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Abstract

We introduce the notions of (r,s)-adherent point, (r, s)-accumulation
point, (r,s)-cluster point, (r,s)-limit point and (r,s)-derived set in
an intuitionistic fuzzy topological spaces and investigate some of their
properties. Also, we define (r, s)-convergent nets and investigate some
of their properties.
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1. Introduction and preliminaries

Pu and Liu [19] introduced the notions of @-neighborhood and fuzzy net with respect
to @-neighborhoods and established the convergence theory in fuzzy topological spaces.
Chen and Cheng [6] introduced the concepts of fuzzy cluster and fuzzy limit point in
fuzzy topological spaces with respect to R-neighborhoods instead of @-neighborhoods.
The convergence theory in fuzzy topological spaces has been developed in many directions
[6,7,11,24].

Kubiak [15] and Sostak [21] introduced the fundamental concept of a fuzzy topological
structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that
not only the objects are fuzzified, but also the axiomatics. In [22,23], Sostak gave some
rules and showed how such an extension can be realized. Chattopadhyay et al. [4] have
redefined the same concept under the name gradation of openness. A general approach
to the study of topological type structures on fuzzy power sets was developed in [12-16].

As a generalization of fuzzy sets, the notion of intuitionistic fuzzy set was introduced
by Atanassov [2]. By using intuitionistic fuzzy sets, Coker and his coworker [8,9] defined
the topology of intuitionistic fuzzy sets. Recently, Samanta and Mondal [20], introduced
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the notion of intuitionistic fuzzy gradation of openness of fuzzy sets, where to each fuzzy
subsets there is a definite grade of openness and there is a grade of non-openness. Thus,
the concept of intuitionistic fuzzy gradation of openness is a generalization of the concept
of gradation of openness and the topology of intuitionistic fuzzy sets.

In this paper, we introduce the notions of (r, s)-adherent point, (r, s)-accumulation
point, (r,s)-cluster point, (r,s)-limit point and (r,s)-derived set in an intuitionistic
fuzzy topological spaces and investigate some of their properties. Also, we define (7, s)-
convergent nets and investigate some of their properties.

Throughout this paper, let X be a nonempty set, I = [0,1], Io = (0,1] and I, = [0, 1).
Fora € I, a(z) = a for all x € X. A fuzzy point x, for t € Iy is an element of I such

that
t, ify ==,
wely) = {0, if y # .

The set of all fuzzy points in X is denoted by P;(X). A fuzzy point z; € X iff ¢ < A(z).
A fuzzy set A is quasi-coincident with u, denoted by A ¢ u, if there exists x € X such
that A(z) + p(z) > 1. If X is not quasi-coincident with p, we write A g p.

1.1. Definition. [20] An intuitionistic fuzzy gradation of openness (IFGO, for short) on

X is an ordered pair (r,7") of functions from I¥ to I such that

(IGO1) 7(A\) +7*(\) <1, VA e I¥,

(1GO02) 7(0) =7(1) =1, 77(0) =77(1) =0,

(IGO3) T(A1AA2) > 7(M)AT(2) and 75 (A1 AX2) < 75 (A1) VT (\2), for each A, Ag € I,

(IGO4) 7(Vica M) = Nijca ™) and 7(V;cq Mi) < Viea 77 (i), for each A; € Ix,
1€ A.

The triplet (X, 7, 7") is called an intuitionistic fuzzy topological space (ifts, for short). 7

and 7" may be interpreted as fuzzy gradation of openness and fuzzy gradation of nonopen-

ness, respectively.

1.2. Theorem. [1,17] Let (X,7,7*) be an ifts. For each v € Iy, s € I, A € I, we
define an operator C: I x In x I — IX as follows:

enrs) = Nulp>\r@—p) >r " (L—p) <s}
Then it satisfies the following properties:
) €0,r,s) = O C(1,r,s) =1, forallr € Iy, s € I.

