THE METRIC CONNECTION WITH RESPECT TO THE SYNECTIC METRIC

Melek Aras*

Received 22:02:2010 : Accepted 22:04:2011

Abstract

The purpose of this paper is to investigate the metric connection of the synectic metric ${ }_{\widetilde{R}}{ }^{S} g$ and to compute the components $\widetilde{R}_{D C B}^{A}$ of the curvature tensor \widetilde{R} of the metric connection of the synectic metric ${ }^{S} g$ in the tangent bundle $T\left(M_{n}\right)$ of the Riemannian manifold $\left(M_{n}\right)$.

Keywords: Tangent bundle, Synectic metric, Metric connection, Riemannian connection, Curvature tensor.
2000 AMS Classification: $53 \mathrm{C} 07,53 \mathrm{C} 25$.

1. Introduction

Let M_{n} be an n-dimensional differentiable manifold of class C^{∞} and $T_{P}\left(M_{n}\right)$ the tangent space at a point P of M_{n}, that is, the set of all tangent vectors of M_{n} at P. Then the set

$$
T\left(M_{n}\right)=\bigcup_{P \in M_{n}} T_{P}\left(M_{n}\right)
$$

is, by definition, the tangent bundle over the manifold $\left(M_{n}\right)$ [2]. We denote by $\Im_{q}^{p}\left(M_{n}\right)$ the set of all tensor fields of type (p, q) in M_{n} and by $\pi: T\left(M_{n}\right) \rightarrow M_{n}$ the naturel projection over M_{n}.

For $U \subset M_{n},\left(x^{h}, y^{h}\right)$ are local coordinates in a neighborhood $\pi^{-1}(U) \subset T\left(M_{n}\right)$. If $\left\{U^{\prime}, x^{h^{\prime}}\right\}$ is another coordinate neighborhood in M_{n} containing the point $P=\pi(\widetilde{P})$ ($P \epsilon U$ and $\widetilde{P} \epsilon T_{P}\left(M_{n}\right)$), then $\pi^{-1}\left(U^{\prime}\right)$ contains \widetilde{P} and the induced coordinates of \widetilde{P} with respect to $\pi^{-1}\left(U^{\prime}\right)$ will be given by $\left(x^{h^{\prime}}, y^{h^{\prime}}\right)$, where

$$
\begin{aligned}
x^{h^{\prime}} & =x^{h^{\prime}}(x) \\
y^{h^{\prime}} & =\frac{\partial x^{h^{\prime}}}{\partial x^{h}} y^{h}
\end{aligned}
$$

[^0]$x^{h^{\prime}}(x)$ being differentiable functions (of class C^{∞}). Putting $x^{h^{\prime}}=y^{h}, x^{\overline{h^{\prime}}}=y^{h^{\prime}}$, we write $x^{P^{\prime}}=x^{P^{\prime}}(x)$.

The Jacobian is given by the matrix

$$
\left(\begin{array}{c}
\frac{\partial x^{P^{\prime}}}{\partial x^{P}}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\partial x^{h^{\prime}}}{\partial x^{h}} & 0 \\
\frac{\partial^{2} x^{h^{\prime}}}{\partial x^{h} \partial x^{i}} y^{i} & \frac{\partial x^{h^{\prime}}}{\partial x^{h}}
\end{array}\right) .
$$

Let M_{n} be a Riemannian manifold with metric g whose components in a coordinate neighborhood U are $g_{j i}$. In the neighborhood $\pi^{-1}(U)$ of $T\left(M_{n}\right), U$ being a neighborhood of M_{n}, we put

$$
\delta y^{h}=d y^{h}+\Gamma_{i}^{h} d x^{i}
$$

with respect to the induced coordinates $\left(x^{h}, y^{h}\right)$ in $\pi^{-1}(U) \subset T\left(M_{n}\right)$, where $\Gamma_{i}^{h}=y^{j} \Gamma_{j i}^{h}$.
Suppose that there is given the following Riemannian metric
(1) $\quad{ }^{S} \widetilde{g}_{C B} d x^{C} d x^{B}=a_{j i} d x^{j} d x^{i}+2 g_{j i} d x^{j} \delta y^{i}$
in the tangent bundle in $T\left(M_{n}\right)$ over a Riemannian manifold M_{n} with metric g, where $a_{j i}$ are components of a symmetric tensor field of type $(0,2)$ in M_{n}. We call this metric the synectic metric. The synectic metric ${ }^{S} g={ }^{C} g+{ }^{V} a$ has components [3]

