\bigwedge Hacettepe Journal of Mathematics and Statistics Volume 41 (2) (2012), 157–168

ON DERIVATIONS OF SUBTRACTION ALGEBRAS

Yong Ho Yon^{*} and Kyung Ho Kim^{†‡}

Received 28:01:2010 : Accepted 14:10:2011

Abstract

The aim of this paper is to introduce the notion of derivations of subtraction algebras. We define a derivation of a subtraction algebra Xas a function d on X satisfying $d(x - y) = (d(x) - y) \land (x - d(y))$ for all $x, y \in X$. Then it is characterized as a function d satisfying d(x - y) = d(x) - y for all $x, y \in X$. Also we define a simple derivation as a function d_a on X satisfying $d_a(x) = x - a$ for all $x \in X$. Then every simple derivation is a derivation and every derivation can be partially a simple derivation on intervals. For any derivation d of a subtraction algebra X, Ker(d) and Im(d) are ideals of X, and $X/\text{Ker}(d) \cong \text{Im}(d)$ and $X/\text{Im}(d) \cong \text{Ker}(d)$. Finally, we show that every subtraction algebra Xis embedded in Im(d) × Ker(d) for any derivation d of X.

Keywords: Subtraction algebra, Derivation, Simple derivation, Non-expansive map, Dual closure operator, Boolean algebra.

2000 AMS Classification: 03 G 25, 06 A 12, 06 B 99.

1. Introduction

B. M. Schein [2] considered systems of the form $(\Phi; \circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence $(\Phi; \circ)$ is a function semigroup) and set theoretic subtraction " \backslash " (and hence $(\Phi; \backslash)$ is a subtraction algebra in the sense of [1]. He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [4] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called atomic subtraction algebras. The notion of derivation of lattices was introduced and studied in [3].

^{*}Innovation Center for Engineering Education, Mokwon University, Daejeon, 302-729, Korea. E-mail: yhyon@mokwon.ac.kr

[†]Department of Mathematics, Chungju National University, Chungju, 380-702, Korea. E-mail: ghkim@cjnu.ac.kr

[‡]Corresponding Author.

In this paper, we define a derivation of a subtraction algebra and introduce the notion of derivations. In Section 2, we introduce some basic results of subtraction algebras. In Section 3, we define a derivation as a function d on X satisfying $d(x-y) = (d(x)-y) \wedge (x-y)$ d(y) for all $x, y \in X$, and characterize it as a function d satisfying d(x-y) = d(x) - yfor all $x, y \in X$. Also we define a simple derivation as a function d_a on X satisfying $d_a(x) = x - a$ for all $x \in X$, and we show that every simple derivation is a derivation and conversely, every derivation is partially a simple derivation on intervals. In Section 4 we show that for any derivation d of a subtraction algebra X, $\operatorname{Ker}(d)$ and $\operatorname{Im}(d)$ are ideals of X and X/Ker(d) \cong Im(d) and X/Im(d) \cong Ker(d). Also the map $\mu: x \mapsto x - d(x)$ is a derivation of X, hence the sequence of derivations and subtraction algebras :

$$0 \longrightarrow \operatorname{Im}(d) \xrightarrow{i} X \xrightarrow{\mu} \operatorname{Ker}(d) \longrightarrow 0$$

is similar to a split exact sequence. Finally, we show that every subtraction algebra X is embedded in $\operatorname{Im}(d) \times \operatorname{Ker}(d)$ for any derivation d of X.

2. Subtraction algebras

We first recall some basic concepts which are used to present the paper.

By a subtraction algebra we mean an algebra (X; -) with a single binary operation "—" that satisfies the following identities: for any $x, y, z \in X$,

(S1)
$$x - (y - x) = x$$

- $\begin{array}{l} (S1) & x & (y & x) = x, \\ (S2) & x (x y) = y (y x); \\ (S3) & (x y) z = (x z) y. \end{array}$

The last identity permits us to omit parentheses in expressions of the form (x - y) - z. The subtraction determines an order relation on X: $a \leq b \Leftrightarrow a - b = 0$, where 0 = a - ais an element that does not depend on the choice of $a \in X$. The ordered set $(X; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval [0, a] is a Boolean algebra with respect to the induced order. Here $a \wedge b = a - (a - b)$; the complement of an element $b \in [0, a]$ is a - b; and if $b, c \in [0, a]$, then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c))$$

= a - ((a - b) - ((a - b) - (a - c))).

