ON DERIVATIONS OF SUBTRACTION ALGEBRAS

Yong Ho Yon* and Kyung Ho Kim ${ }^{\dagger \ddagger}$

Received 28:01:2010 : Accepted 14:10:2011

Abstract

The aim of this paper is to introduce the notion of derivations of subtraction algebras. We define a derivation of a subtraction algebra X as a function d on X satisfying $d(x-y)=(d(x)-y) \wedge(x-d(y))$ for all $x, y \in X$. Then it is characterized as a function d satisfying $d(x-y)=d(x)-y$ for all $x, y \in X$. Also we define a simple derivation as a function d_{a} on X satisfying $d_{a}(x)=x-a$ for all $x \in X$. Then every simple derivation is a derivation and every derivation can be partially a simple derivation on intervals. For any derivation d of a subtraction algebra $X, \operatorname{Ker}(d)$ and $\operatorname{Im}(d)$ are ideals of X, and $X / \operatorname{Ker}(d) \cong \operatorname{Im}(d)$ and $X / \operatorname{Im}(d) \cong \operatorname{Ker}(d)$. Finally, we show that every subtraction algebra X is embedded in $\operatorname{Im}(d) \times \operatorname{Ker}(d)$ for any derivation d of X.

Keywords: Subtraction algebra, Derivation, Simple derivation, Non-expansive map, Dual closure operator, Boolean algebra.
2000 AMS Classification: 03 G 25, 06 A 12, 06 B 99.

1. Introduction

B. M. Schein [2] considered systems of the form ($\Phi ; \circ, \backslash$), where Φ is a set of functions closed under the composition "०" of functions (and hence ($\Phi ; \circ$) is a function semigroup) and set theoretic subtraction " \backslash " (and hence $(\Phi ; \backslash)$ is a subtraction algebra in the sense of [1]. He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [4] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called atomic subtraction algebras. The notion of derivation of lattices was introduced and studied in [3].

[^0]In this paper, we define a derivation of a subtraction algebra and introduce the notion of derivations. In Section 2, we introduce some basic results of subtraction algebras. In Section 3, we define a derivation as a function d on X satisfying $d(x-y)=(d(x)-y) \wedge(x-$ $d(y))$ for all $x, y \in X$, and characterize it as a function d satisfying $d(x-y)=d(x)-y$ for all $x, y \in X$. Also we define a simple derivation as a function d_{a} on X satisfying $d_{a}(x)=x-a$ for all $x \in X$, and we show that every simple derivation is a derivation and conversely, every derivation is partially a simple derivation on intervals. In Section 4 we show that for any derivation d of a subtraction algebra $X, \operatorname{Ker}(d)$ and $\operatorname{Im}(d)$ are ideals of X and $X / \operatorname{Ker}(d) \cong \operatorname{Im}(d)$ and $X / \operatorname{Im}(d) \cong \operatorname{Ker}(d)$. Also the map $\mu: x \mapsto x-d(x)$ is a derivation of X, hence the sequence of derivations and subtraction algebras :

$$
0 \longrightarrow \operatorname{Im}(d) \xrightarrow{i} X \xrightarrow{\mu^{\circ}} \operatorname{Ker}(d) \longrightarrow 0
$$

is similar to a split exact sequence. Finally, we show that every subtraction algebra X is embedded in $\operatorname{Im}(d) \times \operatorname{Ker}(d)$ for any derivation d of X.

2. Subtraction algebras

We first recall some basic concepts which are used to present the paper.
By a subtraction algebra we mean an algebra ($X ;-$) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,
(S1) $x-(y-x)=x$;
(S2) $x-(x-y)=y-(y-x)$;
(S3) $(x-y)-z=(x-z)-y$.
The last identity permits us to omit parentheses in expressions of the form $(x-y)-z$. The subtraction determines an order relation on $X: a \leq b \Leftrightarrow a-b=0$, where $0=a-a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X ; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b=a-(a-b) ;$ the complement of an element $b \in[0, a]$ is $a-b$; and if $b, c \in[0, a]$, then

$$
\begin{aligned}
b \vee c & =\left(b^{\prime} \wedge c^{\prime}\right)^{\prime}=a-((a-b) \wedge(a-c)) \\
& =a-((a-b)-((a-b)-(a-c))) .
\end{aligned}
$$

