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Abstract

The aim of this paper is to introduce the notion of derivations of sub-
traction algebras. We define a derivation of a subtraction algebra X
as a function d on X satisfying d(x − y) = (d(x) − y) ∧ (x − d(y))
for all x, y ∈ X. Then it is characterized as a function d satisfying
d(x− y) = d(x)− y for all x, y ∈ X. Also we define a simple derivation
as a function da on X satisfying da(x) = x−a for all x ∈ X. Then every
simple derivation is a derivation and every derivation can be partially a
simple derivation on intervals. For any derivation d of a subtraction al-
gebra X, Ker(d) and Im(d) are ideals of X, and X/Ker(d) ∼= Im(d) and
X/Im(d) ∼= Ker(d). Finally, we show that every subtraction algebra X
is embedded in Im(d)×Ker(d) for any derivation d of X.

Keywords: Subtraction algebra, Derivation, Simple derivation, Non-expansive map,
Dual closure operator, Boolean algebra.
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1. Introduction

B. M. Schein [2] considered systems of the form (Φ; ◦, \), where Φ is a set of functions
closed under the composition “◦” of functions (and hence (Φ; ◦) is a function semigroup)
and set theoretic subtraction “\” (and hence (Φ; \) is a subtraction algebra in the sense of
[1]. He proved that every subtraction semigroup is isomorphic to a difference semigroup
of invertible functions. B. Zelinka [4] discussed a problem proposed by B.M. Schein
concerning the structure of multiplication in a subtraction semigroup. He solved the
problem for subtraction algebras of a special type, called atomic subtraction algebras.
The notion of derivation of lattices was introduced and studied in [3].
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In this paper, we define a derivation of a subtraction algebra and introduce the notion
of derivations. In Section 2, we introduce some basic results of subtraction algebras. In
Section 3, we define a derivation as a function d on X satisfying d(x−y) = (d(x)−y)∧(x−
d(y)) for all x, y ∈ X, and characterize it as a function d satisfying d(x− y) = d(x)− y
for all x, y ∈ X. Also we define a simple derivation as a function da on X satisfying
da(x) = x−a for all x ∈ X, and we show that every simple derivation is a derivation and
conversely, every derivation is partially a simple derivation on intervals. In Section 4 we
show that for any derivation d of a subtraction algebra X, Ker(d) and Im(d) are ideals
of X and X/Ker(d) ∼= Im(d) and X/Im(d) ∼= Ker(d). Also the map µ : x 7→ x− d(x) is a
derivation of X, hence the sequence of derivations and subtraction algebras :

0 −→ Im(d)
i

−→ X
µ◦

−→ Ker(d) −→ 0

is similar to a split exact sequence. Finally, we show that every subtraction algebra X is
embedded in Im(d)×Ker(d) for any derivation d of X.

2. Subtraction algebras

We first recall some basic concepts which are used to present the paper.

By a subtraction algebra we mean an algebra (X;−) with a single binary operation
“−” that satisfies the following identities: for any x, y, z ∈ X,

(S1) x− (y − x) = x;
(S2) x− (x− y) = y − (y − x);
(S3) (x− y)− z = (x− z)− y.

The last identity permits us to omit parentheses in expressions of the form (x− y) − z.
The subtraction determines an order relation on X: a ≤ b ⇔ a− b = 0, where 0 = a− a
is an element that does not depend on the choice of a ∈ X. The ordered set (X;≤) is a
semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in
which every interval [0, a] is a Boolean algebra with respect to the induced order. Here
a ∧ b = a − (a − b); the complement of an element b ∈ [0, a] is a − b; and if b, c ∈ [0, a],
then

b ∨ c = (b′ ∧ c′)′ = a− ((a− b) ∧ (a− c))

= a− ((a− b)− ((a− b)− (a− c))).