In a subtraction algebra, the following are true:

(p1) (x - y) - y = x - y. (p2) x - 0 = x and 0 - x = 0. $(p3) \ x - y \le x.$ $(p4) \ x - (x - y) \le y.$ (p5) (x-y) - (y-x) = x - y. (p6) x - (x - (x - y)) = x - y. (p7) $(x-y) - (z-y) \le x - z$. (p8) $x \leq y$ if and only if x = y - w for some $w \in X$. (p9) $x \leq y$ implies $x - z \leq y - z$ and $z - y \leq z - x$ for all $z \in X$. (p10) $x, y \le z$ implies $x - y = x \land (z - y)$. (p11) $(x \wedge y) - (x \wedge z) \leq x \wedge (y - z).$ (p12) (x-y) - z = (x-z) - (y-z).

Let X and Y be subtraction algebras. A mapping f from X to Y is called a homomorphism if f(x-y) = f(x) - f(y) for all $x, y \in X$. Especially, f is monomorphism (resp. epimorphism) if f is one-to-one (resp. onto) homomorphism, and f is an isomorphism if

f is a monomorphism and epimorphism. In this case, we say X is isomorphic to Y, and denote this by $X \cong Y$.

A function f of a semilattice (\land -semilattice) X into itself is a *dual closure* if f is monotone, non-expansive (i.e., $f(x) \leq x$ for all $x \in X$) and idempotent (i.e., $f \circ f = f$),

3. Derivations and simple derivations

3.1. Definition. Let X be a subtraction algebra. By a *derivation* of X we mean a self-map d of X satisfying the identity $d(x - y) = (d(x) - y) \land (x - d(y))$ for all $x, y \in X$. **3.2. Example.** (1) Let $X = \{0, a, b, 1\}$ in which "-" is defined by

_	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	b	a	0

It is easy to check that (X; -) is a subtraction algebra. Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 0 & \text{if } x = 0, \ a, \\ b & \text{if } x = b, \ 1. \end{cases}$$

Then d is a derivation of the subtraction algebra X.

Figure 1. The Hasse diagram of Example 3.2(1)

(2) Let $X = \{0, a, b\}$ be a subtraction algebra with the following Cayley table

_	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 0 & \text{if } x = 0, \ b, \\ b & \text{if } x = a. \end{cases}$$

Then it is easily checked that d is a derivation of subtraction algebra X.

3.3. Example. Let X be a subtraction algebra. We define a function d by d(x) = 0 for all $x \in X$. Then d is a derivation on X, which is called the *zero derivation*.

3.4. Example. Let d be the identity function on a subtraction algebra X. Then d is a derivation on X, which is called the *identity derivation*.

3.5. Proposition. Let d be a derivation of a subtraction algebra X. Then d(0) = 0.

Proof. Let d be a derivation of a subtraction algebra of X. Then

$$d(0) = d(0 - x) = (d(0) - x) \land (0 - d(x)) = (d(0) - x) \land 0 = 0.$$

3.6. Proposition. Let d be a derivation of a subtraction algebra X. Then d(x-d(x)) = 0 for every $x \in X$.

Proof. Let d be a derivation of a subtraction algebra of X and let $x \in X$. Then

$$-d(x)) = (d(x) - d(x)) \land (x - d(d(x))) = 0 \land (x - d(d(x))) = 0.$$

 \square

3.7. Proposition. Let d be a derivation of a subtraction algebra X. Then we have $d(x) = d(x) \wedge x$.

Proof. Let d be a derivation of X. Then

d(x

$$d(x) = d(x - 0) = (d(x) - 0) \land (x - d(0)) = d(x) \land (x - 0) = d(x) \land x.$$

3.8. Corollary. Let d be a derivation of subtraction algebra X. Then we have $d(x) \leq x$. That is, d is a non-expansive map.