In a subtraction algebra, the following are true:
(p1) $(x-y)-y=x-y$.
(p2) $x-0=x$ and $0-x=0$.
(p3) $x-y \leq x$.
(p4) $x-(x-y) \leq y$.
(p5) $(x-y)-(y-x)=x-y$.
(p6) $x-(x-(x-y))=x-y$.
(p7) $(x-y)-(z-y) \leq x-z$.
(p8) $x \leq y$ if and only if $x=y-w$ for some $w \in X$.
(p9) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$ for all $z \in X$.
(p10) $x, y \leq z$ implies $x-y=x \wedge(z-y)$.
(p11) $(x \wedge y)-(x \wedge z) \leq x \wedge(y-z)$.
(p12) $(x-y)-z=(x-z)-(y-z)$.
Let X and Y be subtraction algebras. A mapping f from X to Y is called a homomorphism if $f(x-y)=f(x)-f(y)$ for all $x, y \in X$. Especially, f is monomorphism (resp. epimorphism) if f is one-to-one (resp. onto) homomorphism, and f is an isomorphism if
f is a monomorphism and epimorphism. In this case, we say X is isomorphic to Y, and denote this by $X \cong Y$.

A function f of a semilattice (\wedge-semilattice) X into itself is a dual closure if f is monotone, non-expansive (i.e., $f(x) \leq x$ for all $x \in X$) and idempotent(i.e., $f \circ f=f$),

3. Derivations and simple derivations

3.1. Definition. Let X be a subtraction algebra. By a derivation of X we mean a self-map d of X satisfying the identity $d(x-y)=(d(x)-y) \wedge(x-d(y))$ for all $x, y \in X$.
3.2. Example. (1) Let $X=\{0, a, b, 1\}$ in which "-" is defined by

-	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	b	a	0

It is easy to check that $(X ;-)$ is a subtraction algebra. Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}0 & \text { if } x=0, a \\ b & \text { if } x=b, 1\end{cases}
$$

Then d is a derivation of the subtraction algebra X.
Figure 1. The Hasse diagram of Example 3.2 (1)

(2) Let $X=\{0, a, b\}$ be a subtraction algebra with the following Cayley table

-	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}0 & \text { if } x=0, b, \\ b & \text { if } x=a\end{cases}
$$

Then it is easily checked that d is a derivation of subtraction algebra X.
3.3. Example. Let X be a subtraction algebra. We define a function d by $d(x)=0$ for all $x \in X$. Then d is a derivation on X, which is called the zero derivation.
3.4. Example. Let d be the identity function on a subtraction algebra X. Then d is a derivation on X, which is called the identity derivation.
3.5. Proposition. Let d be a derivation of a subtraction algebra X. Then $d(0)=0$.

Proof. Let d be a derivation of a subtraction algebra of X. Then

$$
d(0)=d(0-x)=(d(0)-x) \wedge(0-d(x))=(d(0)-x) \wedge 0=0
$$

3.6. Proposition. Let d be a derivation of a subtraction algebra X. Then $d(x-d(x))=0$ for every $x \in X$.
Proof. Let d be a derivation of a subtraction algebra of X and let $x \in X$. Then

$$
d(x-d(x))=(d(x)-d(x)) \wedge(x-d(d(x)))=0 \wedge(x-d(d(x)))=0
$$

3.7. Proposition. Let d be a derivation of a subtraction algebra X. Then we have $d(x)=d(x) \wedge x$.
Proof. Let d be a derivation of X. Then

$$
d(x)=d(x-0)=(d(x)-0) \wedge(x-d(0))=d(x) \wedge(x-0)=d(x) \wedge x
$$

3.8. Corollary. Let d be a derivation of subtraction algebra X. Then we have $d(x) \leq x$. That is, d is a non-expansive map.
3.9. Theorem. Let d be a derivation of a subtraction algebra X. If $x \leq y$ for $x, y \in X$, then $d(x) \leq d(y)$.