In a subtraction algebra, the following are true:

(p1) (x− y)− y = x− y.
(p2) x− 0 = x and 0− x = 0.
(p3) x− y ≤ x.
(p4) x− (x− y) ≤ y.
(p5) (x− y)− (y − x) = x− y.
(p6) x− (x− (x− y)) = x− y.
(p7) (x− y)− (z − y) ≤ x− z.
(p8) x ≤ y if and only if x = y − w for some w ∈ X.
(p9) x ≤ y implies x− z ≤ y − z and z − y ≤ z − x for all z ∈ X.

(p10) x, y ≤ z implies x− y = x ∧ (z − y).
(p11) (x ∧ y)− (x ∧ z) ≤ x ∧ (y − z).
(p12) (x− y)− z = (x− z)− (y − z).

Let X and Y be subtraction algebras. A mapping f from X to Y is called a homomor-

phism if f(x − y) = f(x) − f(y) for all x, y ∈ X. Especially, f is monomorphism (resp.
epimorphism) if f is one-to-one (resp. onto) homomorphism, and f is an isomorphism if
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f is a monomorphism and epimorphism. In this case, we say X is isomorphic to Y , and
denote this by X ∼= Y .

A function f of a semilattice (∧-semilattice) X into itself is a dual closure if f is
monotone, non-expansive (i.e., f(x) ≤ x for all x ∈ X) and idempotent(i.e., f ◦ f = f),

3. Derivations and simple derivations

3.1. Definition. Let X be a subtraction algebra. By a derivation of X we mean a
self-map d of X satisfying the identity d(x− y) = (d(x)− y)∧ (x− d(y)) for all x, y ∈ X.

3.2. Example. (1) Let X = {0, a, b, 1} in which “−” is defined by

− 0 a b 1

0 0 0 0 0

a a 0 a 0

b b b 0 0

1 1 b a 0

It is easy to check that (X;−) is a subtraction algebra. Define a map d : X → X by

d(x) =

{

0 if x = 0, a,

b if x = b, 1.

Then d is a derivation of the subtraction algebra X.

Figure 1. The Hasse diagram of Example 3.2 (1)
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(2) Let X = {0, a, b} be a subtraction algebra with the following Cayley table

− 0 a b

0 0 0 0

a a 0 a

b b b 0

Define a map d : X → X by

d(x) =

{

0 if x = 0, b,

b if x = a.

Then it is easily checked that d is a derivation of subtraction algebra X.

3.3. Example. Let X be a subtraction algebra. We define a function d by d(x) = 0 for
all x ∈ X. Then d is a derivation on X, which is called the zero derivation.

3.4. Example. Let d be the identity function on a subtraction algebra X. Then d is a
derivation on X, which is called the identity derivation.

3.5. Proposition. Let d be a derivation of a subtraction algebra X. Then d(0) = 0.
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Proof. Let d be a derivation of a subtraction algebra of X. Then

d(0) = d(0− x) = (d(0)− x) ∧ (0− d(x)) = (d(0)− x) ∧ 0 = 0.

�

3.6. Proposition. Let d be a derivation of a subtraction algebra X. Then d(x−d(x)) = 0
for every x ∈ X.

Proof. Let d be a derivation of a subtraction algebra of X and let x ∈ X. Then

d(x− d(x)) = (d(x)− d(x)) ∧ (x− d(d(x))) = 0 ∧ (x− d(d(x))) = 0.

�

3.7. Proposition. Let d be a derivation of a subtraction algebra X. Then we have

d(x) = d(x) ∧ x.

Proof. Let d be a derivation of X. Then

d(x) = d(x− 0) = (d(x)− 0) ∧ (x− d(0)) = d(x) ∧ (x− 0) = d(x) ∧ x.

�

3.8. Corollary. Let d be a derivation of subtraction algebra X. Then we have d(x) ≤ x.
That is, d is a non-expansive map. �

3.9. Theorem. Let d be a derivation of a subtraction algebra X. If x ≤ y for x, y ∈ X,

then d(x) ≤ d(y).

Proof. Let x ≤ y for x, y ∈ X. Then by (p8), x = y−w for some w ∈ X. Hence we have

d(x) = d(y − w) = (d(y)− w) ∧ (y − d(w)) ≤ d(y)− w ≤ d(y).

