$\bigwedge^{}_{N}$ Hacettepe Journal of Mathematics and Statistics Volume 41 (2) (2012), 175–190

(r, s)-CONVERGENT NETS

H. Ayg $ün^{*\dagger}$ and S. E. Abbas[‡]

Received 03:05:2010 : Accepted 02:11:2011

Abstract

We introduce the notions of (r, s)-adherent point, (r, s)-accumulation point, (r, s)-cluster point, (r, s)-limit point and (r, s)-derived set in an intuitionistic fuzzy topological spaces and investigate some of their properties. Also, we define (r, s)-convergent nets and investigate some of their properties.

Keywords: Intuitionistic fuzzy set, Intuitionistic fuzzy topology, (r, s)-adherent point, (r, s)-accumulation point, (r, s)-cluster point, (r, s)-limit point, (r, s)-derived set, (r, s)-convergent net.

2000 AMS Classification: 54 A 20, 54 A 40.

1. Introduction and preliminaries

Pu and Liu [19] introduced the notions of Q-neighborhood and fuzzy net with respect to Q-neighborhoods and established the convergence theory in fuzzy topological spaces. Chen and Cheng [6] introduced the concepts of fuzzy cluster and fuzzy limit point in fuzzy topological spaces with respect to R-neighborhoods instead of Q-neighborhoods. The convergence theory in fuzzy topological spaces has been developed in many directions [6,7,11,24].

Kubiak [15] and Šostak [21] introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that not only the objects are fuzzified, but also the axiomatics. In [22,23], Šostak gave some rules and showed how such an extension can be realized. Chattopadhyay *et al.* [4] have redefined the same concept under the name gradation of openness. A general approach to the study of topological type structures on fuzzy power sets was developed in [12-16].

As a generalization of fuzzy sets, the notion of intuitionistic fuzzy set was introduced by Atanassov [2]. By using intuitionistic fuzzy sets, Çoker and his coworker [8,9] defined the topology of intuitionistic fuzzy sets. Recently, Samanta and Mondal [20], introduced

^{*}Department of Mathematics, Kocaeli University, 41380 Izmit, Turkey. E-mail: halis@kocaeli.edu.tr

[†]Corresponding Author.

[‡]Department of Mathematics, Faculty of Science, Sohag University, Egypt. E-mail: sabbas73@yahoo.com

the notion of intuitionistic fuzzy gradation of openness of fuzzy sets, where to each fuzzy subsets there is a definite grade of openness and there is a grade of non-openness. Thus, the concept of intuitionistic fuzzy gradation of openness is a generalization of the concept of gradation of openness and the topology of intuitionistic fuzzy sets.

In this paper, we introduce the notions of (r, s)-adherent point, (r, s)-accumulation point, (r, s)-cluster point, (r, s)-limit point and (r, s)-derived set in an intuitionistic fuzzy topological spaces and investigate some of their properties. Also, we define (r, s)convergent nets and investigate some of their properties.

Throughout this paper, let X be a nonempty set, I = [0, 1], $I_0 = (0, 1]$ and $I_1 = [0, 1)$. For $\alpha \in I$, $\alpha(x) = \alpha$ for all $x \in X$. A fuzzy point x_t for $t \in I_0$ is an element of I^X such that

$$x_t(y) = \begin{cases} t, \text{ if } y = x, \\ 0, \text{ if } y \neq x. \end{cases}$$

The set of all fuzzy points in X is denoted by $P_t(X)$. A fuzzy point $x_t \in \lambda$ iff $t < \lambda(x)$. A fuzzy set λ is quasi-coincident with μ , denoted by $\lambda q \mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. If λ is not quasi-coincident with μ , we write $\lambda \overline{q} \mu$.

1.1. Definition. [20] An intuitionistic fuzzy gradation of openness (IFGO, for short) on X is an ordered pair (τ, τ^*) of functions from I^X to I such that

(IGO1) $\tau(\lambda) + \tau^*(\lambda) \le 1, \forall \lambda \in I^X$,

 $\begin{aligned} &(\text{IGO2}) \quad \tau(\underline{0}) = \tau(\underline{1}) = 1, \ \tau^*(\underline{0}) = \tau^*(\underline{1}) = 0, \\ &(\text{IGO3}) \quad \tau(\lambda_1 \wedge \lambda_2) \ge \tau(\lambda_1) \wedge \tau(\lambda_2) \text{ and } \tau^*(\lambda_1 \wedge \lambda_2) \le \tau^*(\lambda_1) \vee \tau^*(\lambda_2), \text{ for each } \lambda_1, \lambda_2 \in I_X^X, \end{aligned}$ (IGO4) $\tau(\bigvee_{i\in\Delta}\lambda_i) \ge \bigwedge_{i\in\Delta}\tau(\lambda_i)$ and $\tau^*(\bigvee_{i\in\Delta}\lambda_i) \le \bigvee_{i\in\Delta}\tau^*(\lambda_i)$, for each $\lambda_i \in I^X$, $i \in \Delta$.

The triplet (X, τ, τ^*) is called an *intuitionistic fuzzy topological space* (iffs, for short). τ and τ^* may be interpreted as fuzzy gradation of openness and fuzzy gradation of nonopenness, respectively.

1.2. Theorem. [1,17] Let (X, τ, τ^*) be an ifts. For each $r \in I_0$, $s \in I_1$, $\lambda \in I^X$, we define an operator $\mathcal{C}: I^X \times I_0 \times I_1 \to I^X$ as follows:

$$\mathfrak{C}(\lambda, r, s) = \bigwedge \{ \mu \mid \mu \ge \lambda, \tau(\underline{1} - \mu) \ge r, \tau^*(\underline{1} - \mu) \le s \}.$$

Then it satisfies the following properties:

- (1) $C(\underline{0}, r, s) = \underline{0}, C(\underline{1}, r, s) = \underline{1}, \text{ for all } r \in I_0, s \in I_1.$
- (2) $\mathcal{C}(\lambda, r, s) \geq \lambda$.
- (3) $\mathcal{C}(\lambda_1, r, s) \leq \mathcal{C}(\lambda_2, r, s), \text{ if } \lambda_1 \leq \lambda_2.$
- (4) $\mathcal{C}(\lambda \lor \mu, r, s) = \mathcal{C}(\lambda, r, s) \lor \mathcal{C}(\mu, r, s)$, for all $r \in I_0, s \in I_1$.
- (5) $\mathcal{C}(\lambda, r, s) \leq \mathcal{C}(\lambda, r', s')$, if $r \leq r', s \geq s'$, where $r, r' \in I_0, s, s' \in I_1$.
- (6) $\mathcal{C}(\mathcal{C}(\lambda, r, s), r, s) = \mathcal{C}(\lambda, r, s).$

Let (X, τ_1, τ_1^*) and (Y, τ_2, τ_2^*) be intuitionistic fuzzy topological spaces. A function $f: X \to Y$ is called IF continuous if $\tau_2(\mu) \leq \tau_1(f^{-1}(\mu))$ and $\tau_2^*(\mu) \geq \tau_1^*(f^{-1}(\mu))$ for all $\mu \in I^Y$.

1.3. Definition. [19] Let $\lambda, \mu \in I^X$. Define the fuzzy quasi-difference of λ and μ , denoted by $\lambda \setminus \mu$, as

$$(\lambda \backslash \mu)(x) = \begin{cases} \lambda(x), & \text{if } \mu(x) = 0, \\ 0, & \text{if } \lambda(x) \ge \mu(x) > 0, \\ \lambda(x), & \text{if } \lambda(x) < \mu(x). \end{cases}$$

1.4. Lemma. [19] For $\lambda, \mu \in I^X$ and $x_t \in P_t(X)$, the following properties hold:

(r, s)-Convergent Nets

- (1) $\lambda \setminus \mu \leq \lambda$ and $\lambda \setminus \underline{0} = \lambda$.
- (2) If $x_t \notin \lambda$, then $\lambda \setminus x_t = \lambda$. If $x_t \in \lambda$, then, for each $y \in X$,

$$(\lambda \backslash x_t)(y) = \begin{cases} \lambda(y), & \text{if } y \neq x, \\ 0, & \text{if } y = x. \end{cases}$$

- (3) $(\lambda \lor \mu) \setminus x_t \le (\lambda \setminus x_t) \lor (\mu \setminus x_t).$
- (4) If $f: X \to Y$ is injective, then $f(\lambda \setminus \mu) = f(\lambda) \setminus f(\mu)$.

1.5. Definition. [10] Let (X, τ, τ^*) be an ifts, $\mu \in I^X$, $x_t \in P_t(X)$, $r \in I_0$ and $s \in I_1$. Then μ is called an (r, s)-open Q-neighborhood of x_t if $x_t q \mu$ with $\tau(\mu) \ge r$ and $\tau^*(\mu) \le s$. We write

 $\mathcal{N}(x_t, r, s) = \{ \mu \mid \mu \in I^X, x_t q \mu, \quad \tau(\mu) \ge r \text{ and } \tau^*(\mu) \le s \}.$

1.6. Definition. [19] Let D be a directed set and $\lambda \in I^X$. A function $\mathcal{S} : D \to P_t(X)$ is called a *fuzzy net*. We say \mathcal{S} is a *fuzzy net in* λ if $\mathcal{S}(n) \in \lambda$ for every $n \in D$. A fuzzy net \mathcal{S} is *increasing* (resp. *decreasing*) if $\mathcal{S}(m) \leq \mathcal{S}(n)$ (resp. $\mathcal{S}(n) \leq \mathcal{S}(m)$) for every $m \leq n$ with $m, n \in D$.