Proof. Let $x \leq y$ for $x, y \in X$. Then by (p 8), $x=y-w$ for some $w \in X$. Hence we have

$$
d(x)=d(y-w)=(d(y)-w) \wedge(y-d(w)) \leq d(y)-w \leq d(y)
$$

3.10. Theorem. Let d be a derivation of a subtraction algebra X. Then we have $d^{2}=$ $d \circ d=d$.
Proof. Let d be a derivation of X. Then by definition of the derivation d and Proposition 3.6, we have

$$
\begin{aligned}
d^{2}(x) & =d(d(x))=d(x \wedge d(x)) \\
& =d(x-(x-d(x))) \\
& =(d(x)-(x-d(x))) \wedge(x-d(x-d(x))) \\
& =d(x) \wedge(x-0) \\
& =d(x) \wedge x \\
& =d(x)
\end{aligned}
$$

3.11. Corollary. Let d be a derivation of a subtraction algebra X. Then d is a dual closure operator on X.
Proof. Clear from Corollary 3.8 and Theorems 3.9 and 3.10.
3.12. Proposition. Let f is a non-expansive map on a subtraction algebra X, i.e., $f(x) \leq x$ for all $x \in X$. Then $f(x)-y \leq x-f(y)$ for all $x, y \in X$.
Proof. Suppose that f is a non-expansive map on X and $x, y \in X$. Then $f(x) \leq x$ and $f(y) \leq y$. Hence $f(x)-y \leq x-y$ and $x-y \leq x-f(y)$ by (p 9). It follows that $f(x)-y \leq x-f(y)$.
3.13. Theorem. Let d be a map on a subtraction algebra X. Then the following are equivalent :
(1) d is a derivation of X;
(2) $d(x-y)=d(x)-y$ for all $x, y \in X$.

Proof. Suppose that d is a derivation of X. Then d is non-expansive by Corollary 3.8. Hence for any $x, y \in X, d(x)-y \leq x-d(y)$ by Proposition 3.12, and

$$
d(x-y)=(d(x)-y) \wedge(x-d(y))=d(x)-y
$$

Suppose that d is a map satisfying $d(x-y)=d(x)-y$ for all $x, y \in X$. Then $d(0)=d(0-d(0))=d(0)-d(0)=0$, hence we have

$$
0=d(0)=d(x-x)=d(x)-x
$$

for any $x \in X$. It follows that $d(x) \leq x$ for any $x \in X$. That is, d is non-expansive. Hence by Proposition 3.12, $d(x)-y \leq x-d(y)$ and

$$
d(x-y)=d(x)-y=(d(x)-y) \wedge(x-d(y))
$$

for any $x, y \in X$.
3.14. Theorem. Let X be a subtraction algebra. The every derivation of X is an homomorphism.

Proof. Suppose that d is a derivation of X and $x, y \in X$. Then $d(y) \leq y$. It implies

$$
d(x-y)=d(x)-y \leq d(x)-d(y)
$$

by (p9). Also we have

$$
\begin{aligned}
(d(x) & -d(y))-(d(x)-y) \\
& =(d d(x)-d(y))-(d(x)-y) \quad(\text { by Theorem } 3.10) \\
& =(d d(x)-(d(x)-y))-d(y) \quad(\text { by }(\text { S } 3)) \\
& =d(d(x)-(d(x)-y))-d(y) \quad(\text { by Theorem } 3.13) \\
& =d(y-(y-d(x)))-d(y) \quad(\text { by } \quad(\text { S} 2)) \\
& \leq d(y)-d(y) \quad(\text { by }(\mathrm{p} 3), \text { Theorem } 3.9 \text { and }(\mathrm{p} 9)) \\
& =0
\end{aligned}
$$

It follows that $(d(x)-d(y))-(d(x)-y)=0$ and $d(x)-d(y) \leq d(x)-y=d(x-y)$. Hence $d(x)-d(y)=d(x-y)$.

The converse of Theorem 3.14 is not true in general.
3.15. Example. Let $X=\{0, a, b, 1\}$ be the subtraction algebra of Example 3.2(1). Define a map $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}0 & \text { if } x=0, a \\ 1 & \text { if } x=b, 1\end{cases}
$$

Then f is a endomorphism of X which is not a derivation because of $f(b-a)=f(b)=$ $1 \neq b=1-a=f(b)-a$.

Let X be a subtraction algebra. Then, for each $a \in X$, we will define a map $d_{a}: X \rightarrow$ X by

$$
d_{a}(x)=x-a
$$

for all $x \in X$.
3.16. Proposition. Let X be a subtraction algebra. Then for each $a \in X$, the map d_{a} is a derivation of X.

Proof. Suppose that d_{a} is the map defined by $d_{a}(x)=x-a$ for each $x \in X$. Then for any $x, y \in X$, we have

$$
d_{a}(x-y)=(x-y)-a=(x-a)-y=d_{a}(x)-y
$$

by (S3). Hence d_{a} is a derivation of X by Theorem 3.13.
We will call the derivation d_{a} of Proposition 3.16 a simple derivation.
3.17. Proposition. Let d be a derivation of a subtraction algebra X. Then for each $x \in X$, there exists a unique $\hat{x} \in[0, x]$ such that $d(x)=x-\hat{x}$ and $d(\hat{x})=0$.