�

3.10. Theorem. Let d be a derivation of a subtraction algebra X. Then we have d2 =
d ◦ d = d.

Proof. Let d be a derivation of X. Then by definition of the derivation d and Proposi-
tion 3.6, we have

d2(x) = d(d(x)) = d(x ∧ d(x))

= d(x− (x− d(x)))

= (d(x)− (x− d(x))) ∧ (x− d(x− d(x)))

= d(x) ∧ (x− 0)

= d(x) ∧ x

= d(x)

�

3.11. Corollary. Let d be a derivation of a subtraction algebra X. Then d is a dual

closure operator on X.

Proof. Clear from Corollary 3.8 and Theorems 3.9 and 3.10. �

3.12. Proposition. Let f is a non-expansive map on a subtraction algebra X, i.e.,

f(x) ≤ x for all x ∈ X. Then f(x)− y ≤ x− f(y) for all x, y ∈ X.

Proof. Suppose that f is a non-expansive map on X and x, y ∈ X. Then f(x) ≤ x
and f(y) ≤ y. Hence f(x) − y ≤ x − y and x − y ≤ x − f(y) by (p9). It follows that
f(x)− y ≤ x− f(y). �
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3.13. Theorem. Let d be a map on a subtraction algebra X. Then the following are

equivalent :

(1) d is a derivation of X;

(2) d(x− y) = d(x)− y for all x, y ∈ X.

Proof. Suppose that d is a derivation of X. Then d is non-expansive by Corollary 3.8.
Hence for any x, y ∈ X, d(x)− y ≤ x− d(y) by Proposition 3.12, and

d(x− y) = (d(x)− y) ∧ (x− d(y)) = d(x)− y.

Suppose that d is a map satisfying d(x − y) = d(x) − y for all x, y ∈ X. Then
d(0) = d(0− d(0)) = d(0)− d(0) = 0, hence we have

0 = d(0) = d(x− x) = d(x)− x

for any x ∈ X. It follows that d(x) ≤ x for any x ∈ X. That is, d is non-expansive.
Hence by Proposition 3.12, d(x)− y ≤ x− d(y) and

d(x− y) = d(x)− y = (d(x)− y) ∧ (x− d(y))

for any x, y ∈ X. �

3.14. Theorem. Let X be a subtraction algebra. The every derivation of X is an

homomorphism.

Proof. Suppose that d is a derivation of X and x, y ∈ X. Then d(y) ≤ y. It implies

d(x− y) = d(x)− y ≤ d(x)− d(y)

by (p9). Also we have

(d(x)− d(y))− (d(x)− y)

= (dd(x)− d(y))− (d(x)− y) (by Theorem 3.10)

= (dd(x)− (d(x)− y))− d(y) (by (S3))

= d(d(x)− (d(x)− y))− d(y) (by Theorem 3.13)

= d(y − (y − d(x)))− d(y) (by (S2))

≤ d(y)− d(y) (by (p3), Theorem 3.9 and (p9))

= 0

It follows that (d(x) − d(y)) − (d(x) − y) = 0 and d(x) − d(y) ≤ d(x) − y = d(x − y).
Hence d(x)− d(y) = d(x− y). �

The converse of Theorem 3.14 is not true in general.

3.15. Example. Let X = {0, a, b, 1} be the subtraction algebra of Example 3.2(1).
Define a map f : X → X by

f(x) =

{

0 if x = 0, a,

1 if x = b, 1.

Then f is a endomorphism of X which is not a derivation because of f(b − a) = f(b) =
1 6= b = 1− a = f(b)− a.

Let X be a subtraction algebra. Then, for each a ∈ X, we will define a map da : X →
X by

da(x) = x− a

for all x ∈ X.
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3.16. Proposition. Let X be a subtraction algebra. Then for each a ∈ X, the map da
is a derivation of X.

Proof. Suppose that da is the map defined by da(x) = x − a for each x ∈ X. Then for
any x, y ∈ X, we have

da(x− y) = (x− y)− a = (x− a)− y = da(x)− y

by (S3). Hence da is a derivation of X by Theorem 3.13. �

We will call the derivation da of Proposition 3.16 a simple derivation.