$$
{ }^{S} g=\left({ }^{S} \widetilde{g}_{C B}\right)=\left(\begin{array}{cc}
a_{j i}+\partial g_{j i} & g_{j i} \tag{2}\\
g_{j i} & 0
\end{array}\right)
$$

where $\partial g_{j i}=x^{\bar{s}} \partial_{s} g_{j i}$.
Let M_{n} be a Riemannian manifold with metric g, whose local components are $g_{j i}$. Suppose that we are given a Riemannian metric \widetilde{g} in $T\left(M_{n}\right)$ having local expression

$$
\widetilde{g}_{C B} d x^{C} d x^{B}=2 g_{j i} d x^{j} \delta y^{i}
$$

with respect to the induced coordinates $\left(X^{A}\right)$, i.e., $\left(x^{h}, y^{h}\right)$, where

$$
\delta y^{h}=d y^{h}+\Gamma_{i}^{h} d x^{i}, \Gamma_{i}^{h}=y^{k} \Gamma_{k i}^{h}
$$

and $\Gamma_{j i}^{h}$ are the Christoffel symbols formed with $g_{j i}$. We call this metric the metric Π. \widetilde{g} has components

$$
\left(\widetilde{g}_{C B}\right)=\left(\begin{array}{cc}
\partial g_{j i} & g_{j i} \\
g_{j i} & 0
\end{array}\right)
$$

The metric connection $\bar{\nabla}$ of the metric Π is the unique connection which satisfies

$$
\bar{\nabla}_{C} \widetilde{g}_{B A}=0
$$

and has non-trivial torsion tensor $\bar{T}_{C B}^{A}$, which is skew-symmetric in the indices C and B. The connection $\bar{\nabla}$ satisfies

$$
\bar{\nabla}_{C} \widetilde{g}_{B A}=0 \text { and } \bar{\Gamma}_{C B}^{A}-\bar{\Gamma}_{B C}^{A}=\bar{T}_{C B}^{A} .
$$

Then the metric connection $\bar{\nabla}$ of the metric Π has components $\bar{\Gamma}_{A B}^{N}$ such that

$$
\left\{\begin{array}{l}
\bar{\Gamma}_{j i}^{h}=\bar{\Gamma}_{\bar{j} i}^{\bar{h}}=\bar{\Gamma}_{j \bar{i}}^{\bar{h}}=\Gamma_{j i}^{h}, \\
\bar{\Gamma}_{\bar{j} i}^{h}=\bar{\Gamma}_{j \bar{i}}^{h}=\bar{\Gamma}_{\bar{j} i}^{h}=\bar{\Gamma}_{j \overline{j i}}^{h}=0, \\
\bar{\Gamma}_{j i}^{h}=\partial \Gamma_{j i}^{h}-y^{k} R_{k j i h}
\end{array}\right.
$$

with respect to the induced coordinates in $T\left(M_{n}\right)$, where $\Gamma_{j i}^{k}$ are the components of ∇ in M_{n} [4].

2. Riemannian connection of ${ }^{S} \boldsymbol{g}$

The components of the Riemannian connection determined by the metric ${ }^{S} g$ are given by

$$
\begin{equation*}
{ }^{S} \Gamma_{J I}^{K}=\frac{1}{2} \widetilde{g}^{K M}\left(\partial_{J}{ }^{S} g_{M I}+\partial_{I}{ }^{S} g_{J M}-\partial_{M}{ }^{S} g_{J I}\right) \tag{3}
\end{equation*}
$$

where $\widetilde{g}^{K M}$ are the contravariant components of the metric ${ }^{S} g$ with respect to the induced coordinates in $T\left(M_{n}\right)$:

$$
S \widetilde{g}^{C B}=\left(\begin{array}{cc}
0 & g^{j i} \tag{4}\\
g^{j i} & x^{\bar{s}} \partial_{s} g^{j i}-a_{. .}^{j i}
\end{array}\right), a_{. .}^{t i}=g^{j t} a_{j s} g^{s i}
$$

where $g^{j i}$ denote the contravariant components of g in M_{n} [4], i.e.,

$$
{ }^{S} g_{I M} \widetilde{g}^{M J}=\delta_{I}^{J}= \begin{cases}0 & I \neq J \tag{5}\\ 1 & I=J\end{cases}
$$