C(A,r,8) >

C(A1, 7, s) < (3()\2,7' s), if A1 < Ag.
CAV p,r,8) = G(A T, s)ve(p,r s), for allr € Iy, s € I.
C\, 7, s) S C\ 7,8, ifr <7', s> 5", where r,r’ €Iy, s,8" € I.
(€

C(C(A, T, 8),r )—C’()\,r,s). O

Let (X,71,7) and (Y, 72, 75) be intuitionistic fuzzy topological spaces. A function
f:X — Y is called IF continuous if 7o (u) < 71(f (1)) and 75 (1) > 77 (F ' (w)) for all
pel”.

1.3. Definition. [19] Let A\, 1 € IX. Define the fuzzy quasi-difference of X and p, denoted
by A\g, as

M), i () =0

@) =40, i A@) > plx) >0,

AMz), if A(z) < p().

1.4. Lemma. [19] For \,u € I* and z: € P,(X), the following properties hold:
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(1) A\ <X and A\\0=\.
(2) If x¢ € X, then N\z¢ = A. If x¢ € A, then, for each y € X,

Ay), ify#m,
M) = AW 7
0, ify=x.

(3) AV p\ze < (AN\zt) V (p\T1)-

(4) If f : X =Y is injective, then f(M\p) = fF(M)\f(w).
1.5. Definition. [10] Let (X,7,7*) be an ifts, p € I*, 2; € P(X), r € Ip and s € I1.
Then p is called an (r, s)-open Q-neighborhood of x4 if ziqu with 7(p) > r and 77 () < s.
We write

N(ze,m,8) = {p | p € I*, mequ, 7(u)>rand 7°(u) < s}.

1.6. Definition. [19] Let D be a directed set and A € I’*. A function 8 : D — Py(X) is
called a fuzzy net. We say 8 is a fuzzy net in X if 8(n) € X for every n € D. A fuzzy net
8 is increasing (resp. decreasing) if 8(m) < 8(n) (resp. 8(n) < 8(m)) for every m < n
with m,n € D.

1.7. Definition. [19] Let 8 : D — P;(X) and W : E — P:(X) be two fuzzy nets. Then,
W is called a subnet of 8 if there exists a function N : E — D, called by a cofinal selection
on 8, such that

(1) W=8oN,
(2) For every no € D, there exists mo € E such that N(m) > no for m > mo.

2. (r,s)-derived sets in intuitionistic fuzzy topological spaces

2.1. Definition. Let (X, 7,7") be an ifts, A € IX, ; € Py(X), r € Iy and s € I;. Then:

(1) @ is called an (r,s)-adherent point of X if for every xiqu with 7(u) > r and
7" (p) < s, we have ugA.
(2) @ is called an (r, s)-accumulation point of X\ if for every ziqu with 7(u) > r and
7"(1) < s, we have pg(A\z).
Define the (r, s)-derived set of A\, denote by D(\,r, s), as

DA, 7, s) = \/{xt | ¢+ € P,(X) and z¢ is an (r, s)-accumulation point of A}.
2.2. Theorem. Let (X, 7,7*) be an ifts. For A€ I, r € Iy and s € I, we have

C(A,rs) = \/{xt | ¢ € P(X) and x; is an (r,s)-adherent point of A}.
Proof. Put p=\/{z: € P.(X) | z¢ is an (r, s)-adherent point of A}. Suppose C(A,r,s) £
p. Then there exist z € X and t € Iy such that

e 8)(@) > ¢ > pl).
Since p(x) < t, x4 is not an (r,s)-adherent point of \. Hence there exists u € I with
xeqp, 7(u) > 7 and 77 () < s such that Agu, that is, A <1 — p. Then A < C(A,7,s) <
1 — p. Since zigu and p < 1 — C(\,r,s), we have zq(1 — C(\,7,s)). This implies
t > C(\,r,s)(z), a contradiction. Hence, C(A,7,s) < p.