3.17. Proposition. Let d be a derivation of a subtraction algebra X. Then for each

x ∈ X, there exists a unique x̂ ∈ [0, x] such that d(x) = x− x̂ and d(x̂) = 0.

Proof. Suppose that d is a derivation of X and x ∈ X. Then d(x) ≤ x since d is
non-expansive.

Let x̂ = x− d(x). Then x̂ ∈ [0, x] and d(x̂) = 0 by Proposition 3.6, and we have

x− x̂ = x− (x− d(x)) = x ∧ d(x) = d(x).

If x− x̂ = d(x) = x− w′ for some w′ ∈ [0, x], then

x̂− w′ = (x ∧ x̂)− w′

= (x− (x− x̂))− w′

= (x− w′)− (x− x̂) (by (S3))

= 0.

It follows that x̂ ≤ w′. Similarly, we can show that w′ ≤ x̂. Hence x̂ = w′, and x̂ is the
unique element in [0, x] such that d(x) = x− x̂. �

3.18. Lemma. Let d be a derivation of a subtraction algebra X. Then Ker(d) = {x̂ |
x ∈ X}.

Proof. It is clear that {x̂ | x ∈ X} ⊆ Ker(d) by Theorem 3.17.

If x ∈ Ker(d), then x = x− 0 = x− d(x) = x̂. It implies Ker(d) ⊆ {x̂ | x ∈ X}. �

3.19. Theorem. Let d be a derivation of a subtraction algebra X. The for each interval

[0, a] in X,

d(x) = dâ(x)

for all x ∈ [0, a], that is, the restriction d|[0,a] : [0, a] → X of d is a simple derivation dâ,
where â ∈ [0, a] is the unique element of Theorem 3.17.

Proof. Suppose that d is a derivation of X and a ∈ X. Then by Theorem 3.17 there is
a unique â ∈ [0, a] such that d(a) = a− â, and for any x ∈ [0, a] we have

d(x) = d(a ∧ x) = d(a− (a− x)) = d(a)− (a− x) = (a− â)− (a− x)

= (a− (a− x))− â = (a ∧ x)− â = x− â.

Hence d(x) = x− â = dâ(x) for all x ∈ [0, a]. �

3.20. Corollary. Let X be a subtraction algebra with greatest element 1. Then every

derivation d of X is a simple derivation d1̂.
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Proof. Suppose that 1 ∈ X and d is a derivation of X. Then X = [0, 1] and by Theo-
rem 3.19,

d(x) = x− 1̂ = d1̂(x)

for all x ∈ [0, 1] = X. Hence d is the simple derivation d1̂. �

There can be a derivation on a subtraction algebra which is not simple.

3.21. Example. Let X = {0, a, b, c, e, f} be a subtraction algebra with “−” defined by

− 0 a b c e f

0 0 0 0 0 0 0

a a 0 a a 0 a

b b b 0 b 0 0

c c c c 0 c 0

e e b a e 0 a

f f f c b c 0

Figure 2. The Hasse diagram of Example 3.21
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Define a map d : X → X by

d(x) =

{

0 if x = 0, a, c,

b if x = b, e, f.

Then d is a derivation of X which is not simple, because there is no x ∈ X satisfying
either d(e) = b = e − x or d(f) = b = f − x. For the interval A = [0, e] and B = [0, f ],

ê = e− d(e) = e− b = a and f̂ = c. Hence the restrictions d|A and d|B are simple, being
given by

d|A(x) = x− a = d(x) (x ∈ A) and d|B(x) = x− c = d(x) (x ∈ B),

respectively.

4. Derivations and ideals of subtraction algebras

A nonempty subset I of a subtraction algebra X is called an ideal of X if it satisfies

(I1) 0 ∈ I ,
(I2) for any x, y ∈ X, y ∈ I and x− y ∈ I implies x ∈ I .

For an ideal I of a subtraction algebra X, it is clear that x ≤ y and y ∈ I imply x ∈ I
for any x, y ∈ X.