1.7. Definition. [19] Let $S: D \to P_t(X)$ and $W: E \to P_t(X)$ be two fuzzy nets. Then, W is called a *subnet* of S if there exists a function $N: E \to D$, called by a *cofinal selection* on S, such that

- (1) $\mathcal{W} = \mathcal{S} \circ N$,
- (2) For every $n_0 \in D$, there exists $m_0 \in E$ such that $N(m) \ge n_0$ for $m \ge m_0$.

2. (r, s)-derived sets in intuitionistic fuzzy topological spaces

- **2.1. Definition.** Let (X, τ, τ^*) be an ifts, $\lambda \in I^X$, $x_t \in P_t(X)$, $r \in I_0$ and $s \in I_1$. Then:
 - (1) x_t is called an (r, s)-adherent point of λ if for every $x_t q \mu$ with $\tau(\mu) \geq r$ and $\tau^*(\mu) \leq s$, we have $\mu q \lambda$.
 - (2) x_t is called an (r, s)-accumulation point of λ if for every $x_t q \mu$ with $\tau(\mu) \ge r$ and $\tau^*(\mu) \le s$, we have $\mu q(\lambda \setminus x_t)$.

Define the (r, s)-derived set of λ , denote by $\mathcal{D}(\lambda, r, s)$, as

 $\mathcal{D}(\lambda, r, s) = \bigvee \{ x_t \mid x_t \in P_t(X) \text{ and } x_t \text{ is an } (r, s) \text{-accumulation point of } \lambda \}.$

2.2. Theorem. Let (X, τ, τ^*) be an ifts. For $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$, we have

 $\mathcal{C}(\lambda, r, s) = \bigvee \{ x_t \mid x_t \in P_t(X) \text{ and } x_t \text{ is an } (r, s) \text{-adherent point of } \lambda \}.$

Proof. Put $\rho = \bigvee \{x_t \in P_t(X) \mid x_t \text{ is an } (r, s) \text{-adherent point of } \lambda \}$. Suppose $\mathcal{C}(\lambda, r, s) \not\leq \rho$. Then there exist $x \in X$ and $t \in I_0$ such that

$$\mathbb{C}(\lambda, r, s)(x) \ge t > \rho(x)$$

Since $\rho(x) < t$, x_t is not an (r, s)-adherent point of λ . Hence there exists $\mu \in I^X$ with $x_t q \mu, \tau(\mu) \ge r$ and $\tau^*(\mu) \le s$ such that $\lambda \overline{q}\mu$, that is, $\lambda \le \underline{1} - \mu$. Then $\lambda \le \mathbb{C}(\lambda, r, s) \le \underline{1} - \mu$. Since $x_t q \mu$ and $\mu \le \underline{1} - \mathbb{C}(\lambda, r, s)$, we have $x_t q(\underline{1} - \mathbb{C}(\lambda, r, s))$. This implies $t > \mathbb{C}(\lambda, r, s)(x)$, a contradiction. Hence, $\mathbb{C}(\lambda, r, s) \le \rho$.

Suppose $\mathcal{C}(\lambda, r, s) \geq \rho$. Then there exists an (r, s)-adherent point $x_t \in P_t(X)$ such that

$$\mathcal{C}(\lambda, r, s)(x) < t \le \rho(x).$$

Since $\mathcal{C}(\lambda, r, s)(x) < t$, then $x_t q(\underline{1} - \mathcal{C}(\lambda, r, s)), \tau(\underline{1} - \mathcal{C}(\lambda, r, s)) \ge r$ and $\tau^*(\underline{1} - \mathcal{C}(\lambda, r, s)) \le s$. Moreover, since $\lambda \le \mathcal{C}(\lambda, r, s)$ we have

$$\lambda \overline{q}(\underline{1} - \mathcal{C}(\lambda, r, s)).$$

So x_t is not an (r, s)-adherent point of λ . It is a contradiction. Hence, $\mathcal{C}(\lambda, r, s) \geq \rho$. \Box

2.3. Theorem. Let (X, τ, τ^*) be an ifts. For $\lambda, \mu \in I^X$, $r \in I_0$ and $s \in I_1$, the following properties hold:

(1) $\mathcal{D}(\lambda, r, s) \leq \mathcal{C}(\lambda, r, s).$

(2) $\mathcal{C}(\lambda, r, s) = \lambda \vee \mathcal{D}(\lambda, r, s).$

(3) $\mathbb{C}(\lambda, r, s) = \lambda \text{ iff } \mathcal{D}(\lambda, r, s) \leq \lambda.$

(4) If $r_1 \ge r$ and $s_1 \le s$, then $\mathcal{D}(\lambda, r, s) \le \mathcal{D}(\lambda, r_1, s_1)$.

(5) $\mathcal{D}(\lambda \lor \mu, r, s) \le \mathcal{D}(\lambda, r, s) \lor \mathcal{D}(\mu, r, s).$

Proof. (1) Clear because every (r, s)-accumulation point of λ is an (r, s)-adherent point of λ .

(2) Since $\lambda \leq \mathcal{C}(\lambda, r, s)$ and $\mathcal{D}(\lambda, r, s) \leq \mathcal{C}(\lambda, r, s)$, we have

$$\lambda \lor \mathcal{D}(\lambda, r, s) \leq \mathcal{C}(\lambda, r, s).$$

Conversely, suppose $\mathcal{C}(\lambda, r, s) \not\leq \lambda \vee \mathcal{D}(\lambda, r, s)$. Then there exist $x \in X$ and $t \in I_0$ such that

$$\mathcal{C}(\lambda, r, s)(x) > t > \lambda(x) \lor \mathcal{D}(\lambda, r, s)(x).$$

Since $\lambda(x) \vee \mathcal{D}(\lambda, r, s)(x) < t$, then $x_t \notin \lambda$ and x_t is not an (r, s)-accumulation point of λ . Hence there exists $\mu \in I^X$ with $x_t q \mu$, $\tau(\mu) \geq r$ and $\tau^*(\mu) \leq s$ such that $\mu \overline{q}(\lambda \setminus x_t)$. Since $x_t \notin \lambda$, we have $(\lambda \setminus x_t) = \lambda$. Thus $\mu \overline{q} \lambda$ which implies $\lambda \leq \mathcal{C}(\lambda, r, s) \leq \underline{1} - \mu$. Since $x_t q \mu$, that is, $(\underline{1} - \mu)(x) < t$,

$$\mathcal{C}(\lambda, r, s)(x) \le (\underline{1} - \mu)(x) < t.$$

It is a contradiction. Hence $\mathcal{C}(\lambda, r, s) \leq \lambda \vee \mathcal{D}(\lambda, r, s)$.

(3) Follows immediately from (2).

(4) Suppose $\mathcal{D}(\lambda, r, s) \leq \mathcal{D}(\lambda, r_1, s_1)$. Then there exists an (r, s)-accumulation point $x_t \in P_t(X)$ of λ such that

$$\mathcal{D}(\lambda, r, s)(x) \ge t > \mathcal{D}(\lambda, r_1, s_1)(x).$$

Since $\mathcal{D}(\lambda, r_1, s_1)(x) < t$, then x_t is not an (r_1, s_1) -accumulation point of λ . Hence there exists $\rho \in I^X$ with $x_t q \rho$, $\tau(\rho) \geq r_1$ and $\tau^*(\rho) \leq s_1$ such that $\rho \overline{q}(\lambda \setminus x_t)$. Since $\tau(\rho) \geq r_1 \geq r$ and $\tau^*(\rho) \leq s_1 \leq s$, then x_t is not an (r, s)-accumulation point of λ . It is a contradiction.

(5) Suppose $\mathcal{D}(\lambda \lor \mu, r, s) \not\leq \mathcal{D}(\lambda, r, s) \lor \mathcal{D}(\mu, r, s)$. Then there exists an (r, s)-accumulation point $x_t \in P_t(X)$ of $\lambda \lor \mu$ such that

$$\mathcal{D}(\lambda \lor \mu, r, s)(x) \ge t > \mathcal{D}(\lambda, r, s)(x) \lor \mathcal{D}(\mu, r, s)(x).$$

Since $\mathcal{D}(\lambda, r, s)(x) < t$ and $\mathcal{D}(\mu, r, s)(x) < t$, then x_t is not an (r, s)-accumulation point of either λ or μ . Hence there exist $\rho_1, \rho_2 \in I^X$ with $x_t q \rho_i, \tau(\rho_i) \geq r$ and $\tau^*(\rho_i) \leq s$, for i = 1, 2, such that

 $\rho_1 \overline{q}(\lambda \setminus x_t)$ and $\rho_2 \overline{q}(\mu \setminus x_t)$.

Take $\rho = \rho_1 \wedge \rho_2$. Then $x_t q(\rho_1 \wedge \rho_2), \tau(\rho_1 \wedge \rho_2) \ge r$ and $\tau^*(\rho_1 \wedge \rho_2) \le s$. Moreover, $(\lambda \lor \mu) \setminus x_t \le (\lambda \setminus x_t) \lor (\mu \setminus x_t)$ by Lemma 1.4(3) $\le (\underline{1} - \rho_1) \lor (\underline{1} - \rho_2)$ $= \underline{1} - (\rho_1 \wedge \rho_2)$

 $= \underline{1} - \rho.$

Hence, $\rho \overline{q}((\lambda \lor \mu) \setminus x_t)$. Thus x_t is not an (r, s)-accumulation point of $\lambda \lor \mu$. It is a contradiction. Therefore, $\mathcal{D}(\lambda \lor \mu, r, s) \le \mathcal{D}(\lambda, r, s) \lor \mathcal{D}(\mu, r, s)$.