Proof. Suppose that d is a derivation of X and $x \in X$. Then $d(x) \leq x$ since d is non-expansive.

Let $\hat{x}=x-d(x)$. Then $\hat{x} \in[0, x]$ and $d(\hat{x})=0$ by Proposition 3.6 , and we have

$$
x-\hat{x}=x-(x-d(x))=x \wedge d(x)=d(x)
$$

If $x-\hat{x}=d(x)=x-w^{\prime}$ for some $w^{\prime} \in[0, x]$, then

$$
\begin{aligned}
\hat{x}-w^{\prime} & =(x \wedge \hat{x})-w^{\prime} \\
& =(x-(x-\hat{x}))-w^{\prime} \\
& =\left(x-w^{\prime}\right)-(x-\hat{x})(\text { by }(\mathrm{S} 3)) \\
& =0
\end{aligned}
$$

It follows that $\hat{x} \leq w^{\prime}$. Similarly, we can show that $w^{\prime} \leq \hat{x}$. Hence $\hat{x}=w^{\prime}$, and \hat{x} is the unique element in $[0, x]$ such that $d(x)=x-\hat{x}$.
3.18. Lemma. Let d be a derivation of a subtraction algebra X. Then $\operatorname{Ker}(d)=\{\hat{x} \mid$ $x \in X\}$.

Proof. It is clear that $\{\hat{x} \mid x \in X\} \subseteq \operatorname{Ker}(d)$ by Theorem 3.17.
If $x \in \operatorname{Ker}(d)$, then $x=x-0=x-d(x)=\hat{x}$. It implies $\operatorname{Ker}(d) \subseteq\{\hat{x} \mid x \in X\}$.
3.19. Theorem. Let d be a derivation of a subtraction algebra X. The for each interval $[0, a]$ in X,

$$
d(x)=d_{\hat{a}}(x)
$$

for all $x \in[0, a]$, that is, the restriction $\left.d\right|_{[0, a]}:[0, a] \rightarrow X$ of d is a simple derivation $d_{\hat{a}}$, where $\hat{a} \in[0, a]$ is the unique element of Theorem 3.17.

Proof. Suppose that d is a derivation of X and $a \in X$. Then by Theorem 3.17 there is a unique $\hat{a} \in[0, a]$ such that $d(a)=a-\hat{a}$, and for any $x \in[0, a]$ we have

$$
\begin{aligned}
d(x) & =d(a \wedge x)=d(a-(a-x))=d(a)-(a-x)=(a-\hat{a})-(a-x) \\
& =(a-(a-x))-\hat{a}=(a \wedge x)-\hat{a}=x-\hat{a}
\end{aligned}
$$

Hence $d(x)=x-\hat{a}=d_{\hat{a}}(x)$ for all $x \in[0, a]$.
3.20. Corollary. Let X be a subtraction algebra with greatest element 1. Then every derivation d of X is a simple derivation $d_{\hat{1}}$.

Proof. Suppose that $1 \in X$ and d is a derivation of X. Then $X=[0,1]$ and by Theorem 3.19,

$$
d(x)=x-\hat{1}=d_{\hat{1}}(x)
$$

for all $x \in[0,1]=X$. Hence d is the simple derivation $d_{\hat{1}}$.
There can be a derivation on a subtraction algebra which is not simple.
3.21. Example. Let $X=\{0, a, b, c, e, f\}$ be a subtraction algebra with "-" defined by

-	0	a	b	c	e	f
0	0	0	0	0	0	0
a	a	0	a	a	0	a
b	b	b	0	b	0	0
c	c	c	c	0	c	0
e	e	b	a	e	0	a
f	f	f	c	b	c	0

Figure 2. The Hasse diagram of Example 3.21

Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}0 & \text { if } x=0, a, c \\ b & \text { if } x=b, e, f\end{cases}
$$

Then d is a derivation of X which is not simple, because there is no $x \in X$ satisfying either $d(e)=b=e-x$ or $d(f)=b=f-x$. For the interval $A=[0, e]$ and $B=[0, f]$, $\hat{e}=e-d(e)=e-b=a$ and $\hat{f}=c$. Hence the restrictions $\left.d\right|_{A}$ and $\left.d\right|_{B}$ are simple, being given by

$$
\left.d\right|_{A}(x)=x-a=d(x) \quad(x \in A) \text { and }\left.d\right|_{B}(x)=x-c=d(x) \quad(x \in B),
$$

respectively.

