\bigwedge Hacettepe Journal of Mathematics and Statistics Volume 41 (2) (2012), 169–173

THE METRIC CONNECTION WITH RESPECT TO THE SYNECTIC METRIC

Melek Aras*

Received 22:02:2010 : Accepted 22:04:2011

Abstract

The purpose of this paper is to investigate the metric connection of the synectic metric ${}^{S}g$ and to compute the components \widetilde{R}^{A}_{DCB} of the curvature tensor \widetilde{R} of the metric connection of the synectic metric ${}^{S}g$ in the tangent bundle $T(M_n)$ of the Riemannian manifold (M_n) .

Keywords: Tangent bundle, Synectic metric, Metric connection, Riemannian connection, Curvature tensor.

2000 AMS Classification: 53 C 07, 53 C 25.

1. Introduction

Let M_n be an *n*-dimensional differentiable manifold of class C^{∞} and $T_P(M_n)$ the tangent space at a point P of M_n , that is, the set of all tangent vectors of M_n at P. Then the set

$$T\left(M_{n}\right) = \bigcup_{P \in M_{n}} T_{P}\left(M_{n}\right)$$

is, by definition, the tangent bundle over the manifold (M_n) [2]. We denote by $\Im_q^p(M_n)$ the set of all tensor fields of type (p,q) in M_n and by $\pi : T(M_n) \to M_n$ the naturel projection over M_n .

For $U \subset M_n$, (x^h, y^h) are local coordinates in a neighborhood $\pi^{-1}(U) \subset T(M_n)$. If $\{U', x^{h'}\}$ is another coordinate neighborhood in M_n containing the point $P = \pi\left(\widetilde{P}\right)$ $(P \epsilon U \text{ and } \widetilde{P} \epsilon T_P(M_n))$, then $\pi^{-1}(U')$ contains \widetilde{P} and the induced coordinates of \widetilde{P} with respect to $\pi^{-1}(U')$ will be given by $(x^{h'}, y^{h'})$, where

$$\begin{aligned} x^{h'} &= x^{h'}\left(x\right), \\ y^{h'} &= \frac{\partial x^{h'}}{\partial x^h} y^h, \end{aligned}$$

^{*}Department of Mathematics, Faculty of Arts and Sciences, Giresun Universty, 28049 Giresun, Turkey. E-mail: melek.aras@giresun.edu.tr melekaras25@hotmail.com

M. Aras

 $x^{h'}(x)$ being differentiable functions (of class C^{∞}). Putting $x^{h'} = y^h$, $x^{\overline{h'}} = y^{h'}$, we write $x^{P'} = x^{P'}(x)$.

The Jacobian is given by the matrix

$$\left(\frac{\partial x^{P'}}{\partial x^P}\right) = \begin{pmatrix} \frac{\partial x^{h'}}{\partial x^h} & 0\\ \frac{\partial^2 x^{h'}}{\partial x^h \partial x^i} y^i & \frac{\partial x^{h'}}{\partial x^h} \end{pmatrix}.$$

Let M_n be a Riemannian manifold with metric g whose components in a coordinate neighborhood U are g_{ji} . In the neighborhood $\pi^{-1}(U)$ of $T(M_n)$, U being a neighborhood of M_n , we put

$$\delta y^h = dy^h + \Gamma^h_i dx^i$$

with respect to the induced coordinates (x^h, y^h) in $\pi^{-1}(U) \subset T(M_n)$, where $\Gamma_i^h = y^j \Gamma_{ji}^h$.

Suppose that there is given the following Riemannian metric

(1)
$${}^{S}\widetilde{g}_{CB}dx^{C}dx^{B} = a_{ji}dx^{j}dx^{i} + 2g_{ji}dx^{j}\delta y^{i}$$

in the tangent bundle in $T(M_n)$ over a Riemannian manifold M_n with metric g, where a_{ji} are components of a symmetric tensor field of type (0, 2) in M_n . We call this metric the synectic metric. The synectic metric ${}^{S}g = {}^{C}g + {}^{V}a$ has components [3]

(2)
$${}^{S}g = \begin{pmatrix} {}^{S}\widetilde{g}_{CB} \end{pmatrix} = \begin{pmatrix} a_{ji} + \partial g_{ji} & g_{ji} \\ g_{ji} & 0 \end{pmatrix}$$

where $\partial g_{ji} = x^{\overline{s}} \partial_s g_{ji}$.