2.4. Theorem. Let (X, τ_1, τ_1^*) and (Y, τ_2, τ_2^*) be ifts's and $f : X \to Y$ an injective function. Then the following statements are equivalent:

- (1) f is IF continuous.
- (2) $f(\mathcal{D}(\lambda, r, s)) \leq \mathcal{D}(f(\lambda), r, s)$, for each $\lambda \in I_{\lambda}^{X}$, $r \in I_{0}$ and $s \in I_{1}$.
- (3) $f(\mathcal{C}(\lambda, r, s)) \leq \mathcal{C}(f(\lambda), r, s)$, for each $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$
- *Proof.* (1) \Longrightarrow (2): Suppose there exist $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$ such that

$$f(\mathcal{D}(\lambda, r, s)) \not\leq \mathcal{D}(f(\lambda), r, s).$$

Then there exists $y \in Y$ such that

$$f(\mathcal{D}(\lambda, r, s))(y) > \mathcal{D}(f(\lambda), r, s)(y).$$

Since f is injective, there exists a unique $x \in f^{-1}(\{y\})$ such that

 $f(\mathcal{D}(\lambda, r, s))(y) \ge \mathcal{D}(\lambda, r, s)(x) > \mathcal{D}(f(\lambda), r, s)(y).$

There exists an (r, s)-accumulation point x_t of λ on (X, τ_1, τ_1^*) such that

 $\mathcal{D}(\lambda, r, s)(x) \ge t > \mathcal{D}(f(\lambda), r, s)(f(x)).$

Therefore $f(x)_t = f(x_t)$ is not an (r, s)-accumulation point of $f(\lambda)$. Hence there exists $\rho \in I^Y$ with $f(x_t)q\rho$, $\tau_2(\rho) \ge r$ and $\tau_2^*(\rho) \le s$ such that $\rho \overline{q}(f(\lambda) \setminus f(x_t))$. Since f is injective, by Lemma 1.4 (4), $f(\lambda) \setminus f(x_t) = f(\lambda \setminus x_t)$. By the IF continuity of f, we have $\tau_1(f^{-1}(\rho)) \ge \tau_2(\rho) \ge r$ and $\tau_1^*(f^{-1}(\rho)) \le \tau_2^*(\rho) \le s$. Then we have $f(x_t)q\rho \Longrightarrow x_tqf^{-1}(\rho)$, which implies $\rho \overline{q}f(\lambda \setminus x_t) \Longrightarrow f^{-1}(\rho)\overline{q}(\lambda \setminus x_t)$. Hence x_t is not an (r, s)-accumulation point of λ . It is a contradiction. Hence $f(\mathcal{D}(\lambda, r, s)) \le \mathcal{D}(f(\lambda), r, s)$, for each $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$.

$$(2) \Longrightarrow (3)$$
: Easily proved from the following:

$$\begin{aligned} f(\mathbb{C}(\lambda, r, s)) &= f(\lambda \lor \mathcal{D}(\lambda, r, s)) & \text{(By Theorem 2.3(2))} \\ &= f(\lambda) \lor f(\mathcal{D}(\lambda, r, s)) \\ &\leq f(\lambda) \lor \mathcal{D}(f(\lambda), r, s) & \text{(by (2))} \\ &= \mathbb{C}(f(\lambda), r, s). \end{aligned}$$

 $(3) \Longrightarrow (1)$: Easily proved.

3. (r, s)-cluster points and (r, s)-limit points

3.1. Definition. Let (X, τ, τ^*) be an ifts, $\mu \in I^X$, $x_t \in P_t(X)$, $r \in I_0$ and $s \in I_1$. Then:

- (1) x_t is called an (r, s)-cluster point of S, denoted by $\mathscr{S}_{\infty}^{(r,s)} x_t$, if for every $\mu \in \mathcal{N}(x_t, r, s)$, S is frequently quasi-coincident with μ , i.e., for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \geq n$ and $\mathscr{S}(n_0)q\mu$.
- (2) x_t is called an (r, s)-limit point of S, denoted by $S \xrightarrow{(r,s)} x_t$, if for every $\mu \in \mathcal{N}(x_t, r, s)$, S is eventually quasi-coincident with μ , i.e., there exists $n_0 \in D$ such that for each $n \in D$ with $n \geq n_0$, we have $S(n)q\mu$.

We write

 $\operatorname{clu}(\mathfrak{S}, r, s) = \bigvee \{ x_t \mid x_t \in P_t(X) \text{ and } x_t \text{ is an } (r, s) \text{-cluster point of } \mathfrak{S} \},\$

 $\lim(\mathcal{S}, r, s) = \bigvee \{ x_t \mid x_t \in P_t(X) \text{ and } x_t \text{ is an } (r, s) \text{-limit point of } \mathcal{S} \}.$

3.2. Theorem. Let (X, τ, τ^*) be an ifts, $S : D \to P_t(X)$ a fuzzy net and $W : E \to P_t(X)$ a subnet of S. For $r, m \in I_0$ and $s \in I_1$, the following properties hold:

- (1) If $\mathbb{S}^{(r,s)}_{\longrightarrow} x_t$, then $\mathbb{S}^{(r,s)}_{\infty} x_t$.
- (2) $\lim(\mathfrak{S}, r, s) \leq \operatorname{clu}(\mathfrak{S}, r, s).$
- (3) If $\mathscr{S}^{(r,s)}_{\infty} x_t$ and $x_t \ge x_m$, then $\mathscr{S}^{(r,s)}_{\infty} x_m$.
- (4) If $S \xrightarrow{(r,s)} x_t$ and $x_t \ge x_m$, then $S \xrightarrow{(r,s)} x_m$.
- (5) $\mathscr{S}^{(r,s)}_{\infty} x_t$ iff $x_t \in \operatorname{clu}(\mathscr{S}, r, s)$.
- (6) $\mathcal{S}^{(r,s)}_{\longrightarrow} x_t$ iff $x_t \in \lim(\mathcal{S}, r, s)$.
- (7) If $\mathcal{S}^{(r,s)}_{\longrightarrow} x_t$, then $\mathcal{W}^{(r,s)}_{\longrightarrow} x_t$.
- (8) $\lim(\mathfrak{S}, r, s) \leq \lim(\mathcal{W}, r, s).$
- (9) If $\mathcal{W}^{(r,s)}_{\infty} x_t$, then $\mathcal{S}^{(r,s)}_{\infty} x_t$.
- (10) $\operatorname{clu}(\mathcal{W}, r, s) \leq \operatorname{clu}(\mathcal{S}, r, s).$

Proof. (1) and (2) are clear.

(3) For every $\mu \in \mathcal{N}(x_m, r, s)$, since $x_m \leq x_t$ then $\mu \in \mathcal{N}(x_t, r, s)$. Since $\mathcal{S}_{\infty}^{(r,s)} x_t$, for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \geq n$ and $\mathcal{S}(n_0)q\mu$. Hence $\mathcal{S}_{\infty}^{(r,s)} x_m$.

(4) Similar to (3).

(5) \implies . Clear.

 \Leftarrow . Let $x_t \in clu(S, r, s)$ and $\mu \in \mathcal{N}(x_t, r, s)$. Since $x_t q \mu$ and $clu(S, r, s)(x) \ge t$, we have

 $\mu(x) + \operatorname{clu}(\mathbb{S}, r, s)(x) \ge \mu(x) + t > 1.$

From the definition of $clu(\mathcal{S}, r, s)$, there exists an (r, s)-cluster point $x_m \in P_t(X)$ of \mathcal{S} such that

$$\mu(x) + \operatorname{clu}(S, r, s)(x) \ge \mu(x) + m > 1.$$

Thus $\mu \in \mathcal{N}(x_m, r, s)$. Since x_m is an (r, s)-cluster point of \mathcal{S} , for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \geq n$ and $\mathcal{S}(n_0)q\mu$. Hence $\mathcal{S}_{\infty}^{(r,s)}x_t$.

(6) Similar to (5).

(7) For every $\mu \in \mathcal{N}(x_t, r, s)$, since $\mathcal{S} \xrightarrow{(r,s)} x_t$, there exists $n_0 \in D$ such that for all $n \geq n_0$, $\mathcal{S}(n)q\mu$. Let $N : E \to D$ be a cofinal selection on \mathcal{S} . Then for $n_0 \in D$, there exists $m_0 \in E$ such that $\mathcal{N}(m) \geq n_0$ for all $m \geq m_0$. Thus $\mathcal{W}(m) = \mathcal{S}(\mathcal{N}(m))q\mu$ for $m > m_0$. Therefore, $\mathcal{W} \xrightarrow{(r,s)} x_t$.

(8) Clear from (7).

(9) Suppose that $\mathcal{W}_{\infty}^{(r,s)} x_t$ and $n \in D$. If $N : E \to D$ is a cofinal selection on \mathcal{S} , then there exists $m \in E$ such that $N(k) \geq n$ for $k \geq m$. Since $\mathcal{W}_{\infty}^{(r,s)} x_t$, for every $\mu \in \mathcal{N}(x_t, r, s)$, there exists $m_0 \in E$ such that $m_0 \geq m$ and $\mathcal{W}(m_0)q\mu$. We let $n_0 = N(m_0)$. Then $n_0 \geq n$, and since $\mathcal{S}(n_0) = \mathcal{W}(m_0)$ we have $\mathcal{S}(n_0)q\mu$.