Then, taking account (2) and (4), we have

$$
\left\{\begin{array}{l}
{ }^{S} \Gamma_{j i}^{k}=\Gamma_{j i}^{k}, \quad{ }^{S} \Gamma_{\bar{j} i}^{\bar{k}}=\Gamma_{j i}^{k}, \quad{ }^{S} \Gamma_{j \bar{k}}^{\bar{k}}=\Gamma_{j i}^{k}, \quad{ }^{S} \Gamma_{\bar{j} i}^{\bar{k}}=0 \tag{6}\\
{ }^{S} \Gamma_{j \bar{i}}^{k}={ }^{S} \Gamma_{\bar{j} i}^{k}={ }^{S} \Gamma_{\bar{j} i}^{k}=0, \quad{ }^{S} \Gamma_{j i}^{\bar{k}}=x^{\bar{t}} \partial_{t} \Gamma_{j i}^{k}+H_{j i}^{k}
\end{array}\right.
$$

with respect to the induced coordinates in $T\left(M_{n}\right), \Gamma_{j i}^{k}$ being the Christoffel symbols constructed with $g_{j i}, H_{j i}^{k}=\frac{1}{2} g^{k s}\left(\nabla_{j} a_{s i}+\nabla_{i} a_{j s}-\nabla_{s} a_{j i}\right)$ is a tensor of type (1,2) and $\nabla_{s} a_{j i}=\partial_{s} a_{j i}-\Gamma_{k j}^{l} a_{l i}-\Gamma_{k i}^{l} a_{j l}$.

Hence, from (6) we have:
2.1. Remark. If $\nabla a=0$, then ${ }^{S} \Gamma={ }^{C} \Gamma$, where ${ }^{C} \Gamma$ is the Riemannian connection of ${ }^{C} g$ [4].
2.2. Remark. If $a_{j i}=g_{j i}$, then ${ }^{S} \Gamma={ }^{C} \Gamma$.

Thus we have
2.3. Theorem. ${ }^{S} \Gamma={ }^{C} \Gamma+{ }^{V} H$, where ${ }^{V} H$ is the vertical lift of $H \in T_{2}^{1}\left(M_{n}\right)$.

3. The Metric connection with respect to the synectic metric ${ }^{S} \boldsymbol{g}$

Let $\widetilde{\nabla}$ be a connection which satisfies
(7) $\quad \widetilde{\nabla}^{S} g=0$,
and has torsion, where ${ }^{S} g$ is the synectic metric ${ }^{S} g={ }^{C} g+{ }^{V} a$ in $T\left(M_{n}\right)$.
The connection $\widetilde{\nabla}$ has the non-trivial torsion tensor $\widetilde{T}_{A B}^{C}$, which is skew-symmetric in the indices C and B. We denote this connection by $\widetilde{\nabla}$ and its components by $\widetilde{\Gamma}_{A B}^{C}$. Then the connection $\widetilde{\nabla}$ satisfies

$$
\begin{equation*}
\widetilde{\nabla}^{S} g=0 \text { and } \widetilde{\Gamma}_{A B}^{C}-\widetilde{\Gamma}_{B A}^{C}=\widetilde{T}_{A B}^{C} \tag{8}
\end{equation*}
$$