4.1. Proposition. Let d be a derivation of a subtraction algebra X. Then Kerd = {x ∈
X | d(x) = 0} is an ideal of X.
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Proof. Let y ∈ Kerd and x ∈ X with x− y ∈ Kerd. Then d(y) = 0 implies

d(x) = d(x)− 0 = d(x)− d(y) = d(x− y) = 0.

Hence x ∈ Kerd. �

4.2. Proposition. Let d be a derivation of a subtraction algebra X. If Kerd = {0}, then
d is the identity derivation.

Proof. Let x ∈ X. Then d(x) ≤ x, and x − d(x) ∈ Kerd = {0} by Proposition 3.6. It
implies x− d(x) = 0 and x ≤ d(x). Hence d(x) = x. �

Let X be a subtraction algebra and A a non-empty subset of X. Then we will write
A∗ = {x ∈ X | x ∧ a = 0 for all a ∈ A}.

4.3. Proposition. Let X be a subtraction algebra and A non-empty subset of X. Then

A∗ is an ideal of X.

Proof. Let y ∈ A∗ and x − y ∈ A∗ for any x ∈ X. Then y ∧ a = 0 and (x − y) ∧ a = 0
for all a ∈ A. By (p11), we have

x ∧ a = (x ∧ a)− 0 = (x ∧ a)− (y ∧ a) ≤ (x− y) ∧ a = 0

for all a ∈ A. It implies x ∧ a = 0 for all a ∈ A, and x ∈ A∗. Hence A∗ is an ideal of
X. �

In particular, for any singleton subset A = {a} of a subtraction algebra X, {a}∗ =
A∗ = {x ∈ X | x ∧ a = 0} is an ideal of X.

4.4. Proposition. Let X be a subtraction algebra and dy a simple derivation with y ∈ X.

Then dy(x) = x if and only if x ∈ {y}∗.

Proof. Suppose that x, y ∈ X and dy(x) = x. Then x ∧ y = x− (x− y) = x− dy(x) =
x− x = 0. Hence x ∈ {y}∗.

Conversely, suppose that x ∈ {y}∗. Then y− (y−x) = x− (x−y) = x∧y = 0. Hence
we have

dy(x) = x− y

= (x− y)− (y − x) (by (p5))

= (x− (y − x))− (y − (y − x)) (by (p12))

= x− 0 (by (S1))

= x. �

4.5. Corollary. Let X be a subtraction algebra and dy a simple derivation with respect

to y ∈ X. Then dy(X) = {y}∗, that is, Im(dy) is an ideal of X.

Proof. Let x ∈ dy(X). Then x = dy(z) for some z ∈ X, and by Theorem 3.10

x = dy(z) = dy(dy(z)) = dy(x).

It implies x ∈ {y}∗ by Proposition 4.4. Hence dy(X) ⊆ {y}∗. Also it is clear that
{y}∗ ⊆ dy(X) from Proposition 4.4. �

4.6. Proposition. Let d be a derivation of a subtraction algebra X. If I is an ideal of

X, then we have d(I) ⊆ I.

Proof. For all x ∈ I , we have d(x) ≤ x, and d(x) = x−w for some w ∈ X by (p8). Hence
by the definition of an ideal, we have d(x) ∈ I . �
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4.7. Theorem. Let d be a derivation of a subtraction algebra X. Then d(X) = Im(d)
is an ideal of X.

Proof. Let y ∈ d(X) and x− y ∈ d(X) with x ∈ X. Then d(y) = y and d(x− y) = x− y
by Theorem 3.10, there exists x̂ ∈ [0, x] satisfying d(x) = x − x̂ and d(x̂) = 0, and
dx̂(z) = d(z) for all z ∈ [0, x] by Theorems 3.17 and 3.19. Since x− y ≤ x, we have

dx̂(x− y) = d(x− y) = x− y.

It implies x− y ∈ {x̂}∗ by Proposition 4.4, i.e., (x− y) ∧ x̂ = 0. Since x̂ ≤ x, we have

x̂− y = (x ∧ x̂)− y

= (x− (x− x̂))− y

= (x− y)− ((x− x̂)− y) (by (p12))

= (x− y)− ((x− y)− x̂)

= (x− y) ∧ x̂

= 0.