(10) Clear from (9).

3.3. Theorem. Let (X, τ, τ^*) be an ifts, $x_t \in P_t(X)$, $r \in I_0$ and $s \in I_1$. For every fuzzy net S, $S^{(r,s)}_{\to x_t}$ iff $W^{(r,s)}_{\to x_t}$ for every fuzzy subnet W of S.

Proof. \Longrightarrow . From Theorem 3.2(7), $\mathcal{S}^{(r,s)}_{\longrightarrow} x_t$ implies $\mathcal{W}^{(r,s)}_{\longrightarrow} x_t$. From Theorem 3.2(1), $\mathcal{W}^{(r,s)}_{\longrightarrow} x_t$ implies $\mathcal{W}^{(r,s)}_{\infty} x_t$.

3.4. Theorem. Let (X, τ, τ^*) be an ifts, $x_t \in P_t(X)$, $r \in I_0$ and $s \in I_1$. For every fuzzy net $S : D \to P_t(X)$, we have $S^{(r,s)}_{\infty} x_t$ iff S has a fuzzy subnet W such that $W^{(r,s)}_{\longrightarrow} x_t$.

Proof. \implies . Let $E = D \times \mathcal{N}(x_t, r, s) = \{(m, \lambda) \mid m \in D, \lambda \in \mathcal{N}(x_t, r, s)\}$. Define a relation on E by

 $\forall (m,\lambda), (n,\mu) \in E, \quad (m,\lambda) \leq (n,\mu) \iff m \leq n, \lambda \geq \mu.$

For each $(m, \lambda), (n, \mu) \in E$, we have $\lambda, \mu \in \mathcal{N}(x_t, r, s) \implies \lambda \wedge \mu \in \mathcal{N}(x_t, r, s)$ and there exists $k \in D$ such that $m \leq k$ and $n \leq k$. Hence there exists $(k, \lambda \wedge \mu) \in E$ such that $(m, \lambda) \leq (k, \lambda \wedge \mu)$ and $(n, \mu) \leq (k, \lambda \wedge \mu)$. So, E is a directed set.

For each $(n,\mu) \in E$, since $\mathscr{S}_{\infty}^{(r,s)} x_t$, there exists $N(n,\mu) \in D$ such that $N(n,\mu) \geq n$ and $\mathscr{S}(N(n,\mu))q\mu$. So, we can define $N: E \to D$. For each $n_0 \in D$, since $\mathscr{S}_{\infty}^{(r,s)} x_t$, for $\mu_0 \in \mathscr{N}(x_t, r, s)$, there exists $(n_0, \mu_0) \in E$ such that $N(n_0, \mu_0) \geq n_0$. Hence for every $(n,\mu) \geq (n_0, \mu_0)$, since $n \geq n_0$, we have $N(n,\mu) \geq n \geq n_0$. Therefore N is a cofinal selection on \mathscr{S} . So, $\mathcal{W} = \mathscr{S} \circ N$ is a fuzzy subnet of \mathscr{S} .

Now we show that $\mathcal{W}^{(r,s)}_{\longrightarrow} x_t$. For each $\mu_0 \in \mathcal{N}(x_t, r, s)$, since $\mathcal{S}^{(r,s)}_{\infty} x_t$, for $n_0 \in D$, there exists $N(n_0, \mu_0) \in D$ such that $\mathcal{S}(N(n_0, \mu_0))q\mu_0$. Hence for every $(n, \mu) \geq (n_0, \mu_0)$, $\mathcal{S}(N(n, \mu))q\mu$ implies $\mathcal{S}(N(n, \mu))q\mu_0$ because $\mu \leq \mu_0$. So, $\mathcal{W}^{(r,s)}_{\longrightarrow} x_t$.

 $\Leftarrow \qquad \text{From Theorem 3.2(1), } \mathcal{W} \xrightarrow{(r,s)} x_t \text{ implies } \mathcal{W} \overset{(r,s)}{\infty} x_t. \text{ From Theorem 3.2(9), } \mathcal{W} \overset{(r,s)}{\infty} x_t \text{ implies } S^{(r,s)}_{\infty} x_t. \qquad \Box$

3.5. Theorem. Let (X, τ, τ^*) be an ifts, $x_t \in P_t(X)$, $r \in I_0$ and $s \in I_1$. Then the following statements are equivalent:

- (1) $x_t \in \mathcal{C}(\lambda, r, s).$
- (2) There exists a fuzzy net S in λ such that $\mathbb{S}^{(r,s)}_{\infty} x_t$.
- (3) There exists a fuzzy net S in λ such that $S \xrightarrow{(r,s)} x_t$.

Proof. (1) \Longrightarrow (2) Define a relation on $\mathcal{N}(x_t, r, s)$ by,

 $\nu \leq \omega \text{ iff } \omega \leq \nu, \quad \forall \nu, \omega \in \mathcal{N}(x_t, r, s).$

Then $(\mathcal{N}(x_t, r, s), \preceq)$ is a directed set. For each $\mu \in \mathcal{N}(x_t, r, s)$, since $x_t \in \mathcal{C}(\lambda, r, s)$ we have $\mathcal{C}(\lambda, r, s)(x) + \mu(x) \ge t + \mu(x) > 1$. From Theorem 2.2, there exists an (r, s)-adherent point x_m of λ such that

$$\mathcal{C}(\lambda, r, s)(x) + \mu(x) \ge m + \mu(x) > 1.$$

Since x_m is an (r, s)-adherent point of λ and $\mu \in \mathcal{N}(x_m, r, s)$, we have $\lambda q\mu$. Then there exist $y \in X$ and $n \in I_0$ such that

 $\lambda(y) + \mu(y) \ge n + \mu(y) > 1.$

Hence $y_n \in \lambda$ and $\mu \in \mathcal{N}(y_n, r, s)$. For each $\mu \in \mathcal{N}(x_t, r, s)$, we can define a fuzzy net $\mathcal{S} : \mathcal{N}(x_t, r, s) \to P_t(X)$ by $\mathcal{S}(\mu) = y_n$. Then $\mathcal{S}(\mu)q\mu$ and $\mathcal{S}(\mu) \in \lambda$.

Now we will show that $\mathcal{S}_{\infty}^{(r,s)} x_t$. Let $\mu \in \mathcal{N}(x_t, r, s)$. Then for every $\nu \in \mathcal{N}(x_t, r, s)$, we have $\mu \wedge \nu \in \mathcal{N}(x_t, r, s)$ and $\mathcal{S}(\mu \wedge \nu)q(\mu \wedge \nu)$. Thus $\nu \leq \mu \wedge \nu$ and $\mathcal{S}(\mu \wedge \nu)q\mu$.

(2) \implies (1) Suppose there exists a fuzzy net \mathcal{S} in λ such that $\mathcal{S}_{\infty}^{(r,s)} x_t$, i.e., for each $\mu \in \mathcal{N}(x_t, r, s)$ and for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \ge n$ and $\mathcal{S}(n_0)q\mu$ is satisfied for the fuzzy net \mathcal{S} in λ . Then since $\mathcal{S}(n_0) \in \lambda$, $\mathcal{S}(n_0)q\mu$ implies $\lambda q\mu$. Hence x_t is an (r, s)-adherent point of λ , that is, $x_t \in \mathcal{C}(\lambda, r, s)$.

 $(2) \Longrightarrow (3)$ Easily proved from Theorem 3.4.

$$(3) \Longrightarrow (2)$$
 Easily proved from Theorem 3.2(1).

3.6. Theorem. Let (X, τ, τ^*) be an ifts and $S : D \to P_t(X)$ a fuzzy net. For $r \in I_0$ and $s \in I_1$, the following properties hold:

 \square

- (1) $\mathcal{C}(\operatorname{clu}(\mathfrak{S}, r, s), r, s) = \operatorname{clu}(\mathfrak{S}, r, s).$
- (2) $\operatorname{clu}(\mathbb{S}, r, s) \leq \mathbb{C}(\bigvee_{n \in D} \mathbb{S}(n), r, s).$

Proof. (1) From Theorem 1.2 (2), we have

 $\mathcal{C}(\operatorname{clu}(\mathbb{S}, r, s), r, s) \ge \operatorname{clu}(\mathbb{S}, r, s).$

Suppose $\mathcal{C}(\operatorname{clu}(S, r, s), r, s) \not\leq \operatorname{clu}(S, r, s)$. From Theorem 2.2, there exists an (r, s)-adherent point x_t of $\operatorname{clu}(S, r, s)$, such that

$$\mathcal{C}(\operatorname{clu}(\mathfrak{S}, r, s), r, s)(x) \ge t > \operatorname{clu}(\mathfrak{S}, r, s)(x).$$

Since x_t is an (r, s)-adherent point of $clu(\mathfrak{S}, r, s)$, for each $\mu \in \mathcal{N}(x_t, r, s)$ we have $\mu q clu(\mathfrak{S}, r, s)$. Since $\mu q clu(\mathfrak{S}, r, s)$, there exists $y \in X$ such that

$$\mu(y) + \operatorname{clu}(\mathfrak{S}, r, s)(y) > 1.$$

From the definition of clu(S, r, s), there exists an (r, s)-cluster point y_p of S such that

$$\mu(y) + \operatorname{clu}(\mathcal{S}, r, s)(y) \ge \mu(y) + p > 1.$$

Thus $\mu \in \mathcal{N}(y_p, r, s)$. Since $\mathscr{S}_{\infty}^{(r,s)} y_p$ and $\mu \in \mathcal{N}(y_p, r, s)$, for each $n \in D$ there exists $n_0 \in D$ such that $n_0 \geq n$ and $\mathscr{S}(n_0)q\mu$. Hence x_t is an (r, s)-cluster point of \mathscr{S} . So, $\operatorname{clu}(\mathscr{S}, r, s)(x) \geq t$. It is a contradiction. Hence $\mathscr{C}(\operatorname{clu}(\mathscr{S}, r, s), r, s) \leq \operatorname{clu}(\mathscr{S}, r, s)$.