Let M_n be a Riemannian manifold with metric g, whose local components are g_{ji} . Suppose that we are given a Riemannian metric \tilde{g} in $T(M_n)$ having local expression

$$\widetilde{g}_{CB}dx^C dx^B = 2g_{ji}dx^j \delta y^{\prime}$$

with respect to the induced coordinates (X^A) , i.e., (x^h, y^h) , where

$$\delta y^h = dy^h + \Gamma^h_i dx^i, \ \Gamma^h_i = y^k \Gamma^h_{ki}$$

and Γ_{ji}^h are the Christoffel symbols formed with g_{ji} . We call this metric the metric Π . \tilde{g} has components

$$(\widetilde{g}_{CB}) = \begin{pmatrix} \partial g_{ji} & g_{ji} \\ g_{ji} & 0 \end{pmatrix}.$$

The metric connection $\overline{\nabla}$ of the metric Π is the unique connection which satisfies

$$\overline{\nabla}_C \widetilde{g}_{BA} = 0$$

and has non-trivial torsion tensor \overline{T}_{CB}^A , which is skew-symmetric in the indices C and B. The connection $\overline{\nabla}$ satisfies

$$\overline{\nabla}_C \widetilde{g}_{BA} = 0$$
 and $\overline{\Gamma}^A_{CB} - \overline{\Gamma}^A_{BC} = \overline{T}^A_{CB}$.

Then the metric connection $\overline{\nabla}$ of the metric Π has components $\overline{\Gamma}^N_{AB}$ such that

$$\begin{cases} \overline{\Gamma}_{ji}^{h} = \overline{\Gamma}_{\overline{j}i}^{h} = \overline{\Gamma}_{j\overline{i}}^{h} = \Gamma_{ji}^{h}, \\ \overline{\Gamma}_{ji}^{h} = \overline{\Gamma}_{j\overline{i}}^{h} = \overline{\Gamma}_{j\overline{i}}^{h} = \overline{\Gamma}_{j\overline{i}}^{h} = \overline{\Gamma}_{\overline{j}i}^{h} = 0 \\ \overline{\Gamma}_{ji}^{\overline{h}} = \partial\Gamma_{ji}^{h} - y^{k}R_{kjih} \end{cases}$$

with respect to the induced coordinates in $T(M_n)$, where Γ_{ji}^k are the components of ∇ in M_n [4].

170

2. Riemannian connection of Sg

The components of the Riemannian connection determined by the metric Sg are given by

(3)
$${}^{S}\Gamma^{K}_{JI} = \frac{1}{2}\tilde{g}^{KM} \left(\partial_{J}{}^{S}g_{MI} + \partial_{I}{}^{S}g_{JM} - \partial_{M}{}^{S}g_{JI} \right),$$

where \tilde{g}^{KM} are the contravariant components of the metric ${}^{S}g$ with respect to the induced coordinates in $T(M_{n})$:

(4)
$${}^{S}\widetilde{g}^{CB} = \begin{pmatrix} 0 & g^{j^{i}} \\ g^{j^{i}} & x^{\overline{s}}\partial_{s}g^{j^{i}} - a^{j^{i}} \\ \vdots \end{pmatrix}, a^{ti}_{\cdot\cdot} = g^{j^{t}}a_{js}g^{s^{i}}$$

where g^{ji} denote the contravariant components of g in M_n [4], i.e.,

(5)
$${}^{S}g_{IM}\tilde{g}^{MJ} = \delta_{I}^{J} = \begin{cases} 0 & I \neq J \\ 1 & I = J \end{cases}$$

Then, taking account (2) and (4), we have

(6)
$$\begin{cases} {}^{S}\Gamma_{ji}^{k}=\Gamma_{ji}^{k}, \quad {}^{S}\Gamma_{\overline{ji}}^{\overline{k}}=\Gamma_{ji}^{k}, \quad {}^{S}\Gamma_{\overline{ji}}^{\overline{k}}=\Gamma_{ji}^{k}, \quad {}^{S}\Gamma_{\overline{ji}}^{\overline{k}}=0 \\ {}^{S}\Gamma_{\overline{ji}}^{k}={}^{S}\Gamma_{\overline{ji}}^{k}={}^{S}\Gamma_{\overline{ji}}^{k}=0, \quad {}^{S}\Gamma_{\overline{ji}}^{\overline{k}}=x^{\overline{t}}\partial_{t}\Gamma_{ji}^{k}+H_{ji}^{k} \end{cases}$$

with respect to the induced coordinates in $T(M_n)$, Γ_{ji}^k being the Christoffel symbols constructed with g_{ji} , $H_{ji}^k = \frac{1}{2}g^{ks}(\nabla_j a_{si} + \nabla_i a_{js} - \nabla_s a_{ji})$ is a tensor of type (1, 2) and $\nabla_s a_{ji} = \partial_s a_{ji} - \Gamma_{kj}^l a_{li} - \Gamma_{ki}^l a_{jl}$.