3.9. Theorem. Let d be a derivation of a subtraction algebra X. If $x \leq y$ for $x, y \in X$, then $d(x) \leq d(y)$.

Proof. Let $x \leq y$ for $x, y \in X$. Then by (p8), x = y - w for some $w \in X$. Hence we have $d(x) = d(y - w) = (d(y) - w) \land (y - d(w)) \leq d(y) - w \leq d(y)$.

3.10. Theorem. Let d be a derivation of a subtraction algebra X. Then we have $d^2 = d \circ d = d$.

Proof. Let d be a derivation of X. Then by definition of the derivation d and Proposition 3.6, we have

$$d^{2}(x) = d(d(x)) = d(x \wedge d(x))$$

= $d(x - (x - d(x)))$
= $(d(x) - (x - d(x))) \wedge (x - d(x - d(x)))$
= $d(x) \wedge (x - 0)$
= $d(x) \wedge x$
= $d(x)$

3.11. Corollary. Let d be a derivation of a subtraction algebra X. Then d is a dual closure operator on X.

Proof. Clear from Corollary 3.8 and Theorems 3.9 and 3.10.

3.12. Proposition. Let f is a non-expansive map on a subtraction algebra X, i.e., $f(x) \leq x$ for all $x \in X$. Then $f(x) - y \leq x - f(y)$ for all $x, y \in X$.

Proof. Suppose that f is a non-expansive map on X and $x, y \in X$. Then $f(x) \leq x$ and $f(y) \leq y$. Hence $f(x) - y \leq x - y$ and $x - y \leq x - f(y)$ by (p9). It follows that $f(x) - y \leq x - f(y)$.

3.13. Theorem. Let d be a map on a subtraction algebra X. Then the following are equivalent :

(1) d is a derivation of X;
(2) d(x − y) = d(x) − y for all x, y ∈ X.

Proof. Suppose that d is a derivation of X. Then d is non-expansive by Corollary 3.8. Hence for any $x, y \in X$, $d(x) - y \leq x - d(y)$ by Proposition 3.12, and

$$d(x - y) = (d(x) - y) \land (x - d(y)) = d(x) - y.$$

Suppose that d is a map satisfying d(x - y) = d(x) - y for all $x, y \in X$. Then d(0) = d(0 - d(0)) = d(0) - d(0) = 0, hence we have

$$0 = d(0) = d(x - x) = d(x) - x$$

for any $x \in X$. It follows that $d(x) \leq x$ for any $x \in X$. That is, d is non-expansive. Hence by Proposition 3.12, $d(x) - y \leq x - d(y)$ and

$$d(x - y) = d(x) - y = (d(x) - y) \land (x - d(y))$$

for any $x, y \in X$.

3.14. Theorem. Let X be a subtraction algebra. The every derivation of X is an homomorphism.

Proof. Suppose that d is a derivation of X and $x, y \in X$. Then $d(y) \leq y$. It implies

$$d(x-y) = d(x) - y \le d(x) - d(y)$$

by (p9). Also we have

$$\begin{aligned} (d(x) - d(y)) - (d(x) - y) \\ &= (dd(x) - d(y)) - (d(x) - y) \quad \text{(by Theorem 3.10)} \\ &= (dd(x) - (d(x) - y)) - d(y) \quad \text{(by (S3))} \\ &= d(d(x) - (d(x) - y)) - d(y) \quad \text{(by Theorem 3.13)} \\ &= d(y - (y - d(x))) - d(y) \quad \text{(by (S2))} \\ &\leq d(y) - d(y) \quad \text{(by (p3), Theorem 3.9 and (p9))} \\ &= 0 \end{aligned}$$

It follows that (d(x) - d(y)) - (d(x) - y) = 0 and $d(x) - d(y) \le d(x) - y = d(x - y)$. Hence d(x) - d(y) = d(x - y).

The converse of Theorem 3.14 is not true in general.

3.15. Example. Let $X = \{0, a, b, 1\}$ be the subtraction algebra of Example 3.2(1). Define a map $f: X \to X$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \ a, \\ 1 & \text{if } x = b, \ 1. \end{cases}$$

Then f is a endomorphism of X which is not a derivation because of $f(b-a) = f(b) = 1 \neq b = 1 - a = f(b) - a$.