(2) Suppose $clu(S, r, s) \leq C(\bigvee_{n \in D} S(n), r, s)$. Then there exists an (r, s)-cluster point x_t of S such that

(I)
$$\operatorname{clu}(\mathfrak{S},r,s)(x) \ge t > \mathcal{C}\Big(\bigvee_{n\in D} \mathfrak{S}(n),r,s\Big)(x)$$

Since x_t is an (r, s)-cluster point of \mathcal{S} , for each $\mu \in \mathcal{N}(x_t, r, s)$, for each $n \in D$, there exists $n_0 \geq n$ with $\mathcal{S}(n_0)q\mu$. Since $\mathcal{S}(n_0) \leq \bigvee_{n \in D} \mathcal{S}(n)$, we have $\bigvee_{n \in D} \mathcal{S}(n)q\mu$. Hence x_t is an (r, s)-adherent point of $\bigvee_{n \in D} \mathcal{S}(n)$. Thus $\mathcal{C}(\bigvee_{n \in D} \mathcal{S}(n), r, s)(x) \geq t$. It is a contradiction for (I). Hence $\operatorname{clu}(\mathcal{S}, r, s) \leq \mathcal{C}(\bigvee_{n \in D} \mathcal{S}(n), r, s)$.

3.7. Theorem. Let (X, τ, τ^*) be an ifts and $\mathfrak{S}, \mathfrak{U} : D \to P_t(X)$ fuzzy nets such that $\mathfrak{S}(n) \vee \mathfrak{U}(n), \mathfrak{S}(n) \wedge \mathfrak{U}(n) \in P_t(X)$ for each $n \in D$. Define $\mathfrak{S} \vee \mathfrak{U}, \mathfrak{S} \wedge \mathfrak{U} : D \to P_t(X)$ by, for each $n \in D$,

 $(\mathbb{S} \lor \mathbb{U})(n) = \mathbb{S}(n) \lor \mathbb{U}(n)$ and $(\mathbb{S} \land \mathbb{U})(n) = \mathbb{S}(n) \land \mathbb{U}(n)$.

For each $r \in I_0$ and $s \in I_1$, the following properties hold:

(1) If $S(n) \leq U(n)$ for all $n \in D$, then

 $\operatorname{clu}(\mathfrak{S}, r, s) \leq \operatorname{clu}(\mathfrak{U}, r, s) \text{ and } \lim(\mathfrak{S}, r, s) \leq \lim(\mathfrak{U}, r, s).$

(2) $\operatorname{clu}(\mathfrak{S} \lor \mathfrak{U}, r, s) = \operatorname{clu}(\mathfrak{S}, r, s) \lor \operatorname{clu}(\mathfrak{U}, r, s).$

(3) $\operatorname{clu}(\mathbb{S} \wedge \mathcal{U}, r, s) \leq \operatorname{clu}(\mathbb{S}, r, s) \wedge \operatorname{clu}(\mathcal{U}, r, s).$

(r, s)-Convergent Nets

- (4) $\lim(\mathcal{S} \lor \mathcal{U}, r, s) \ge \lim(\mathcal{S}, r, s) \lor \lim(\mathcal{U}, r, s).$
- (5) $\lim(\mathfrak{S} \wedge \mathfrak{U}, r, s) \leq \lim(\mathfrak{S}, r, s) \wedge \lim(\mathfrak{U}, r, s).$

Proof. (1) Let x_t be an (r, s)-cluster point of \mathcal{S} . For each $\mu \in \mathcal{N}(x_t, r, s)$ and for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \ge n$ and $\mathcal{S}(n_0)q\mu$. Since $\mathcal{S}(n) \le \mathcal{U}(n)$ for all $n \in D$, $\mathcal{U}(n_0)q\mu$. Thus x_t is an (r, s)-cluster point of \mathcal{U} . Hence $\operatorname{clu}(\mathcal{S}, r, s) \le \operatorname{clu}(\mathcal{U}, r, s)$.

Similarly, we have $\lim(\mathcal{S}, r, s) \leq \lim(\mathcal{U}, r, s)$.

(2) Since $S \leq S \vee U$ and $U \leq S \vee U$, by (1) we have $\operatorname{clu}(S \vee U, r, s) \geq \operatorname{clu}(S, r, s) \vee \operatorname{clu}(U, r, s)$. Suppose $\operatorname{clu}(S \vee U, r, s) \not\leq \operatorname{clu}(S, r, s) \vee \operatorname{clu}(U, r, s)$. Then there exists an (r, s)-cluster point x_t of $S \vee U$ such that

 $\operatorname{clu}(\mathfrak{S} \lor \mathfrak{U}, r, s)(x) \ge t > \operatorname{clu}(\mathfrak{S}, r, s)(x) \lor \operatorname{clu}(\mathfrak{U}, r, s)(x).$

Hence $x_t \notin \operatorname{clu}(\mathfrak{S}, r, s)$ and $x_t \notin \operatorname{clu}(\mathfrak{U}, r, s)$.

Since x_t is not an (r, s)-cluster point of S, there exist $\mu_1 \in \mathcal{N}(x_t, r, s)$ and $n_1 \in D$ such that $S(n)\overline{q}\mu_1$ for every $n \in D$ with $n \geq n_1$.

Since x_t is not an (r, s)-cluster point of \mathcal{U} , there exist $\mu_2 \in \mathcal{N}(x_t, r, s)$ and $n_2 \in D$ such that $\mathcal{U}(n)\overline{q}\mu_2$ for every $n \in D$ with $n \geq n_2$.

Let $\mu = \mu_1 \wedge \mu_2$ and let $n_3 \in D$ be such that $n_3 \geq n_1$ and $n_3 \geq n_2$. Since $\mu_1 \leq \underline{1} - S(n)$ and $\mu_2 \leq \underline{1} - \mathcal{U}(n)$ for $n \geq n_3$, we have $\mu_1 \wedge \mu_2 \leq \underline{1} - (S(n) \vee \mathcal{U}(n))$. So, $\mu \in \mathcal{N}(x_t, r, s)$ and $n_3 \in D$ are such that $(S \vee \mathcal{U})(n)\overline{q}\mu$ for every $n \in D$ with $n \geq n_3$. Thus x_t is not an (r, s)-cluster point of $S \vee \mathcal{U}$. It is a contradiction. Hence we have $\operatorname{clu}(S \vee \mathcal{U}, r, s) \leq \operatorname{clu}(S, r, s) \vee \operatorname{clu}(\mathcal{U}, r, s)$.

(3), (4) and (5) are easily proved.

3.8. Theorem. Let (X, τ, τ^*) be an ifts and $S: D \to P_t(X)$ a fuzzy net. Then we have

$$\operatorname{clu}({\mathbb S},r,s) = \bigwedge_{n_0 \in D} {\mathbb C}\Big(\bigvee_{n \ge n_0} {\mathbb S}(n),r,s\Big).$$

Proof. Let $x_t \in \operatorname{clu}(\mathbb{S}, r, s)$. From Theorem 3.2 (5), since x_t is an (r, s)-cluster point of \mathbb{S} , for each $\mu \in \mathbb{N}(x_t, r, s)$ and for each $n_0 \in D$, there exists $n \in D$ such that $n \ge n_0$ and $\mathbb{S}(n)q\mu$. Since $\mathbb{S}(n) \le \bigvee_{n\ge n_0} \mathbb{S}(n)$, we have $\bigvee_{n\ge n_0} \mathbb{S}(n)q\mu$. Hence x_t is an (r, s)-adherent point of $\bigvee_{n\ge n_0} \mathbb{S}(n)$, for all $n_0 \in \mathcal{D}$, that is,

$$x_t \in \bigwedge_{n_0 \in D} \mathcal{C}\left(\bigvee_{n \ge n_0} \mathfrak{S}(n), r, s\right).$$

Then we have

$$\operatorname{clu}(\mathfrak{S},r,s) \leq \bigwedge_{n_0 \in D} \mathcal{C}\bigg(\bigvee_{n \geq n_0} \mathfrak{S}(n),r,s\bigg).$$

Suppose

$$\operatorname{clu}(\mathbb{S},r,s) \not\geq \bigwedge_{n_0 \in D} \mathcal{C}\bigg(\bigvee_{n \geq n_0} \mathbb{S}(n),r,s\bigg).$$

There exists an (r, s)-adherent point x_t of $\bigvee_{n \ge n_0} S(n)$, for all $n_0 \in D$, such that

$$\mathrm{clu}(\mathbb{S},r,s) < t \leq \mathbb{C}\bigg(\bigvee_{n \geq n_0} \mathbb{S}(n),r,s\bigg).$$

Since x_t is an (r, s)-adherent point of $\bigvee_{n \ge n_0} S(n)$, for each $n_0 \in D$, for each $\mu \in \mathcal{N}(x_t, r, s)$, we have

$$\bigvee_{n \ge n_0} \mathbb{S}(n) q \mu.$$

Since $\bigvee_{n > n_0} S(n) q \mu$, there exists $y \in X$ such that

$$\bigvee_{n\geq n_0} \mathbb{S}(n)(y) + \mu(y) > 1.$$

Then there exists $n \in D$ such that $n \ge n_0$ and

$$\bigvee_{n \ge n_0} \mathbb{S}(n)(y) + \mu(y) \ge \mathbb{S}(n)(y) + \mu(y) > 1.$$

It implies $\mathcal{S}(n)q\mu$. Hence x_t is an (r,s)-cluster point of \mathcal{S} , that is, $x_t \in \operatorname{clu}(\mathcal{S},r,s)$. It is a contradiction. Hence $\operatorname{clu}(\mathcal{S},r,s) \ge \bigwedge_{n_0 \in D} \mathcal{C}(\bigvee_{n \ge n_0} \mathcal{S}(n),r,s)$.