4. Derivations and ideals of subtraction algebras

A nonempty subset I of a subtraction algebra X is called an ideal of X if it satisfies
(I1) $0 \in I$,
(I2) for any $x, y \in X, y \in I$ and $x-y \in I$ implies $x \in I$.
For an ideal I of a subtraction algebra X, it is clear that $x \leq y$ and $y \in I$ imply $x \in I$ for any $x, y \in X$.
4.1. Proposition. Let d be a derivation of a subtraction algebra X. Then $\operatorname{Ker} d=\{x \in$ $X \mid d(x)=0\}$ is an ideal of X.

Proof. Let $y \in \operatorname{Ker} d$ and $x \in X$ with $x-y \in \operatorname{Ker} d$. Then $d(y)=0$ implies

$$
d(x)=d(x)-0=d(x)-d(y)=d(x-y)=0 .
$$

Hence $x \in \operatorname{Ker} d$.
4.2. Proposition. Let d be a derivation of a subtraction algebra X. If $\operatorname{Ker} d=\{0\}$, then d is the identity derivation.

Proof. Let $x \in X$. Then $d(x) \leq x$, and $x-d(x) \in \operatorname{Ker} d=\{0\}$ by Proposition 3.6. It implies $x-d(x)=0$ and $x \leq d(x)$. Hence $d(x)=x$.

Let X be a subtraction algebra and A a non-empty subset of X. Then we will write $A^{*}=\{x \in X \mid x \wedge a=0$ for all $a \in A\}$.
4.3. Proposition. Let X be a subtraction algebra and A non-empty subset of X. Then A^{*} is an ideal of X.

Proof. Let $y \in A^{*}$ and $x-y \in A^{*}$ for any $x \in X$. Then $y \wedge a=0$ and $(x-y) \wedge a=0$ for all $a \in A$. By (p11), we have

$$
x \wedge a=(x \wedge a)-0=(x \wedge a)-(y \wedge a) \leq(x-y) \wedge a=0
$$

for all $a \in A$. It implies $x \wedge a=0$ for all $a \in A$, and $x \in A^{*}$. Hence A^{*} is an ideal of X.

In particular, for any singleton subset $A=\{a\}$ of a subtraction algebra $X,\{a\}^{*}=$ $A^{*}=\{x \in X \mid x \wedge a=0\}$ is an ideal of X.
4.4. Proposition. Let X be a subtraction algebra and d_{y} a simple derivation with $y \in X$. Then $d_{y}(x)=x$ if and only if $x \in\{y\}^{*}$.

Proof. Suppose that $x, y \in X$ and $d_{y}(x)=x$. Then $x \wedge y=x-(x-y)=x-d_{y}(x)=$ $x-x=0$. Hence $x \in\{y\}^{*}$.

Conversely, suppose that $x \in\{y\}^{*}$. Then $y-(y-x)=x-(x-y)=x \wedge y=0$. Hence we have

$$
\begin{aligned}
d_{y}(x) & =x-y \\
& =(x-y)-(y-x) \quad(\mathrm{by}(\mathrm{p} 5)) \\
& =(x-(y-x))-(y-(y-x)) \quad(\mathrm{by}(\mathrm{p} 12)) \\
& =x-0 \quad(\text { by }(\mathrm{S} 1)) \\
& =x
\end{aligned}
$$

4.5. Corollary. Let X be a subtraction algebra and d_{y} a simple derivation with respect to $y \in X$. Then $d_{y}(X)=\{y\}^{*}$, that is, $\operatorname{Im}\left(d_{y}\right)$ is an ideal of X.

Proof. Let $x \in d_{y}(X)$. Then $x=d_{y}(z)$ for some $z \in X$, and by Theorem 3.10

$$
x=d_{y}(z)=d_{y}\left(d_{y}(z)\right)=d_{y}(x)
$$

It implies $x \in\{y\}^{*}$ by Proposition 4.4. Hence $d_{y}(X) \subseteq\{y\}^{*}$. Also it is clear that $\{y\}^{*} \subseteq d_{y}(X)$ from Proposition 4.4.
4.6. Proposition. Let d be a derivation of a subtraction algebra X. If I is an ideal of X, then we have $d(I) \subseteq I$.
Proof. For all $x \in I$, we have $d(x) \leq x$, and $d(x)=x-w$ for some $w \in X$ by (p8). Hence by the definition of an ideal, we have $d(x) \in I$.
4.7. Theorem. Let d be a derivation of a subtraction algebra X. Then $d(X)=\operatorname{Im}(d)$ is an ideal of X.