Let X be a subtraction algebra. Then, for each $a \in X$, we will define a map $d_a : X \to X$ by

 $d_a(x) = x - a$

for all $x \in X$.

3.16. Proposition. Let X be a subtraction algebra. Then for each $a \in X$, the map d_a is a derivation of X.

Proof. Suppose that d_a is the map defined by $d_a(x) = x - a$ for each $x \in X$. Then for any $x, y \in X$, we have

$$d_a(x-y) = (x-y) - a = (x-a) - y = d_a(x) - y$$

by (S3). Hence d_a is a derivation of X by Theorem 3.13.

We will call the derivation d_a of Proposition 3.16 a simple derivation.

3.17. Proposition. Let d be a derivation of a subtraction algebra X. Then for each $x \in X$, there exists a unique $\hat{x} \in [0, x]$ such that $d(x) = x - \hat{x}$ and $d(\hat{x}) = 0$.

Proof. Suppose that d is a derivation of X and $x \in X$. Then $d(x) \leq x$ since d is non-expansive.

Let $\hat{x} = x - d(x)$. Then $\hat{x} \in [0, x]$ and $d(\hat{x}) = 0$ by Proposition 3.6, and we have

$$x - \hat{x} = x - (x - d(x)) = x \wedge d(x) = d(x).$$

If $x - \hat{x} = d(x) = x - w'$ for some $w' \in [0, x]$, then

$$-w' = (x \wedge \hat{x}) - w'$$

= $(x - (x - \hat{x})) - w'$
= $(x - w') - (x - \hat{x})$ (by (S3))
= 0.

It follows that $\hat{x} \leq w'$. Similarly, we can show that $w' \leq \hat{x}$. Hence $\hat{x} = w'$, and \hat{x} is the unique element in [0, x] such that $d(x) = x - \hat{x}$.

3.18. Lemma. Let d be a derivation of a subtraction algebra X. Then $\text{Ker}(d) = \{\hat{x} \mid x \in X\}$.

Proof. It is clear that $\{\hat{x} \mid x \in X\} \subseteq \text{Ker}(d)$ by Theorem 3.17.

If $x \in \text{Ker}(d)$, then $x = x - 0 = x - d(x) = \hat{x}$. It implies $\text{Ker}(d) \subseteq \{\hat{x} \mid x \in X\}$. \Box

3.19. Theorem. Let d be a derivation of a subtraction algebra X. The for each interval [0, a] in X,

 $d(x) = d_{\hat{a}}(x)$

 \hat{x}

for all $x \in [0, a]$, that is, the restriction $d|_{[0,a]} : [0, a] \to X$ of d is a simple derivation $d_{\hat{a}}$, where $\hat{a} \in [0, a]$ is the unique element of Theorem 3.17.

Proof. Suppose that d is a derivation of X and $a \in X$. Then by Theorem 3.17 there is a unique $\hat{a} \in [0, a]$ such that $d(a) = a - \hat{a}$, and for any $x \in [0, a]$ we have

$$d(x) = d(a \wedge x) = d(a - (a - x)) = d(a) - (a - x) = (a - \hat{a}) - (a - x)$$
$$= (a - (a - x)) - \hat{a} = (a \wedge x) - \hat{a} = x - \hat{a}.$$

Hence $d(x) = x - \hat{a} = d_{\hat{a}}(x)$ for all $x \in [0, a]$.

3.20. Corollary. Let X be a subtraction algebra with greatest element 1. Then every derivation d of X is a simple derivation $d_{\hat{1}}$.

Proof. Suppose that $1 \in X$ and d is a derivation of X. Then X = [0, 1] and by Theorem 3.19,

$$d(x) = x - \hat{1} = d_{\hat{1}}(x)$$

for all $x \in [0,1] = X$. Hence d is the simple derivation $d_{\hat{1}}$.

There can be a derivation on a subtraction algebra which is not simple.