3.9. Theorem. Let (X, τ, τ^*) be an ifts and $\mathcal{S} : D \to P_t(X)$ a fuzzy net. Then the following properties hold:

 $\begin{array}{ll} (1) & \mathbb{C}(\lim(\mathbb{S},r,s),r,s) = \lim(\mathbb{S},r,s).\\ (2) & \bigwedge_{n\in D} \mathbb{S}(n) \leq \lim(\mathbb{S},r,s).\\ (3) & \bigvee_{n_0\in D}(\bigwedge_{n\geq n_0} \mathbb{S}(n)) \leq \lim(\mathbb{S},r,s). \end{array}$

Proof. (1) Similar to that of Theorem 3.6(1).

(2) Suppose $\bigwedge_{n \in D} \mathcal{S}(n) \not\leq \lim(\mathcal{S}, r, s)$. Then there exist $x \in X$ and $t \in (0, 1)$ such that $\bigwedge_{n \in D} \mathcal{S}(n)(x) > t > \lim(\mathcal{S}, r, s)(x)$.

Since $t > \lim(\mathcal{S}, r, s)(x)$, by Theorem 3.2(6), x_t is not an (r, s)-limit point of \mathcal{S} . So, there exists $\mu \in \mathcal{N}(x_t, r, s)$ such that for each $n \in D$, there exists $n_0 \in D$ satisfying $n_0 \ge n$ and $\mu \overline{q} \mathcal{S}(n_0)$. Since $x_t q \mu$, we have

$$S(n_0)(x) + 1 - t < S(n_0)(x) + \mu(x) \le 1$$

Thus $S(n_0)(x) < t$ implies $\bigwedge_{n \in D} S(n)(x) < t$. It is a contradiction. Hence we have $\bigwedge_{n \in D} S(n) \leq \lim(S, r, s)$.

(3) Suppose $\bigvee_{n_0 \in D} (\bigwedge_{n \ge n_0} S(n)) \nleq \lim(S, r, s)$. Then there exist $x \in X$ and $t \in (0, 1)$ such that

$$\bigvee_{0 \in D} \bigg(\bigwedge_{n \ge n_0} \mathfrak{S}(n)\bigg)(x) > t > \lim(\mathfrak{S}, r, s)(x).$$

Since $t < \bigvee_{n_0 \in D} \left(\bigwedge_{n \ge n_0} \mathcal{S}(n) \right)(x)$, there exists $n_0 \in D$ such that $x_t \in \bigwedge_{n \ge n_0} \mathcal{S}(n)$. This implies $t \le \mathcal{S}(n)(x)$ for all $n \ge n_0$. Hence for each $\mu \in \mathcal{N}(x_t, r, s)$, $t + \mu(x) > 1$ implies $\mathcal{S}(n)(x) + \mu(x) > 1$, for all $n \ge n_0$. So, x_t is an (r, s)-limit point of \mathcal{S} . It is a contradiction. Hence we have $\bigvee_{n_0 \in D} (\bigwedge_{n \ge n_0} \mathcal{S}(n)) \le \lim(\mathcal{S}, r, s)$.

3.10. Theorem. Let (X, τ, τ^*) be an ifts and $S : D \to P_t(X)$ a decreasing fuzzy net. Then, for each $r \in I_0$ and $s \in I_1$, we have

$$\operatorname{clu}(\mathfrak{S}, r, s) = \bigwedge_{n \in D} \mathfrak{C}(\mathfrak{S}(n), r, s).$$

Proof. Suppose

$$\mathrm{clu}(\mathbb{S},r,s) \not\leq \bigwedge_{n \in D} \mathbb{C}(\mathbb{S}(n),r,s).$$

Then there exists an (r, s)-cluster point x_t of S such that

$$\mathrm{clu}(\mathbb{S},r,s)(x) \ge t > \bigwedge_{n \in D} \mathbb{C}(\mathbb{S}(n),r,s)(x).$$

Since x_t is an (r, s)-cluster point of S, for each $\mu \in \mathcal{N}(x_t, r, s)$ and $n \in D$, there exists $n_0 \in D$ such that $n_0 \geq n$ and $\mathcal{S}(n_0)q\mu$. Since S is a decreasing fuzzy net, for $n_0 \geq n$, $\mathcal{S}(n_0)q\mu$ implies $\mathcal{S}(n)q\mu$. Hence x_t is an (r, s)-adherent point of $\mathcal{S}(n)$, for each $n \in D$, that is,

$$x_t \in \bigwedge_{n \in D} \mathfrak{C}(\mathfrak{S}(n), r, s)$$

It is a contradiction. Hence $clu(\mathcal{S}, r, s) \leq \bigwedge_{n \in D} \mathcal{C}(\mathcal{S}(n), r, s)$.

Suppose

$$\operatorname{clu}(\mathfrak{S},r,s) \not\geq \bigwedge_{n\in D} \mathfrak{C}(\mathfrak{S}(n),r,s).$$

Then there exists an (r, s)-adherent point x_t of S(n), for all $n \in D$, such that

$$\mathrm{clu}(\mathbb{S},r,s)(x) < t \leq \bigg(\bigwedge_{n \in D} \mathbb{C}(\mathbb{S}(n),r,s)\bigg)(x)$$

Since x_t is an (r, s)-adherent point of S(n), for $n \in D$, for each $\mu \in \mathcal{N}(x_t, r, s)$, there exists $n_0 \in D$ such that $n_0 \geq n$ and $S(n_0)q\mu$. Hence x_t is an (r, s)-cluster point of S, that is, $x_t \in \text{clu}(S, r, s)$. It is a contradiction. Hence $\text{clu}(S, r, s) \geq \bigwedge_{n \in D} \mathcal{C}(S(n), r, s)$. \Box

3.11. Theorem. Let (X, τ, τ^*) be an ifts and $\mathcal{S} : D \to P_t(X)$ an increasing fuzzy net. Then, for each $r \in I_0$ and $s \in I_1$, we have

$$\lim(\mathfrak{S},r,s) = \mathfrak{C}\bigg(\bigvee_{n\in D}\mathfrak{S}(n),r,s\bigg).$$

Proof. Suppose

$$\lim(\mathfrak{S},r,s) \not\leq \mathfrak{C}\bigg(\bigvee_{n\in D}\mathfrak{S}(n),r,s\bigg)$$

Then there exists an (r, s)-limit point x_t of S such that

$$\lim(\mathbb{S},r,s)(x) \ge t > \mathbb{C}\bigg(\bigvee_{n\in D}\mathbb{S}(n),r,s\bigg)(x).$$

Since x_t is an (r, s)-limit point of S, for each $\mu \in \mathcal{N}(x_t, r, s)$, there exists $n_0 \in D$ such that for all $n \ge n_0$, $S(n)q\mu$. It implies $\bigvee_{n \in D} S(n)q\mu$. Hence x_t is an (r, s)-adherent point of $\bigvee_{n \in D} S(n)$. It is a contradiction. Hence $\lim(S, r, s) \le \mathcal{C}\Big(\bigvee_{n \in D} S(n), r, s\Big)$.

Suppose

$$\lim(\mathfrak{S},r,s) \not\geq \mathbb{C}\bigg(\bigvee_{n\in D}\mathfrak{S}(n),r,s\bigg).$$

Then there exists an (r, s)-adherent point x_t of $\bigvee_{n \in D} \mathbb{S}(n)$ such that

$$\lim(\mathfrak{S},r,s)(x) < t \leq \mathfrak{C}\bigg(\bigvee_{n \in D} \mathfrak{S}(n),r,s\bigg)(x).$$

Since x_t is an (r, s)-adherent point of $\bigvee_{n \in D} S(n)$, for each $\mu \in \mathcal{N}(x_t, r, s)$, we have $\bigvee_{n \in D} S(n)q\mu$, then there exists $n_0 \in D$ such that $S(n_0)q\mu$. Since S is an increasing fuzzy net, for $n \geq n_0$, $S(n_0)q\mu$ implies $S(n)q\mu$. Hence x_t is an (r, s)-limit point of S, that is, $x_t \in \lim(S, r, s)$. It is a contradiction. Hence $\lim(S, r, s) \geq \mathbb{C}\left(\bigvee_{n \in D} S(n), r, s\right)$. \Box

3.12. Theorem. Let (X, τ_1, τ_1^*) and (Y, τ_2, τ_2^*) be ifts's. For every fuzzy net $\mathcal{S} : D \to P_t(X), \lambda \in I^X, r \in I_0$ and $s \in I_1$, the following statements are equivalent:

- (1) $f: (X, \tau_1, \tau_1^*) \to (Y, \tau_2, \tau_2^*)$ is IF continuous.
- (2) If $\mathbb{S}^{(r,s)}_{\infty} x_t$, then $f(\mathbb{S})^{(r,s)}_{\infty} f(x)_t$.
- (3) If $\mathcal{S}^{(r,s)}_{\longrightarrow} x_t$, then $f(\mathcal{S})^{(r,s)}_{\longrightarrow} f(x)_t$.
- (4) $f(\mathcal{C}(\lambda, r, s)) \leq \mathcal{C}(f(\lambda), r, s).$

Proof. (1) \Longrightarrow (2) Let $\mu \in \mathcal{N}(f(x)_t, r, s)$. Since f is IF continuous, then $\tau_1(f^{-1}(\mu)) \geq \tau_2(\mu) \geq r, \ \tau_1^*(f^{-1}(\mu)) \leq \tau_2^*(\mu) \leq s \text{ and } f(x)_t q \mu \text{ implies } x_t q f^{-1}(\mu)$. Hence $f^{-1}(\mu) \in \mathcal{N}(x_t, r, s)$. Since $\mathcal{S}_{\infty}^{(r,s)} x_t$, for $f^{-1}(\mu) \in \mathcal{N}(x_t, r, s)$ and for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \geq n$ and $\mathcal{S}(n_0) q f^{-1}(\mu)$. This implies $f(\mathcal{S}(n_0)) q \mu$. Hence $f(\mathcal{S})_{\infty}^{(r,s)} f(x)_t$.