Proof. Let $y \in d(X)$ and $x-y \in d(X)$ with $x \in X$. Then $d(y)=y$ and $d(x-y)=x-y$ by Theorem 3.10, there exists $\hat{x} \in[0, x]$ satisfying $d(x)=x-\hat{x}$ and $d(\hat{x})=0$, and $d_{\hat{x}}(z)=d(z)$ for all $z \in[0, x]$ by Theorems 3.17 and 3.19 . Since $x-y \leq x$, we have

$$
d_{\hat{x}}(x-y)=d(x-y)=x-y
$$

It implies $x-y \in\{\hat{x}\}^{*}$ by Proposition 4.4, i.e., $(x-y) \wedge \hat{x}=0$. Since $\hat{x} \leq x$, we have

$$
\begin{aligned}
\hat{x}-y & =(x \wedge \hat{x})-y \\
& =(x-(x-\hat{x}))-y \\
& =(x-y)-((x-\hat{x})-y) \quad(\text { by }(\mathrm{p} 12)) \\
& =(x-y)-((x-y)-\hat{x}) \\
& =(x-y) \wedge \hat{x} \\
& =0 .
\end{aligned}
$$

Hence $\hat{x} \leq y$ and we have

$$
\begin{aligned}
\hat{x} & =y \wedge \hat{x} \\
& =y-(y-\hat{x}) \\
& =y-(d(y)-\hat{x}) \\
& =y-d(y-\hat{x}) \\
& =y-(d(y)-d(\hat{x})) \quad(\text { by Theorem 3.14) } \\
& =y-(d(y)-0) \\
& =y-y=0
\end{aligned}
$$

It implies $x=x-0=x-\hat{x}=d(x) \in d(X)$, and so $d(X)$ is an ideal of X.
Let X be a subtraction algebra and I an ideal of X. If \sim_{I} is the binary relation on X given by

$$
x \sim_{I} y \text { if and only if } x-y \in I \text { and } y-x \in I
$$

then \sim_{I} is a congruence relation and the quotient set X / I is a subtraction algebra with the binary operation defined by

$$
[x]-[y]=[x-y]
$$

for all $[x],[y] \in X / I$, where $[x]$ is an equivalence class of x with respect to \sim_{I}.
4.8. Theorem. Let d be a derivation of a subtraction algebra X. Then there exists a monomorphism $\bar{d}: X / \operatorname{Ker}(d) \rightarrow X$ such that $\bar{d}([x])=d(x)$. Hence $X / \operatorname{Ker}(d)$ is isomorphic to $\operatorname{Im}(\bar{d})=\operatorname{Im}(d)$.

Proof. Suppose that d is a derivation on X. Then d is a homomorphism of X by Theorem 3.14.

Define a map $\bar{d}: X / \operatorname{Ker}(d) \rightarrow X$ by $\bar{d}([x])=d(x)$ for all $[x] \in X / \operatorname{Ker}(d)$. If $[x]=[y]$, then $x \sim_{\operatorname{Ker}(d)} y$ implies $x-y, y-x \in \operatorname{Ker}(d)$. Hence we have

$$
d(x)-d(y)=d(x-y)=0 \text { and } d(y)-d(x)=d(x-y)=0
$$

It follow that $d(x) \leq d(y)$ and $d(y) \leq d(x)$, that is, $\bar{d}([x])=d(x)=d(y)=\bar{d}([y])$. Therefore \bar{d} is well-defined.