3.21. Example. Let $X = \{0, a, b, c, e, f\}$ be a subtraction algebra with "-" defined by

_	0	a	b	c	e	f
0	0	0	0	0	0	0
a	a	0	a	a	0	a
b	b	b	0	b	0	0
c	c	c	c	0	c	0
e	e	b	a	e	0	a
f	f	f	c	b	c	0

Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 0 & \text{if } x = 0, \ a, \ c, \\ b & \text{if } x = b, e, f. \end{cases}$$

Then d is a derivation of X which is not simple, because there is no $x \in X$ satisfying either d(e) = b = e - x or d(f) = b = f - x. For the interval A = [0, e] and B = [0, f], $\hat{e} = e - d(e) = e - b = a$ and $\hat{f} = c$. Hence the restrictions $d|_A$ and $d|_B$ are simple, being given by

$$d|_A(x) = x - a = d(x)$$
 ($x \in A$) and $d|_B(x) = x - c = d(x)$ ($x \in B$),

respectively.

4. Derivations and ideals of subtraction algebras

A nonempty subset I of a subtraction algebra X is called an *ideal* of X if it satisfies (I1) $0 \in I$,

(I2) for any $x, y \in X$, $y \in I$ and $x - y \in I$ implies $x \in I$.

For an ideal I of a subtraction algebra X, it is clear that $x \leq y$ and $y \in I$ imply $x \in I$ for any $x, y \in X$.

4.1. Proposition. Let d be a derivation of a subtraction algebra X. Then $\text{Kerd} = \{x \in X \mid d(x) = 0\}$ is an ideal of X.

Proof. Let $y \in \text{Ker}d$ and $x \in X$ with $x - y \in \text{Ker}d$. Then d(y) = 0 implies

$$d(x) = d(x) - 0 = d(x) - d(y) = d(x - y) = 0.$$

Hence $x \in \text{Ker}d$.

4.2. Proposition. Let d be a derivation of a subtraction algebra X. If $\text{Kerd} = \{0\}$, then d is the identity derivation.

Proof. Let $x \in X$. Then $d(x) \le x$, and $x - d(x) \in \text{Ker}d = \{0\}$ by Proposition 3.6. It implies x - d(x) = 0 and $x \le d(x)$. Hence d(x) = x.

Let X be a subtraction algebra and A a non-empty subset of X. Then we will write $A^* = \{x \in X \mid x \land a = 0 \text{ for all } a \in A\}.$

4.3. Proposition. Let X be a subtraction algebra and A non-empty subset of X. Then A^* is an ideal of X.

Proof. Let $y \in A^*$ and $x - y \in A^*$ for any $x \in X$. Then $y \wedge a = 0$ and $(x - y) \wedge a = 0$ for all $a \in A$. By (p11), we have

$$x \wedge a = (x \wedge a) - 0 = (x \wedge a) - (y \wedge a) \le (x - y) \wedge a = 0$$

for all $a \in A$. It implies $x \wedge a = 0$ for all $a \in A$, and $x \in A^*$. Hence A^* is an ideal of X.

In particular, for any singleton subset $A = \{a\}$ of a subtraction algebra $X, \{a\}^* = A^* = \{x \in X \mid x \land a = 0\}$ is an ideal of X.

4.4. Proposition. Let X be a subtraction algebra and d_y a simple derivation with $y \in X$. Then $d_y(x) = x$ if and only if $x \in \{y\}^*$.

Proof. Suppose that $x, y \in X$ and $d_y(x) = x$. Then $x \wedge y = x - (x - y) = x - d_y(x) = x - x = 0$. Hence $x \in \{y\}^*$.

Conversely, suppose that $x \in \{y\}^*$. Then $y - (y - x) = x - (x - y) = x \land y = 0$. Hence we have

$$d_{y}(x) = x - y$$

= $(x - y) - (y - x)$ (by (p5))
= $(x - (y - x)) - (y - (y - x))$ (by (p12))
= $x - 0$ (by (S1))
= x .

4.5. Corollary. Let X be a subtraction algebra and d_y a simple derivation with respect to $y \in X$. Then $d_y(X) = \{y\}^*$, that is, $\operatorname{Im}(d_y)$ is an ideal of X.