 $(2) \Longrightarrow (3)$ Let $\mathcal{S}^{(r,s)}_{\longrightarrow} x_t$. For every subnet $\mathcal{U} : E \to P_t(Y)$ of $f(\mathcal{S})$, there exists a cofinal selection $N : E \to D$ such that $\mathcal{U} = f(\mathcal{S}) \circ N = f \circ (\mathcal{S} \circ N)$. Put $T = \mathcal{S} \circ N$. Then T is a subnet of \mathcal{S} . This follows from the following:

$$\begin{split} & \overset{(r,s)}{\longrightarrow} x_t \Longrightarrow T \overset{(r,s)}{\longrightarrow} x_t & \text{(by Theorem 3.2(7))} \\ & \implies T \overset{(r,s)}{\infty} x_t & \text{(by Theorem 3.2(1))} \\ & \implies f(T) = \mathcal{U}^{(r,s)}_{\infty} f(x)_t & \text{(by (2))} \\ & \implies f(S) \overset{(r,s)}{\longrightarrow} f(x)_t. & \text{(by Theorem 3.3)} \end{split}$$

(3) \Longrightarrow (4) Suppose there exist $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$ such that

 $f(\mathfrak{C}(\lambda,r,s)) \not\leq \mathfrak{C}(f(\lambda),r,s).$

Then there exists $y \in Y$ such that

 $(\mathrm{II}) \qquad f(\mathbb{C}(\lambda,r,s))(y) > \mathbb{C}(f(\lambda),r,s)(y).$

So, there exists $x \in f^{-1}(\{y\})$ such that

 $f(\mathcal{C}(\lambda, r, s))(y) \ge \mathcal{C}(\lambda, r, s)(x) > \mathcal{C}(f(\lambda), r, s))(y).$

From Theorem 3.12, we can easily obtain the following corollary.

From Theorem 2.2, there exists an (r, s)-adherent point x_t of λ on (X, τ_1, τ_1^*) such that $\mathcal{C}(\lambda, r, s)(x) \ge t > \mathcal{C}(f(\lambda), r, s)(f(x)).$

Since $x_t \in \mathcal{C}(\lambda, r, s)$, by Theorem 3.5, there exists a fuzzy net \mathcal{S} in λ such that $\mathcal{S} \xrightarrow{(r,s)} x_t$. By (3), $f(\mathcal{S}) \xrightarrow{(r,s)} f(x)_t$ with $f(\mathcal{S})$ in $f(\lambda)$. From Theorem 3.5, we have $f(x)_t = y_t \in \mathcal{C}(f(\lambda), r, s)$. It is a contradiction for (II). Hence, for all $\lambda \in I^X$, $r \in I_0$ and $s \in I_1$, we have $f(\mathcal{C}(\lambda, r, s) \leq \mathcal{C}(f(\lambda), r, s)$.

 $(4) \Longrightarrow (1)$ Similar to Theorem 2.4.

3.13. Corollary. Let (X, τ_1, τ_1^*) and (Y, τ_2, τ_2^*) be ifts's. For every fuzzy net $S : D \to P_t(X), \lambda \in I^X, r \in I_0$ and $s \in I_1$, the following statements are equivalent:

(1) $f: (X, \tau_1, \tau_1^*) \to (Y, \tau_2, \tau_2^*)$ is IF continuous.

(2) $f(\operatorname{clu}(\mathfrak{S}, r, s)) \leq \operatorname{clu}(f(\mathfrak{S}), r, s).$ (3) $f(\lim(\mathfrak{S}, r, s)) \leq \lim(f(\mathfrak{S}), r, s).$ (4) $f(\mathcal{C}(\lambda, r, s)) \leq \mathcal{C}(f(\lambda), r, s).$

4. (r, s)-convergent nets

4.1. Definition. Let (X, τ, τ^*) be an iffs, $\mu \in I^X$, $x_t \in P_t(X)$, $r \in I_0$ and $s \in I_1$. A fuzzy net S is said to be (r, s)-convergent to μ , denoted by $con(S, r, s) = \mu$, if clu(S, r, s) = $\lim(\mathfrak{S}, r, s) = \mu.$

4.2. Theorem. Let (X, τ, τ^*) be an ifts and $\mathfrak{S}, \mathfrak{U} : D \to P_t(X)$, (r, s)-convergent nets such that $S(n) \vee U(n) \in P_t(X)$ for each $n \in D$. Then

 $\operatorname{con}(\mathfrak{S} \lor \mathfrak{U}, r, s) = \operatorname{con}(\mathfrak{S}, r, s) \lor \operatorname{con}(\mathfrak{U}, r, s).$

Proof. From Theorem 3.7, $S \vee U$ is a fuzzy net. This is easily proved by the following:

$$\begin{aligned} \operatorname{clu}(\mathbb{S} \lor \mathfrak{U}, r, s) &= \operatorname{clu}(\mathbb{S}, r, s) \lor \operatorname{clu}(\mathfrak{U}, r, s) & \text{(by Theorem 3.7(2))} \\ &= \lim(\mathbb{S}, r, s) \lor \lim(\mathbb{U}, r, s) \\ &\leq \lim(\mathbb{S} \lor \mathfrak{U}, r, s) & \text{(by Theorem 3.7(4))} \\ &\leq \operatorname{clu}(\mathbb{S} \lor \mathfrak{U}, r, s). & \text{(by Theorem 3.2(2))} \end{aligned}$$

4.3. Theorem. Let (X, τ, τ^*) be an ifts, S a fuzzy net and $\mathcal{H} = \{T \mid T \text{ is a subnet of }$ S}. Then the following statements hold:

- $\begin{array}{ll} (1) \ \lim(\mathbb{S},r,s) = \bigwedge_{T \in \mathcal{H}} \operatorname{clu}(T,r,s). \\ (2) \ \operatorname{clu}(\mathbb{S},r,s) = \bigvee_{T \in \mathcal{H}} \lim(T,r,s). \\ (3) \ If \ \operatorname{con}(\mathbb{S},r,s) = \mu, \ then \ \operatorname{con}(T,r,s) = \mu \ for \ each \ T \in \mathcal{H}. \end{array}$

Proof. (1) For each $T \in \mathcal{H}$, by Theorem 3.2 (2,8,10), we have

 $\lim(\mathbb{S},r,s)\leq \lim(T,r,s)\leq \mathrm{clu}(T,r,s)\leq \mathrm{clu}(\mathbb{S},r,s).$ (III)

Hence

$$\lim(\mathbb{S}, r, s) \le \bigwedge_{T \in \mathcal{H}} \operatorname{clu}(T, r, s).$$

Suppose

$$\lim(\mathfrak{S}, r, s) \not\geq \bigwedge_{T \in \mathcal{H}} \operatorname{clu}(T, r, s).$$

Then there exist $x \in X$ and $t \in (0, 1)$ such that

(IV)
$$\lim(\mathfrak{S}, r, s)(x) < t < \bigwedge_{T \in \mathcal{H}} \operatorname{clu}(T, r, s).$$

Since $\lim(S, r, s)(x) < t$, by Theorem 3.2(6), x_t is not an (r, s)-limit point of S, that is, there exists $\mu \in \mathcal{N}(x_t, r, s)$ such that for each $n \in D$ there exists $N(n) \in D$ with for $N(n) \geq n$ and $S(N(n))\overline{q}\mu$. Hence there exists a cofinal selection $N: D \to D$ such that $T = S \circ N$. Thus T is a subnet of S. Moreover, x_t is not an (r, s)-cluster point of T. By Theorem 3.2(5), clu(T, r, s)(x) < t. It is a contradiction for (IV). Hence $\lim(\mathcal{S}, r, s) = \bigwedge_{T \in \mathcal{H}} \operatorname{clu}(T, r, s).$

(2) From (III) of (1), we have

$$\bigvee_{T\in\mathcal{H}} \lim(T,r,s) \le \operatorname{clu}(\mathfrak{S},r,s).$$

187

Suppose

$$\bigvee_{T \in \mathcal{H}} \lim(T, r, s) \not\geq \operatorname{clu}(\mathcal{S}, r, s).$$

Then there exist $x \in X$ and $t \in (0, 1)$ such that

(V)
$$\bigvee_{T \in \mathcal{H}} \lim(T, r, s)(x) < t < \operatorname{clu}(\mathcal{S}, r, s)(x)$$

Since $x_t \in \text{clu}(\mathcal{S}, r, s)$, by Theorem 3.2(5), we have $\mathcal{S}_{\infty}^{(r,s)} x_t$. By Theorem 3.4, there exists a subnet T of \mathcal{S} such that $T \xrightarrow{(r,s)} x_t$. Thus

$$x_t \in \lim(T, r, s) \le \bigvee_{T \in \mathcal{H}} \lim(T, r, s).$$

It is a contradiction for (V). Hence $\bigvee_{T \in \mathcal{H}} \lim(T, r, s) \ge \operatorname{clu}(\mathbb{S}, r, s)$.