Let $[x],[y] \in X / \operatorname{Ker}(d)$. Then we have

$$
\bar{d}([x]-[y])=\bar{d}([x-y])=d(x-y)=d(x)-d(y)=\bar{d}([x])-\bar{d}([y]) .
$$

Hence \bar{d} is a homomorphism.
To show that \bar{d} is a monomorphism, let $d(x)=d(y)$. Then $d(x-y)=d(x)-d(y)=0$ and $d(y-x)=d(y)-d(x)=0$. Hence $x-y, y-x \in \operatorname{Ker}(d)$. It follows that $x \sim_{\operatorname{Ker}(d)} y$, and $[x]=[y]$. Therefore \bar{d} is a monomorphism.
4.9. Theorem. Let X be a subtraction algebra and d a derivation of X. If $\mu: X \rightarrow X$ is the map defined by

$$
\mu(x)=\hat{x}=x-d(x)
$$

for all $x \in X$, then μ is a derivation with $\operatorname{Ker}(\mu)=\operatorname{Im}(d)$.
Proof. Suppose that $\mu: X \rightarrow X$ is the map defined by $\mu(x)=\hat{x}=x-d(x)$ for all $x \in X$. Since $\hat{x}=x-d(x)$ is unique for each $x \in X, \mu$ is well-defined.

Let $x, y \in X$. The

$$
\begin{aligned}
\mu(x-y) & =(x-y)-d(x-y) \\
& =(x-y)-(d(x)-y) \\
& =(x-d(x))-y \quad(\text { by }(\mathrm{p} 12)) \\
& =\mu(x)-y .
\end{aligned}
$$

Hence μ is a derivation.
If $d(x) \in \operatorname{Im}(d)$, then $\mu(d(x))=d(x)-d(x)=0$, and $d(x) \in \operatorname{Ker}(\mu)$, hence $\operatorname{Im}(d) \subseteq$ $\operatorname{Ker}(\mu)$. If $x \in \operatorname{Ker}(\mu)$, then $0=\mu(x)=x-d(x)$, and $x=x-0=x-(x-d(x))=x \wedge$ $d(x)=d(x) \in \operatorname{Im}(d)$, and so $\operatorname{Ker}(\mu) \subseteq \operatorname{Im}(d)$. Hence it follows that $\operatorname{Ker}(\mu)=\operatorname{Im}(d)$.
4.10. Corollary. Let X be a subtraction algebra and d a derivation of X. Then the corestriction $\mu^{\circ}: X \rightarrow \operatorname{Ker}(d)$ of μ is an epimorphism.

Proof. By Theorem 4.9, $\mu: X \rightarrow X$ is a derivation, hence μ is a homomorphism, and it is clear that $\operatorname{Im}(\mu)=\operatorname{Ker}(d)$ by Lemma 3.18.
4.11. Theorem. Let X be a subtraction algebra and d a derivation of X. If $\bar{\mu}$: $X / \operatorname{Im}(d) \rightarrow X$ is the map defined by

$$
\bar{\mu}([x])=\mu(x)
$$

for all $[x] \in X / \operatorname{Im}(d)$, then $\bar{\mu}$ is a monomorphism. In particular, $X / \operatorname{Im}(d) \cong \operatorname{Ker}(d)$.
Proof. Suppose that $\bar{\mu}: X / \operatorname{Im}(d) \rightarrow X$ is the map defined by

$$
\bar{\mu}([x])=\mu(x)
$$

for all $[x] \in X / \operatorname{Im}(d)$. If $[x]=[y]$, then $x \sim_{\operatorname{Im}(d)} y$, which implies $x-y, y-x \in \operatorname{Im}(d)$, hence $d(x-y)=x-y$ and $d(y-x)=y-x$. It follows that

$$
\bar{\mu}([x])-\bar{\mu}([y])=\mu(x)-\mu(y)=\mu(x-y)=(x-y)-d(x-y)=0,
$$

and $\bar{\mu}([y])-\bar{\mu}([x])=0$ in a similar way. Hence $\bar{\mu}([x])=\bar{\mu}([y])$, and $\bar{\mu}$ is well-defined.
Let $[x],[y] \in X / \operatorname{Im}(d)$. Then we have

$$
\bar{\mu}([x]-[y])=\bar{\mu}([x-y])=\mu(x-y)=\mu(x)-\mu(y)=\bar{\mu}([x])-\bar{\mu}([y]),
$$

and $\bar{\mu}$ is a homomorphism.

To show that $\bar{\mu}$ is a monomorphism, let $\bar{\mu}([x])=\bar{\mu}([y])$. Then $\mu(x)=\mu(y)$, and

$$
\begin{aligned}
& 0=\mu(x)-\mu(y)=\mu(x-y)=(x-y)-d(x-y), \\
& 0=\mu(y)-\mu(x)=\mu(y-x)=(y-x)-d(y-x),
\end{aligned}
$$

hence $x-y \leq d(x-y)$ and $y-x \leq d(y-x)$. Since d is non-expansive, $x-y=d(x-y) \in$ $\operatorname{Im}(d)$ and $y-x=d(y-x) \in \operatorname{Im}(d)$. Therefore, $x \sim_{\operatorname{Im}(d)} y$. This implies $[x]=[y]$. Hence $\bar{\mu}$ is a monomorphism.