Proof. Let $x \in d_y(X)$. Then $x = d_y(z)$ for some $z \in X$, and by Theorem 3.10

$$x = d_y(z) = d_y(d_y(z)) = d_y(x).$$

It implies $x \in \{y\}^*$ by Proposition 4.4. Hence $d_y(X) \subseteq \{y\}^*$. Also it is clear that $\{y\}^* \subseteq d_y(X)$ from Proposition 4.4.

4.6. Proposition. Let d be a derivation of a subtraction algebra X. If I is an ideal of X, then we have $d(I) \subseteq I$.

Proof. For all $x \in I$, we have $d(x) \leq x$, and d(x) = x - w for some $w \in X$ by (p8). Hence by the definition of an ideal, we have $d(x) \in I$.

4.7. Theorem. Let d be a derivation of a subtraction algebra X. Then d(X) = Im(d) is an ideal of X.

Proof. Let $y \in d(X)$ and $x - y \in d(X)$ with $x \in X$. Then d(y) = y and d(x - y) = x - y by Theorem 3.10, there exists $\hat{x} \in [0, x]$ satisfying $d(x) = x - \hat{x}$ and $d(\hat{x}) = 0$, and $d_{\hat{x}}(z) = d(z)$ for all $z \in [0, x]$ by Theorems 3.17 and 3.19. Since $x - y \leq x$, we have

$$d_{\hat{x}}(x-y) = d(x-y) = x-y$$

It implies $x - y \in {\hat{x}}^*$ by Proposition 4.4, i.e., $(x - y) \wedge \hat{x} = 0$. Since $\hat{x} \leq x$, we have

$$\begin{aligned} \hat{x} - y &= (x \land \hat{x}) - y \\ &= (x - (x - \hat{x})) - y \\ &= (x - y) - ((x - \hat{x}) - y) \text{ (by (p12))} \\ &= (x - y) - ((x - y) - \hat{x}) \\ &= (x - y) \land \hat{x} \\ &= 0. \end{aligned}$$

Hence $\hat{x} \leq y$ and we have

$$\begin{aligned} \hat{x} &= y \wedge \hat{x} \\ &= y - (y - \hat{x}) \\ &= y - (d(y) - \hat{x}) \\ &= y - d(y - \hat{x}) \\ &= y - (d(y) - d(\hat{x})) \quad \text{(by Theorem 3.14)} \\ &= y - (d(y) - 0) \\ &= y - y = 0. \end{aligned}$$

It implies $x = x - 0 = x - \hat{x} = d(x) \in d(X)$, and so d(X) is an ideal of X.

Let X be a subtraction algebra and I an ideal of X. If \sim_I is the binary relation on X given by

$$x \sim_I y$$
 if and only if $x - y \in I$ and $y - x \in I$,

then \sim_I is a congruence relation and the quotient set X/I is a subtraction algebra with the binary operation defined by

$$[x] - [y] = [x - y]$$

for all $[x], [y] \in X/I$, where [x] is an equivalence class of x with respect to \sim_I .

4.8. Theorem. Let d be a derivation of a subtraction algebra X. Then there exists a monomorphism $\overline{d} : X/\operatorname{Ker}(d) \to X$ such that $\overline{d}([x]) = d(x)$. Hence $X/\operatorname{Ker}(d)$ is isomorphic to $\operatorname{Im}(\overline{d}) = \operatorname{Im}(d)$.

Proof. Suppose that d is a derivation on X. Then d is a homomorphism of X by Theorem 3.14.

Define a map $\overline{d}: X/\operatorname{Ker}(d) \to X$ by $\overline{d}([x]) = d(x)$ for all $[x] \in X/\operatorname{Ker}(d)$. If [x] = [y], then $x \sim_{\operatorname{Ker}(d)} y$ implies $x - y, y - x \in \operatorname{Ker}(d)$. Hence we have

$$d(x) - d(y) = d(x - y) = 0$$
 and $d(y) - d(x) = d(x - y) = 0$.

It follow that $d(x) \leq d(y)$ and $d(y) \leq d(x)$, that is, $\overline{d}([x]) = d(x) = \overline{d}([y])$. Therefore \overline{d} is well-defined. Let $[x], [y] \in X/\text{Ker}(d)$. Then we have

$$\bar{d}([x] - [y]) = \bar{d}([x - y]) = d(x - y) = d(x) - d(y) = \bar{d}([x]) - \bar{d}([y]).$$

Hence \overline{d} is a homomorphism.