(3) Easily proved from (III) of (1).

4.4. Theorem. Let (X, τ, τ^*) be an ifts, S a fuzzy net. If every subnet of S has a subnet which is (r, s)-convergent to μ , then $con(S, r, s) = \mu$.

Proof. Let $\mathcal{H} = \{T \mid T \text{ is a subnet of } S\}$. For each $T \in \mathcal{H}$, since T has a subnet K with $\operatorname{con}(K, r, s) = \mu$, by Theorem 3.2 (8), we have

 $\lim(T, r, s) \le \lim(K, r, s) = \operatorname{clu}(K, r, s) = \mu.$

Hence, by Theorem 4.3(2),

(VI)
$$\operatorname{clu}(\mathfrak{S}, r, s) = \bigvee_{T \in \mathcal{H}} \lim(T, r, s) \le \mu.$$

Conversely, by Theorem 3.2(10),

 $\mu = \lim(K, r, s) = \operatorname{clu}(K, r, s) \le \operatorname{clu}(T, r, s).$

Hence, by Theorem 4.3(1),

(VII)
$$\mu \leq \bigwedge_{T \in \mathcal{H}} \operatorname{clu}(T, r, s) = \lim(\mathcal{S}, r, s).$$

By (VI) and (VII), $\operatorname{clu}(\mathfrak{S}, r, s) \leq \lim(\mathfrak{S}, r, s)$. Since $\lim(\mathfrak{S}, r, s) \leq \operatorname{clu}(\mathfrak{S}, r, s)$ from Theorem 3.2 (2), $\operatorname{clu}(\mathfrak{S}, r, s) = \lim(\mathfrak{S}, r, s)$, that is, $\operatorname{con}(\mathfrak{S}, r, s) = \mu$.

4.5. Example. Let $X = \{a, b\}$ be a set, N the set of natural numbers and let $\mu \in I^X$ be defined by $\mu(a) = 0.3$ and $\mu(b) = 0.4$. We define the IFGO, (τ, τ^*) as follows:

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{0} \text{ or } \underline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \mu, \\ 0, & \text{otherwise}, \end{cases} \qquad \tau^*(\lambda) = \begin{cases} 0, & \text{if } \lambda = \underline{0} \text{ or } \underline{1}, \\ \frac{1}{2}, & \text{if } \lambda = \mu, \\ 1, & \text{otherwise.} \end{cases}$$

Define a fuzzy net $\mathcal{S}: N \to P_t(X)$ by

$$S(n) = x_{a_n}, \quad a_n = 0.6 + (-1)^n 0.2.$$

We can show $\operatorname{clu}(\mathbb{S}, \frac{1}{2}, \frac{1}{2}) = \underline{1}$, from (1) and (2):

- (1) x_t for $t \leq 0.7$ or y_m for $m \leq 0.6$ is an $(\frac{1}{2}, \frac{1}{2})$ -cluster point of S, because, for $\underline{1} \in \mathcal{N}(p, \frac{1}{2}, \frac{1}{2})$ with $p = x_t$ or y_m and for all $n \in N$, we have $\mathcal{S}(n)q\underline{1}$.
- (2) x_t for t > 0.7 or y_m for m > 0.6 is an $(\frac{1}{2}, \frac{1}{2})$ -cluster point of S, because, for $\underline{1}, \mu \in \mathbb{N}(p, \frac{1}{2}, \frac{1}{2})$ with $p = x_t$ or y_m and for all $n \in N$, there exists $2n \in N$ such that $2n \ge n$, $\mathcal{S}(2n) = x_{0.8}q\mu$.

We can show $\lim(S, \frac{1}{2}, \frac{1}{2}) = 1 - \mu$, from (3) and (4):

(r, s)-Convergent Nets

- (3) x_t for $t \leq 0.7$ or y_m for $m \leq 0.6$ is an $(\frac{1}{2}, \frac{1}{2})$ -limit point of S, because, for $\underline{1} \in \mathbb{N}(p, \frac{1}{2}, \frac{1}{2})$ with $p = x_t$ or y_m and for all $n \in N$, we have $\mathbb{S}(n)q\underline{1}$.
- (4) x_t for t > 0.7 or y_m for m > 0.6 is not an $(\frac{1}{2}, \frac{1}{2})$ -limit point of S, because, for $\mu \in \mathcal{N}(p, \frac{1}{2}, \frac{1}{2})$ such that for all $n \in N$, there exists $2n + 1 \in N$ such that $2n + 1 \ge n$, $S(2n + 1) = x_{0.4}\overline{q}\mu$.

Since $\operatorname{clu}(\mathfrak{S}, \frac{1}{2}, \frac{1}{2}) \neq \lim(\mathfrak{S}, \frac{1}{2}, \frac{1}{2}), \mathfrak{S}$ is not $(\frac{1}{2}, \frac{1}{2})$ -convergent.

By a similar method, we show for $0 < r \leq \frac{1}{2}$ and $\frac{1}{2} \leq s < 1$,

 $\underline{1} = \operatorname{clu}(\mathfrak{S}, r, s) \neq \lim(\mathfrak{S}, r, s) = \underline{1} - \mu,$

and for $r > \frac{1}{2}$ and $s \le \frac{1}{2}$,

 $\underline{1} = \operatorname{clu}(\mathfrak{S}, r, s) = \lim(\mathfrak{S}, r, s).$

References

- Abbas, S. E. and Aygün, H. Intuitionistic fuzzy semiregularization spaces, Information Sciences 176, 745–757,2006.
- [2] Atanassov, K. Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1), 87-96, 1986.
- [3] Chang, C. L. Fuzzy topological spaces, J. Math. Anal. Appl. 24, 182–190, 1968.
- [4] Chattopadhyay, K.C., Hazra, R. N. and Samanta, S. K. Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49, 237–242, 1992.
- [5] Chen, S. L. and Cheng, J. S. On convergence of nets of L-fuzzy sets, J. Fuzzy Math. 2, 517– 524, 1994.
- [6] Chen, S.L. and Cheng, J.S. Semi-continuous and irresolute order-homeomorphisms on fuzzes, Fuzzy Sets and Systems 64, 105–112, 1994.
- [7] Chen, S. L. and Cheng, J. S. θ-convergence of nets of L-fuzzy sets and its applications, Fuzzy Sets and Systems 86, 235–240, 1997.
- [8] Çoker, D. An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88, 81–89, 1997.
- [9] Çoker, D. and Demirci, M. An introduction to intuitionistic fuzzy topological spaces in Šostak sense, Busefal 67, 67–76, 1996.
- [10] Demirci, M. Neighbourhood structures in smooth topological spaces, Fuzzy Sets and Systems 92, 123–128, 1997.
- [11] Georgiou, D.N. and Papadopoulos, B.K. Convergences in fuzzy topological spaces, Fuzzy Sets and Systems 101, 495–504, 1999.
- [12] Höhle, U. Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl. 78, 659– 673, 1980.
- [13] Höhle, U. and Šostak, A.P. A general theory of fuzzy topological spaces, Fuzzy Sets and Systems 73, 131–149, 1995.
- [14] Höhle, U. and Šostak, A.P. Axiomatic Foundations of Fixed-Basis Fuzzy Topology, The Handbooks of Fuzzy Sets Series, 3 (Chapter 3), (Kluwer Academic Publishers, Dordrecht, 1999).
- [15] Kubiak, T. On fuzzy topologies (Ph.D. Thesis, A. Mickiewicz, Poznan, 1985).
- [16] Kubiak, T. and Šostak, A.P. Lower set-valued fuzzy topologies, Quaestiones Math. 20 (3), 423–429, 1997.
 [17] Lee F. D. and Lee Y. D. Mated forms topological spaces. J. Karoo Fuzzy Logic Intell. Sug.
- [17] Lee, E.P. and Im, Y.B. Mated fuzzy topological spaces, J. Korea Fuzzy Logic Intell. Sys. Soc. 11 (2), 161–165, 2001.
- [18] Liu, Y. M. and Luo, M. K. Fuzzy Topology (Scientific Publishing Co., Singapore, 1997).
- [19] Pao-Ming, P. and Ying-Ming, L. Fuzzy topology I: Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76, 571–599, 1980.
- [20] Samanta, S. K. and Mondal, T. K. On intuitionistic gradation of openness, Fuzzy Sets and Systems 131, 323–336, 2002.
- [21] Šostak, A. P. On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palerms ser II 11, 89–103, 1985.

- [22] Šostak, A. P. Two decades of fuzzy topology: basic ideas, notions and results, Russian Math. Surveys **44**(6), 125–186, 1989.
- [23] Šostak, A. P. Basic structures of fuzzy topology, J. Math. Sci. 78 (6), 662–701, 1996.
 [24] Wang, G.- J. Pointwise topology on completely distributive lattice, Fuzzy Sets and Systems **30**, 53–62, 1989.