On solving (8) with respect to $\widetilde{\Gamma}_{A B}^{C}$, we find [1]
(9) ${ }^{S} \Gamma_{A B}^{N}+U_{A B}^{N}=\widetilde{\Gamma}_{A B}^{N}$,
where ${ }^{S} \Gamma_{A B}^{C}$ are the Christoffel symbols constructed with the metric ${ }^{S} g$,
(10) $\quad U_{A B C}=\frac{1}{2}\left(\widetilde{T}_{C A B}+\widetilde{T}_{C B A}+\widetilde{T}_{A B C}\right)$
and

$$
\begin{equation*}
U_{A B C}=U_{A B}^{N}{ }^{S} g_{N C}, \quad \widetilde{T}_{A B C}=\widetilde{T}_{A B}^{N}{ }^{S} g_{N C} . \tag{11}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\widetilde{T}_{j i}^{\bar{h}}=R_{j i k}^{h} y^{k} \tag{12}
\end{equation*}
$$

all other $\widetilde{T}_{C B}^{A}$ not related to $\widetilde{T}_{j i}^{\bar{h}}$ being assumed to be zero, then we get a tensor field $\widetilde{T}_{C B}^{A}$ of type $(1,2)$ in $T\left(M_{n}\right)$ which is skew-symmetric in the indices A and B. We take this $\widetilde{T}_{C B}^{A}$ as the torsion tensor and determine a metric connection in $T\left(M_{n}\right)$ with respect to the metric ${ }^{S} g$.

Since

$$
\widetilde{T}_{j i h}=R_{j i k h} y^{k}, \quad R_{j i k h}=R_{j i k}^{n} g_{n h}
$$

we have for $\widetilde{T}_{C A B}+\widetilde{T}_{C B A}+\widetilde{T}_{A B C}$

$$
\begin{aligned}
\widetilde{T}_{j i h}+\widetilde{T}_{h j i}+\widetilde{T}_{h i j} & =\left(R_{j i k h}+R_{h j k \imath}+R_{h i k j}\right) y^{k} \\
& =-2 R_{k j i h} y^{k}
\end{aligned}
$$

from which

$$
U_{j \imath h}=\frac{1}{2}\left(\widetilde{T}_{j i h}+\widetilde{T}_{h j i}+\widetilde{T}_{h i j}\right)=-R_{k j i h} y^{k}
$$

that is,

$$
\begin{equation*}
U_{j i}^{\bar{h}}=-R_{k j i}^{h} y^{k} \tag{13}
\end{equation*}
$$

all the other $U_{A B}^{N}$ being zero. Thus, substituting (13) and (6) in (9) we have

$$
\left\{\begin{array}{l}
\widetilde{\Gamma}_{j i}^{h}=\widetilde{\Gamma}^{\widetilde{h}^{h}}=\widetilde{\Gamma}^{\bar{j}}{ }^{\bar{j}}=\Gamma_{j i}^{h} \tag{14}\\
\widetilde{\Gamma}_{j i}^{h}=\widetilde{\Gamma}^{h}{ }_{\bar{j}}{ }^{\frac{j}{i}}=\widetilde{\Gamma}_{j \bar{i}}^{h}=\Gamma_{j i}^{h} \\
\widetilde{\Gamma}_{j i}^{h}=x^{t} \partial_{t} \Gamma_{j i}^{h}+H_{j i}^{h}-y^{k} R_{k j i h}
\end{array}\right.
$$

with respect to the induced coordinates, $\Gamma_{j i}^{k}$ being the Christoffel symbols formed with $g_{j i}$, where $H_{j i}^{k}=\frac{1}{2} g^{k s}\left(\nabla_{j} a_{s i}+\nabla_{i} a_{j s}-\nabla_{s} a_{j i}\right)$. Thus we have:
3.1. Remark. If $\nabla a=0$, then the metric connection $\widetilde{\nabla}$ in the tangent bundle $T\left(M_{n}\right)$ with respect to the metric ${ }^{S} g$ coincides with the metric connection $\bar{\nabla}$ with the metric ${ }^{C} g$. That is,

$$
\widetilde{\nabla}=\bar{\nabla}
$$

3.2. Remark. If $a_{j i}=g_{j i}$, then the metric connection $\widetilde{\nabla}$ in the tangent bundle $T\left(M_{n}\right)$ with respect to the metric ${ }^{S} g$ coincides with the metric connection $\bar{\nabla}$ with the metric ${ }^{C} g$. That is,

$$
\widetilde{\nabla}=\bar{\nabla}
$$

Thus we have
3.3. Theorem. $\widetilde{\nabla}=\bar{\nabla}+{ }^{V} H$, where $H_{j i}^{k}=\frac{1}{2} g^{k s}\left(\nabla_{j} a_{s i}+\nabla_{i} a_{j s}-\nabla_{s} a_{j i}\right)$.