To show that \overline{d} is a monomorphism, let d(x) = d(y). Then d(x-y) = d(x) - d(y) = 0and d(y-x) = d(y) - d(x) = 0. Hence $x - y, y - x \in \text{Ker}(d)$. It follows that $x \sim_{\text{Ker}(d)} y$, and [x] = [y]. Therefore \overline{d} is a monomorphism.

4.9. Theorem. Let X be a subtraction algebra and d a derivation of X. If $\mu : X \to X$ is the map defined by

$$\mu(x) = \hat{x} = x - d(x)$$

for all $x \in X$, then μ is a derivation with $\text{Ker}(\mu) = \text{Im}(d)$.

Proof. Suppose that $\mu : X \to X$ is the map defined by $\mu(x) = \hat{x} = x - d(x)$ for all $x \in X$. Since $\hat{x} = x - d(x)$ is unique for each $x \in X$, μ is well-defined.

Let $x, y \in X$. The

$$u(x - y) = (x - y) - d(x - y)$$

= (x - y) - (d(x) - y)
= (x - d(x)) - y (by (p12))
= $\mu(x) - y.$

Hence μ is a derivation.

If $d(x) \in \text{Im}(d)$, then $\mu(d(x)) = d(x) - d(x) = 0$, and $d(x) \in \text{Ker}(\mu)$, hence $\text{Im}(d) \subseteq \text{Ker}(\mu)$. If $x \in \text{Ker}(\mu)$, then $0 = \mu(x) = x - d(x)$, and $x = x - 0 = x - (x - d(x)) = x \land d(x) = d(x) \in \text{Im}(d)$, and so $\text{Ker}(\mu) \subseteq \text{Im}(d)$. Hence it follows that $\text{Ker}(\mu) = \text{Im}(d)$. \Box

4.10. Corollary. Let X be a subtraction algebra and d a derivation of X. Then the corestriction $\mu^{\circ}: X \to \text{Ker}(d)$ of μ is an epimorphism.

Proof. By Theorem 4.9, $\mu : X \to X$ is a derivation, hence μ is a homomorphism, and it is clear that $\text{Im}(\mu) = \text{Ker}(d)$ by Lemma 3.18.

4.11. Theorem. Let X be a subtraction algebra and d a derivation of X. If $\bar{\mu}$: $X/\text{Im}(d) \to X$ is the map defined by

 $\bar{\mu}([x]) = \mu(x)$

for all $[x] \in X/\operatorname{Im}(d)$, then $\overline{\mu}$ is a monomorphism. In particular, $X/\operatorname{Im}(d) \cong \operatorname{Ker}(d)$.

Proof. Suppose that $\bar{\mu}: X/\operatorname{Im}(d) \to X$ is the map defined by

$$\bar{\mu}([x]) = \mu(x)$$

for all $[x] \in X/Im(d)$. If [x] = [y], then $x \sim_{\operatorname{Im}(d)} y$, which implies $x - y, y - x \in \operatorname{Im}(d)$, hence d(x - y) = x - y and d(y - x) = y - x. It follows that

 $\bar{\mu}([x]) - \bar{\mu}([y]) = \mu(x) - \mu(y) = \mu(x - y) = (x - y) - d(x - y) = 0,$

and $\bar{\mu}([y]) - \bar{\mu}([x]) = 0$ in a similar way. Hence $\bar{\mu}([x]) = \bar{\mu}([y])$, and $\bar{\mu}$ is well-defined. Let $[x], [y] \in X/\text{Im}(d)$. Then we have

$$\bar{\mu}([x] - [y]) = \bar{\mu}([x - y]) = \mu(x - y) = \mu(x) - \mu(y) = \bar{\mu}([x]) - \bar{\mu}([y]),$$

and $\bar{\mu}$ is a homomorphism.