Hence, from (6) we have:

2.1. Remark. If $\nabla a = 0$, then ${}^{S}\Gamma = {}^{C}\Gamma$, where ${}^{C}\Gamma$ is the Riemannian connection of ${}^{C}g$ [4].

2.2. Remark. If $a_{ji} = g_{ji}$, then ${}^{S}\Gamma = {}^{C}\Gamma$.

Thus we have

2.3. Theorem.
$${}^{S}\Gamma = {}^{C}\Gamma + {}^{V}H$$
, where ${}^{V}H$ is the vertical lift of $H \in T_{2}^{1}(M_{n})$.

3. The Metric connection with respect to the synectic metric ${}^{S}g$

Let $\widetilde{\nabla}$ be a connection which satisfies

(7) $\widetilde{\nabla}^S g = 0,$

and has torsion, where ${}^{S}g$ is the synectic metric ${}^{S}g = {}^{C}g + {}^{V}a$ in $T(M_n)$.

The connection $\widetilde{\nabla}$ has the non-trivial torsion tensor \widetilde{T}_{AB}^C , which is skew-symmetric in the indices C and B. We denote this connection by $\widetilde{\nabla}$ and its components by $\widetilde{\Gamma}_{AB}^C$. Then the connection $\widetilde{\nabla}$ satisfies

(8)
$$\widetilde{\nabla}^{S} g = 0 \text{ and } \widetilde{\Gamma}^{C}_{AB} - \widetilde{\Gamma}^{C}_{BA} = \widetilde{T}^{C}_{AB}$$

On solving (8) with respect to $\widetilde{\Gamma}_{AB}^{C}$, we find [1]

(9)
$${}^{S}\Gamma^{N}_{AB} + U^{N}_{AB} = \widetilde{\Gamma}^{N}_{AB}$$

where ${}^{S}\Gamma^{C}_{AB}$ are the Christoffel symbols constructed with the metric ${}^{S}g,$

(10)
$$U_{ABC} = \frac{1}{2} \left(\tilde{T}_{CAB} + \tilde{T}_{CBA} + \tilde{T}_{ABC} \right)$$

and

(11)
$$U_{ABC} = U_{AB}^{N S} g_{NC}, \quad \widetilde{T}_{ABC} = \widetilde{T}_{AB}^{N S} g_{NC}.$$

M. Aras

If we put

(12) $\widetilde{T}_{ji}^{\overline{h}} = R_{jik}^h y^k,$

all other \tilde{T}_{CB}^A not related to $\tilde{T}_{ji}^{\overline{h}}$ being assumed to be zero, then we get a tensor field \tilde{T}_{CB}^A of type (1,2) in $T(M_n)$ which is skew-symmetric in the indices A and B. We take this \tilde{T}_{CB}^A as the torsion tensor and determine a metric connection in $T(M_n)$ with respect to the metric ${}^{S}g$.

Since

 $\widetilde{T}_{jih} = R_{jikh} y^k, \quad R_{jikh} = R^n_{jik} g_{nh},$

we have for $\tilde{T}_{CAB} + \tilde{T}_{CBA} + \tilde{T}_{ABC}$

$$\widetilde{T}_{jih} + \widetilde{T}_{hji} + \widetilde{T}_{hij} = (R_{jikh} + R_{hjki} + R_{hikj}) y^k$$
$$= -2R_{kjih} y^k,$$

from which

$$U_{jih} = \frac{1}{2} \left(\widetilde{T}_{jih} + \widetilde{T}_{hji} + \widetilde{T}_{hij} \right) = -R_{kjih} y^k,$$

that is,

(13)
$$U_{ji}^{\overline{h}} = -R_{kji}^h y^k,$$

all the other U_{AB}^{N} being zero. Thus, substituting (13) and (6) in (9) we have

(14)
$$\begin{cases} \widetilde{\Gamma}_{ji}^{h} = \widetilde{\Gamma}_{ji}^{h} = \widetilde{\Gamma}_{ji}^{h} = \Gamma_{ji}^{h}, \\ \widetilde{\Gamma}_{ji}^{h} = \widetilde{\Gamma}_{ji}^{h} = \widetilde{\Gamma}_{ji}^{h} = \Gamma_{ji}^{h}, \\ \widetilde{\Gamma}_{ji}^{h} = x^{t} \partial_{t} \Gamma_{ji}^{h} + H_{ji}^{h} - y^{k} R_{kjih}, \end{cases}$$

with respect to the induced coordinates, Γ_{ji}^k being the Christoffel symbols formed with g_{ji} , where $H_{ji}^k = \frac{1}{2}g^{ks} (\nabla_j a_{si} + \nabla_i a_{js} - \nabla_s a_{ji})$. Thus we have:

3.1. Remark. If $\nabla a = 0$, then the metric connection $\widetilde{\nabla}$ in the tangent bundle $T(M_n)$ with respect to the metric ${}^{S}g$ coincides with the metric connection $\overline{\nabla}$ with the metric ${}^{C}g$. That is,

$$\widetilde{\nabla} = \overline{\nabla}.$$

3.2. Remark. If $a_{ji} = g_{ji}$, then the metric connection $\widetilde{\nabla}$ in the tangent bundle $T(M_n)$ with respect to the metric ${}^{S}g$ coincides with the metric connection $\overline{\nabla}$ with the metric ${}^{C}g$. That is,

 $\widetilde{\nabla} = \overline{\nabla}.$

Thus we have

3.3. Theorem. $\widetilde{\nabla} = \overline{\nabla} + {}^{V} H$, where $H_{ji}^{k} = \frac{1}{2}g^{ks} (\nabla_{j}a_{si} + \nabla_{i}a_{js} - \nabla_{s}a_{ji})$.

4. The Curvature tensor of the Metric connection ∇

Components of the curvature tensor of the metric connection are given by

(15)
$$\widetilde{R}_{KJI}^{H} = \partial_{K}\widetilde{\Gamma}_{JI}^{H} - \partial_{J}\widetilde{\Gamma}_{KI}^{H} + \widetilde{\Gamma}_{KT}^{H}\widetilde{\Gamma}_{JI}^{H} - \widetilde{\Gamma}_{JT}^{H}\widetilde{\Gamma}_{KI}^{H}$$

where $\widetilde{\Gamma}_{JI}^{H}$ are the components of the metric connection $\widetilde{\nabla}$ with respect to the metric ${}^{S}g$. Taking into account (14)–(15), we have

(16)
$$\begin{cases} \widetilde{R}_{kji}^{h} = \widetilde{R}_{kji}^{\overline{h}} = \widetilde{R}_{kji}^{\overline{h}} = \widetilde{R}_{kji}^{\overline{h}} = R_{kji}^{h} \\ \widetilde{R}_{kji}^{\overline{h}} = \partial R_{kji}^{h} + y^{n} \left(\nabla_{j} R_{nki}^{h} - \nabla_{k} R_{nji}^{h} \right) + \nabla_{k} H_{ji}^{h} - \nabla_{j} H_{ki}^{h}, \end{cases}$$

172

all the others not related to these being zero, with respect to the induced coordinates.

The contracted curvature tensor of the metric connection $\widetilde{\nabla}$ has components $\widetilde{R}_{CB} = \widetilde{R}_{ECB}^{E}$ such that

(17)
$$\widetilde{R}^{E}_{Eji} = R_{ji}, \quad \widetilde{R}^{E}_{E\overline{j}i} = 0, \quad \widetilde{R}^{E}_{Ej\overline{i}} = 0, \quad \widetilde{R}^{E}_{E\overline{j}\overline{i}} = 0$$

because of (16), where $R_{ji} = R_{hji}^h$ denote the components of the Ricci tensor of the Riemannian manifold M_n . Thus we have

4.1. Theorem. The tangent bundle $T(M_n)$ with the metric connection $\widetilde{\nabla}$ has a vanishing contracted curvature tensor if and only if M_n has a vanishing Ricci tensor.

For the scalar curvature of $T(M_n)$ with the metric connection, we have

(18) $\widetilde{R} = \widetilde{g}^{CB}\widetilde{R}_{CB} = 0$

by means of (4) and (17), where \widetilde{g}^{CB} denote the contravariant components of the metric $^Sg.$ Thus we have

4.2. Theorem. The tangent bundle $T(M_n)$ with the metric connection of the synectic metric ^Sg has vanishing scalar curvature.

References

- [1] Hayden, H. A. Subspaces of a space with torsion, Proc. London Math. Soc. 34, 27–50, 1932.
- [2] Steenrod, N. The Topology of Fibre Bundles (Princeton Univ. Press, Princeton, NJ., 1951).
- [3] Vishnevskii, V. V., Shirokov, A. P. and Shurygin, V. V. Spaces over Algebras (Kazan Bos. Univ., Kazan, 1985).
- [4] Yano, K. and Ishihara, S. Tangent and Cotangent Bundles (Marcel Dekker Inc., New York, 1973).