4. The Curvature tensor of the Metric connection $\widetilde{\boldsymbol{\nabla}}$

Components of the curvature tensor of the metric connection are given by
(15) $\quad \widetilde{R}_{K J I}^{H}=\partial_{K} \widetilde{\Gamma}_{J I}^{H}-\partial_{J} \widetilde{\Gamma}_{K I}^{H}+\widetilde{\Gamma}_{K T}^{H} \widetilde{\Gamma}_{J I}^{H}-\widetilde{\Gamma}_{J T}^{H} \widetilde{\Gamma}_{K I}^{H}$,
where $\widetilde{\Gamma}_{J I}^{H}$ are the components of the metric connection $\widetilde{\nabla}$ with respect to the metric ${ }^{S} g$.
Taking into account (14)-(15), we have

$$
\left\{\begin{array}{l}
\widetilde{R}_{k j i}^{h}=\widetilde{R}_{\overline{k j i}}^{\bar{h}}=\widetilde{R}_{k \bar{j} i}^{\bar{h}}=\widetilde{R}_{k j \bar{i}}^{\bar{h}}=R_{k j i}^{h} \tag{16}\\
\widetilde{R}_{k j i}^{h}=\partial R_{k j i}^{h}+y^{n}\left(\nabla_{j} R_{n k i}^{h}-\nabla_{k} R_{n j i}^{h}\right)+\nabla_{k} H_{j i}^{h}-\nabla_{j} H_{k i}^{h}
\end{array}\right.
$$

all the others not related to these being zero, with respect to the induced coordinates.
The contracted curvature tensor of the metric connection $\widetilde{\nabla}$ has components $\widetilde{R}_{C B}=$ $\widetilde{R}_{E C B}^{E}$ such that
(17) $\quad \widetilde{R}_{E j i}^{E}=R_{j i}, \quad \widetilde{R}_{E \bar{j} i}^{E}=0, \quad \widetilde{R}_{E j \bar{i}}^{E}=0, \quad \widetilde{R}_{E \bar{j} i}^{E}=0$
because of (16), where $R_{j i}=R_{h j i}^{h}$ denote the components of the Ricci tensor of the Riemannian manifold M_{n}. Thus we have
4.1. Theorem. The tangent bundle $T\left(M_{n}\right)$ with the metric connection $\widetilde{\nabla}$ has a vanishing contracted curvature tensor if and only if M_{n} has a vanishing Ricci tensor.

For the scalar curvature of $T\left(M_{n}\right)$ with the metric connection, we have

$$
\begin{equation*}
\widetilde{R}=\widetilde{g}^{C B} \widetilde{R}_{C B}=0 \tag{18}
\end{equation*}
$$

by means of (4) and (17), where $\widetilde{g}^{C B}$ denote the contravariant components of the metric ${ }^{s} g$. Thus we have
4.2. Theorem. The tangent bundle $T\left(M_{n}\right)$ with the metric connection of the synectic metric ${ }^{S} g$ has vanishing scalar curvature.

References

[1] Hayden, H. A. Subspaces of a space with torsion, Proc. London Math. Soc. 34, 27-50, 1932.
[2] Steenrod, N. The Topology of Fibre Bundles (Princeton Univ. Press, Princeton, NJ., 1951).
[3] Vishnevskii, V. V., Shirokov, A. P. and Shurygin, V. V. Spaces over Algebras (Kazan Bos. Univ., Kazan, 1985).
[4] Yano, K. and Ishıhara, S. Tangent and Cotangent Bundles (Marcel Dekker Inc., New York, 1973).

[^0]: *Department of Mathematics, Faculty of Arts and Sciences, Giresun Universty, 28049 Giresun, Turkey. E-mail: melek.aras@giresun.edu.tr melekaras25@hotmail.com