To show that $\bar{\mu}$ is a monomorphism, let $\bar{\mu}([x]) = \bar{\mu}([y])$. Then $\mu(x) = \mu(y)$, and

$$\begin{split} 0 &= \mu(x) - \mu(y) = \mu(x-y) = (x-y) - d(x-y), \\ 0 &= \mu(y) - \mu(x) = \mu(y-x) = (y-x) - d(y-x), \end{split}$$

hence $x - y \leq d(x - y)$ and $y - x \leq d(y - x)$. Since d is non-expansive, $x - y = d(x - y) \in \text{Im}(d)$ and $y - x = d(y - x) \in \text{Im}(d)$. Therefore, $x \sim_{\text{Im}(d)} y$. This implies [x] = [y]. Hence $\bar{\mu}$ is a monomorphism.

It is clear that $\operatorname{Im}(\bar{\mu}) = \operatorname{Im}(\mu)$, and $\operatorname{Im}(\mu) = \operatorname{Ker}(d)$ by Corollary 4.10. Hence $X/\operatorname{Im}(d) \cong \operatorname{Ker}(d)$.

Now consider the sequence

$$0 \longrightarrow \operatorname{Im}(d) \xrightarrow{i} X \xrightarrow{\mu^{\circ}} \operatorname{Ker}(d) \longrightarrow 0,$$

of homomorphisms of subtraction algebras, where *i* is the inclusion map. We note that it is similar to a split exact sequence, since *i* is a monomorphism, μ° is an epimorphism and Ker(μ°) = Im(*i*) by Corollary 4.10 and Theorem 4.9.

4.12. Proposition. Let d be a derivation of a subtraction algebra X. Then for each $x \in X$, $x = d(x) \lor \hat{x}$ with $d(x) \in \text{Im}(d)$ and $\hat{x} \in \text{Ker}(d)$.

Proof. Let X be a subtraction algebra and $x \in X$. Then the interval [0, x] is a Boolean algebra with respect to the induced partial order and $\hat{x} = x - d(x)$ is the complement of d(x) in [0, x]. Hence $d(x) \lor \hat{x} = d(x) \lor (x - d(x)) = x$.

Let d be a derivation of a subtraction algebra X. Then Im(d) and Ker(d) are subtraction subalgebras. Hence $\text{Im}(d) \times \text{Ker}(d)$ is also a subtraction algebra with the binary operation "-" defined by

$$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$$

for all $(x_1, y_1), (x_2, y_2) \in \operatorname{Im}(d) \times \operatorname{Ker}(d)$.

4.13. Theorem. Let d be a derivation of a subtraction algebra X. If $\phi = (d, \mu) : X \to \text{Im}(d) \times \text{Ker}(d)$ is the map defined by

$$\phi(x) = (d(x), \mu(x))$$

for all $x \in X$, then ϕ is a monomorphism.

Proof. Suppose that $\phi = (d, \mu) : X \to \text{Im}(d) \times \text{Ker}(d)$ is the map defined by $\phi(x) = (d(x), \mu(x))$ for all $x \in X$. Then for any $x, y \in X$ we have

$$\begin{aligned} \phi(x-y) &= (d(x-y), \mu(x-y)) \\ &= (d(x) - d(y), \mu(x) - \mu(y)) \\ &= (d(x), \mu(x)) - (d(y), \mu(y)) \\ &= \phi(x) - \phi(y). \end{aligned}$$

If $\phi(x) = \phi(y)$, then $(d(x), \mu(x)) = (d(y), \mu(y))$, and by Proposition 4.12,

$$x = d(x) \lor \hat{x} = d(x) \lor \mu(x) = d(y) \lor \mu(y) = d(y) \lor \hat{y} = y.$$

Hence ϕ is a monomorphism.

Acknowledgement

The research was supported by a grant from the Academic Research Program of Chungju National University in 2010.

Y.H. Yon, K.H. Kim

References

- [1] Abbott, J.C. Sets, Lattices and Boolean Algebras (Allyn and Bacon, Boston, 1969).
- [2] Schein, B. M. Difference semigroups, Comm. Algebra 20, 2153–2169, 1992.
- [3] Xin, X. L., Li, T. Y. and Lu, J. H. On derivations of lattices, Inform. Sci. 178, 307–316, 2008.
- [4] Zelinka, B. Subtraction semigroups, Math. Bohem. 120, 445–447, 1995.