It is clear that $\operatorname{Im}(\bar{\mu})=\operatorname{Im}(\mu)$, and $\operatorname{Im}(\mu)=\operatorname{Ker}(d)$ by Corollary 4.10. Hence $X / \operatorname{Im}(d) \cong \operatorname{Ker}(d)$.

Now consider the sequence

$$
0 \longrightarrow \operatorname{Im}(d) \xrightarrow{i} X \xrightarrow{\mu^{\circ}} \operatorname{Ker}(d) \longrightarrow 0,
$$

of homomorphisms of subtraction algebras, where i is the inclusion map. We note that it is similar to a split exact sequence, since i is a monomorphism, μ° is an epimorphism and $\operatorname{Ker}\left(\mu^{\circ}\right)=\operatorname{Im}(i)$ by Corollary 4.10 and Theorem 4.9.
4.12. Proposition. Let d be a derivation of a subtraction algebra X. Then for each $x \in X, x=d(x) \vee \hat{x}$ with $d(x) \in \operatorname{Im}(d)$ and $\hat{x} \in \operatorname{Ker}(d)$.

Proof. Let X be a subtraction algebra and $x \in X$. Then the interval $[0, x]$ is a Boolean algebra with respect to the induced partial order and $\hat{x}=x-d(x)$ is the complement of $d(x)$ in $[0, x]$. Hence $d(x) \vee \hat{x}=d(x) \vee(x-d(x))=x$.

Let d be a derivation of a subtraction algebra X. Then $\operatorname{Im}(d)$ and $\operatorname{Ker}(d)$ are subtraction subalgebras. Hence $\operatorname{Im}(d) \times \operatorname{Ker}(d)$ is also a subtraction algebra with the binary operation "-" defined by

$$
\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)=\left(x_{1}-x_{2}, y_{1}-y_{2}\right)
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \operatorname{Im}(d) \times \operatorname{Ker}(d)$.
4.13. Theorem. Let d be a derivation of a subtraction algebra X. If $\phi=(d, \mu): X \rightarrow$ $\operatorname{Im}(d) \times \operatorname{Ker}(d)$ is the map defined by

$$
\phi(x)=(d(x), \mu(x))
$$

for all $x \in X$, then ϕ is a monomorphism.
Proof. Suppose that $\phi=(d, \mu): X \rightarrow \operatorname{Im}(d) \times \operatorname{Ker}(d)$ is the map defined by $\phi(x)=$ $(d(x), \mu(x))$ for all $x \in X$. Then for any $x, y \in X$ we have

$$
\begin{aligned}
\phi(x-y) & =(d(x-y), \mu(x-y)) \\
& =(d(x)-d(y), \mu(x)-\mu(y)) \\
& =(d(x), \mu(x))-(d(y), \mu(y)) \\
& =\phi(x)-\phi(y) .
\end{aligned}
$$

If $\phi(x)=\phi(y)$, then $(d(x), \mu(x))=(d(y), \mu(y))$, and by Proposition 4.12,

$$
x=d(x) \vee \hat{x}=d(x) \vee \mu(x)=d(y) \vee \mu(y)=d(y) \vee \hat{y}=y .
$$

Hence ϕ is a monomorphism.

Acknowledgement

The research was supported by a grant from the Academic Research Program of Chungju National University in 2010.

References

[1] Abbott, J. C. Sets, Lattices and Boolean Algebras (Allyn and Bacon, Boston, 1969).
[2] Schein, B. M. Difference semigroups, Comm. Algebra 20, 2153-2169, 1992.
[3] Xin, X. L., Li, T. Y. and Lu, J. H. On derivations of lattices, Inform. Sci. 178, 307-316, 2008.
[4] Zelinka, B. Subtraction semigroups, Math. Bohem. 120, 445-447, 1995.

[^0]: *Innovation Center for Engineering Education, Mokwon University, Daejeon, 302-729, Korea. E-mail: yhyon@mokwon.ac.kr
 ${ }^{\dagger}$ Department of Mathematics, Chungju National University, Chungju, 380-702, Korea.
 E-mail: ghkim@cjnu.ac.kr
 ${ }^{\ddagger}$ Corresponding Author.