Hence x̂ ≤ y and we have

x̂ = y ∧ x̂

= y − (y − x̂)

= y − (d(y)− x̂)

= y − d(y − x̂)

= y − (d(y)− d(x̂)) (by Theorem 3.14)

= y − (d(y)− 0)

= y − y = 0.

It implies x = x− 0 = x− x̂ = d(x) ∈ d(X), and so d(X) is an ideal of X. �

Let X be a subtraction algebra and I an ideal of X. If ∼I is the binary relation on
X given by

x ∼I y if and only if x− y ∈ I and y − x ∈ I,

then ∼I is a congruence relation and the quotient set X/I is a subtraction algebra with
the binary operation defined by

[x]− [y] = [x− y]

for all [x], [y] ∈ X/I , where [x] is an equivalence class of x with respect to ∼I .

4.8. Theorem. Let d be a derivation of a subtraction algebra X. Then there exists

a monomorphism d̄ : X/Ker(d) → X such that d̄([x]) = d(x). Hence X/Ker(d) is

isomorphic to Im(d̄) = Im(d).

Proof. Suppose that d is a derivation on X. Then d is a homomorphism of X by Theo-
rem 3.14.

Define a map d̄ : X/Ker(d) → X by d̄([x]) = d(x) for all [x] ∈ X/Ker(d). If [x] = [y],
then x ∼Ker(d) y implies x− y, y − x ∈ Ker(d). Hence we have

d(x)− d(y) = d(x− y) = 0 and d(y)− d(x) = d(x− y) = 0.

It follow that d(x) ≤ d(y) and d(y) ≤ d(x), that is, d̄([x]) = d(x) = d(y) = d̄([y]).
Therefore d̄ is well-defined.
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Let [x], [y] ∈ X/Ker(d). Then we have

d̄([x]− [y]) = d̄([x− y]) = d(x− y) = d(x)− d(y) = d̄([x])− d̄([y]).

Hence d̄ is a homomorphism.

To show that d̄ is a monomorphism, let d(x) = d(y). Then d(x− y) = d(x)− d(y) = 0
and d(y− x) = d(y)− d(x) = 0. Hence x− y, y− x ∈ Ker(d). It follows that x ∼Ker(d) y,

and [x] = [y]. Therefore d̄ is a monomorphism. �

4.9. Theorem. Let X be a subtraction algebra and d a derivation of X. If µ : X → X
is the map defined by

µ(x) = x̂ = x− d(x)

for all x ∈ X, then µ is a derivation with Ker(µ) = Im(d).

Proof. Suppose that µ : X → X is the map defined by µ(x) = x̂ = x−d(x) for all x ∈ X.
Since x̂ = x− d(x) is unique for each x ∈ X, µ is well-defined.

Let x, y ∈ X. The

µ(x− y) = (x− y)− d(x− y)

= (x− y)− (d(x)− y)

= (x− d(x))− y (by (p12))

= µ(x)− y.

Hence µ is a derivation.

If d(x) ∈ Im(d), then µ(d(x)) = d(x)− d(x) = 0, and d(x) ∈ Ker(µ), hence Im(d) ⊆
Ker(µ). If x ∈ Ker(µ), then 0 = µ(x) = x− d(x), and x = x− 0 = x− (x− d(x)) = x ∧
d(x) = d(x) ∈ Im(d), and so Ker(µ) ⊆ Im(d). Hence it follows that Ker(µ) = Im(d). �

4.10. Corollary. Let X be a subtraction algebra and d a derivation of X. Then the

corestriction µ◦ : X → Ker(d) of µ is an epimorphism.

Proof. By Theorem 4.9, µ : X → X is a derivation, hence µ is a homomorphism, and it
is clear that Im(µ) = Ker(d) by Lemma 3.18. �

4.11. Theorem. Let X be a subtraction algebra and d a derivation of X. If µ̄ :
X/Im(d) → X is the map defined by

µ̄([x]) = µ(x)

for all [x] ∈ X/Im(d), then µ̄ is a monomorphism. In particular, X/Im(d) ∼= Ker(d).

