2- If we consider x′(t) by using the derivative in the second form (2), then from

Theorem 2.5 [x′(t)]
α
= [u′

α(t), v
′

α(t)]. So we get the following:

u
′

α(t) = gα(t, uα(t), vα(t)), uα(0) = u
0
α,

v
′

α(t) = fα(t, uα(t), vα(t)), vα(0) = v
0
α.
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Solving the above system for uα and vα, we get the fuzzy solution [x(t)]α =
[uα(t), vα(t)]. Finally we ensure that [x(t)]α = [uα(t), vα(t)] and [x′(t)]

α
=

[u′

α(t), v
′

α(t)] are valid level sets.

Now we consider the following prey-predator model with fuzzy initial values. Before
giving a solution of the fuzzy problem we give a crisp solution.

(3.2)

dx

dt
= 0.1x − 0.005xy,

dy

dt
= −0.4y + 0.008xy,

x(0) = 130 ∈ F, y(0) = 40 ∈ F,

where x(t) and y(t) are the number of preys and predators at time t, respectively. Crisp
solutions for the problem (3.2) are given in Figure 1.

Figure 1. Crisp solution for Problem (3.2)
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Let the initial values be fuzzy, e.g. x(0) = 1̃30, y(0) = 4̃0 and let their α-level sets be as
follows.

x(0) =
[
1̃30

]α
= [100 + 30α, 160 − 30α] ,

y(0) =
[
4̃0

]
= [20 + 20α, 60− 20α] .

Let the α-level sets of x(t, α) be [x(t, α)]α = [u(t, α), v(t, α)], and for simplicity denote
them as [u, v], similarly [y(t, α)]α = [r(t, α), s(t, α)] = [r, s].

According to Definition 2.4, x(t, α) may be differentiable in the first form (1) or in
the second form (2), similarly y(t, α) may be differentiable in the first form (1) or in the
second form (2). So we have four different initial value problems. We give two of them
explicitly, the other cases can be obtained similarly. But we give graphical solutions of
all cases.

If x(t, α) and y(t, α) are (1) differentiable according to Definition 2.4, Problem 3.2
becomes

[u, v] = 0.1 [u, v]− 0.005 [u, v] . [r, s] ,

[r, s] = −0.4 [r, s] + 0.008 [u, v] [r, s] .

Hence for α = 0 the following initial value problem derives from 3.2:

u
′ = 0.1u− 0.005vs,

v
′ = 0.1v − 0.005ur,

r
′ = 0.008ur − 0.4s,

s
′ = 0.008vs − 0.4r,

u(0) = 100, v(0) = 160, r(0) = 20, s(0) = 60.

Now if x(t, α) and y(t, α) are (2) differentiable according to Definition 2.4, Problem 3.2
becomes

v
′ = 0.1u− 0.005vs,

u
′ = 0.1v − 0.005ur,

s
′ = 0.008ur − 0.4s,

r
′ = 0.008vs − 0.4r,

u(0) = 100, v(0) = 160, r(0) = 20, s(0) = 60.

for α = 0 the graphical solutions of all cases are given in Figure 2.
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Figure 2. Fuzzy solutions of Problem (3.2) for α = 0
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In Figure 2, (1,1) means that x(t, α) and y(t, α) are (1) differentiable according to Def-
inition 2.4, (2,1) means x(t, α) is (2) differentiable and y(t, α) is (1) differentiable, and
so on. Now if we analyze Figure 2. we observe that when x(t, α) and y(t, α) are (2)
differentiable the graphical solution is biologically meaningful, furthermore the graphical
solution is coherent with the crisp solution. On the contrary, when x(t, α) and y(t, α) are
differentiable as (1,1), (1,2), (2,1) the graphical solutions are incompatible with biological
facts.

So we focus on the situation when x(t, α) and y(t, α) are (2) differentiable. We give
the crisp graphical solution and fuzzy graphical solution when x(t, α) and y(t, α) are (2)
differentiable on the same graph for α = 0 and α ∈ [0, 1]. The crisp solution and fuzzy
solution for α = 0 are given in Figure 3.
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Figure 3. Crisp solution and fuzzy solution for α = 0
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Figure 4. x(t) for α ∈ [0, 1]
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Figure 5. y(t) for α ∈ [0, 1]
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3.1. Remark. In Figures 4 and 5, if we set α = 0 we see the crisp solution confined by
the left and right branches of the dependent variables x(t), y(t). For example in Figure
4, x(t) is confined by u and v for α = 0. Additionally, if we set α = 1 the projection of
the peaks of the triangles coincides with the crisp solution.

4. Conclusions

When vagueness occurs in problems which are analyzed, fuzzy differential equations
arise naturally. Expressing vagueness with fuzzy sets is a more realistic approach than
the classical one, so using fuzzy differential equations is unavoidable.

As we know from fuzzy theory if we have the α-cut [u]α = [uα, ua] of a fuzzy number,
then the inequality uα ≤ ua must be satisfied. But we can observe from the graphs
of the solution curves this rule does not always hold. We propose two alternatives for
this shortcoming. The first is using crisp solutions instead of fuzzy solutions in intervals
where the rule does not hold, and for the second we can take u∗α = min (uα, ua) and
ua = max (uα, ua). Then [u∗]α =

[
u∗α, u∗a

]
is the α-cut of the new situations.

As we see in this work, the uniqueness of the solution of a fuzzy initial value problem
is lost when we use the strongly generalized derivative concept. This situation is looked
on as a disadvantage, but actually it is not [2, 7] because researchers can choose the
best solution which better reflects the behavior of the system under consideration, from
multiple solutions. Here a question may arise. Which solution is the best? The answer
for this may come after a precise analysis of the physical properties of the system which
is under study.
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