Proof. Suppose that µ̄ : X/Im(d) → X is the map defined by

µ̄([x]) = µ(x)

for all [x] ∈ X/Im(d). If [x] = [y], then x ∼Im(d) y, which implies x − y, y − x ∈ Im(d),
hence d(x− y) = x− y and d(y − x) = y − x. It follows that

µ̄([x])− µ̄([y]) = µ(x)− µ(y) = µ(x− y) = (x− y)− d(x− y) = 0,

and µ̄([y])− µ̄([x]) = 0 in a similar way. Hence µ̄([x]) = µ̄([y]), and µ̄ is well-defined.

Let [x], [y] ∈ X/Im(d). Then we have

µ̄([x]− [y]) = µ̄([x− y]) = µ(x− y) = µ(x)− µ(y) = µ̄([x])− µ̄([y]),

and µ̄ is a homomorphism.
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To show that µ̄ is a monomorphism, let µ̄([x]) = µ̄([y]). Then µ(x) = µ(y), and

0 = µ(x)− µ(y) = µ(x− y) = (x− y)− d(x− y),

0 = µ(y)− µ(x) = µ(y − x) = (y − x)− d(y − x),

hence x−y ≤ d(x−y) and y−x ≤ d(y−x). Since d is non-expansive, x−y = d(x−y) ∈
Im(d) and y−x = d(y−x) ∈ Im(d). Therefore, x ∼Im(d) y. This implies [x] = [y]. Hence
µ̄ is a monomorphism.

It is clear that Im(µ̄) = Im(µ), and Im(µ) = Ker(d) by Corollary 4.10. Hence
X/Im(d) ∼= Ker(d). �

Now consider the sequence

0 −→ Im(d)
i

−→ X
µ◦

−→ Ker(d) −→ 0,

of homomorphisms of subtraction algebras, where i is the inclusion map. We note that
it is similar to a split exact sequence, since i is a monomorphism, µ◦ is an epimorphism
and Ker(µ◦) = Im(i) by Corollary 4.10 and Theorem 4.9.

4.12. Proposition. Let d be a derivation of a subtraction algebra X. Then for each

x ∈ X, x = d(x) ∨ x̂ with d(x) ∈ Im(d) and x̂ ∈ Ker(d).

Proof. Let X be a subtraction algebra and x ∈ X. Then the interval [0, x] is a Boolean
algebra with respect to the induced partial order and x̂ = x− d(x) is the complement of
d(x) in [0, x]. Hence d(x) ∨ x̂ = d(x) ∨ (x− d(x)) = x. �

Let d be a derivation of a subtraction algebra X. Then Im(d) and Ker(d) are sub-
traction subalgebras. Hence Im(d)×Ker(d) is also a subtraction algebra with the binary
operation “−” defined by

(x1, y1)− (x2, y2) = (x1 − x2, y1 − y2)

for all (x1, y1), (x2, y2) ∈ Im(d)×Ker(d).

4.13. Theorem. Let d be a derivation of a subtraction algebra X. If φ = (d, µ) : X →
Im(d)×Ker(d) is the map defined by

φ(x) = (d(x), µ(x))

for all x ∈ X, then φ is a monomorphism.

Proof. Suppose that φ = (d, µ) : X → Im(d) × Ker(d) is the map defined by φ(x) =
(d(x), µ(x)) for all x ∈ X. Then for any x, y ∈ X we have

φ(x− y) = (d(x− y), µ(x− y))

= (d(x)− d(y), µ(x)− µ(y))

= (d(x), µ(x))− (d(y), µ(y))

= φ(x)− φ(y).

If φ(x) = φ(y), then (d(x), µ(x)) = (d(y), µ(y)), and by Proposition 4.12,

x = d(x) ∨ x̂ = d(x) ∨ µ(x) = d(y) ∨ µ(y) = d(y) ∨ ŷ = y.

Hence φ is a monomorphism. �
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