Suppose C(A,r,s) 2 p. Then there exists an (r, s)-adherent point z; € P;(X) such

that

CA, rys)(x) <t < plx).
Since C(A, r, s)(z) < t, then z,q(1—C(X\,r,s)), 7(L—C(A,7,8)) > rand 7" (1—C(A, 7, s)) <
s. Moreover, since A < C(\,r,s) we have

A1 —C(\, 7, 8)).
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So x+ is not an (r, s)-adherent point of A. It is a contradiction. Hence, C(A\,r,s) > p. O

2.3. Theorem. Let (X, 7,7%) be an ifts. For \,u € I, r € Iy and s € I, the following
properties hold:
(1) DA\, 7,s) <C(A 1, 8).
(2) e\, 1, 8) =AVD(\r,s).
3) e\, r,8) =X iff D\, 1, 8) <A
(4) If r1 > 7 and s1 < s, then D(A,r,s) < D(A,r1,81).
)

(5) DAV p,1,8) <D(A,1,8) VvV D(1, 7, 5).

Proof. (1) Clear because every (r,s)-accumulation point of A is an (r, s)-adherent point
of A.
(2) Since A < €(A,r,s) and D(\,r,s) < C(A,r,s), we have
AV DA, s) <C(A, T, s).

Conversely, suppose C(A,7,s) L AV D(A,r,s). Then there exist x € X and ¢ € Iy such
that

C(A,r, 8)(x) >t > Az) VDT, s)(z).
Since A(z) V D(A,r,s)(z) < t, then z; ¢ X and z; is not an (r, s)-accumulation point of
A. Hence there exists p € I’ with x:qu, 7(p) > r and 7% (i) < s such that pg(\\z¢).
Since z¢ € A, we have (A\\z;) = A\. Thus g\ which implies A < C(\,r,s) <1 — pu. Since
TrqpL, that iS, (l - ﬂ)(:ﬂ) <t,

C(A,ms)(z) < (L—p)(x) <t
It is a contradiction. Hence C(X,7,s) < AV D(A,r, ).

(3) Follows immediately from (2).

(4) Suppose D(A,r,s) £ D(A,r1,51). Then there exists an (r, s)-accumulation point
x¢ € Pi(X) of X such that

DA, 7, 8)(z) >t > DA, 71, 81)(x).
Since D(A,r1,s1)(x) < t, then z; is not an (r1, s1)-accumulation point of A. Hence
there exists p € I with x:qp, 7(p) > 71 and 77(p) < s1 such that pg(A\z¢). Since

7(p) > 71 > r and 77(p) < s1 < s, then z+ is not an (r, s)-accumulation point of \. It is
a contradiction.

(5) Suppose D(AV u,r,8) £ DA\ r,s)V D(u,rs). Then there exists an (r,s)-
accumulation point z; € P,(X) of AV p such that

DAV p,r,s)(x) >t >DAr,s)(z)VD(p,r,s)(x).
Since D(\, 7, s)(z) < t and D(u,r, s)(x) < t, then z; is not an (r, s)-accumulation point
of either A or p. Hence there exist p1,p2 € I with xeqps, T(ps) > r and 77 (p;) < s, for
i =1, 2, such that
p1g(A\zt) and poq(p\z:).
Take p = p1 A p2. Then zq(p1 A p2), 7(p1 A p2) > r and 7%(p1 A p2) < s. Moreover,
AV p)\ze < (A\z¢) V (p\z¢) by Lemma 1.4(3)
S@AL-p)V(@L-p2)
=1—(p1 A p2)
1-0p
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Hence, pg((AV p)\z¢). Thus z; is not an (r, s)-accumulation point of A V p. It is a
contradiction. Therefore, D(AV u,r,s) < D\, r,8)V D(u,r,s). ]

2.4. Theorem. Let (X,71,71) and (Y,72,75) be ifts’s and f : X — Y an injective
function. Then the following statements are equivalent:

(1) f is IF continuous.
(2) F(D(\,7,8)) <D(f(N),r,8), for each X € I, r € Ip and s € I.
(3) f(C(\,7,8)) < C(f(N),r,5), for each X\ € I*, r € Iy and s € I

Proof. (1) == (2): Suppose there exist A € [, r € Iy and s € I such that
f(DA,7,8)) £ D(f(N), 7, 5)-

Then there exists y € Y such that
FDA7,9)(y) > D(F(A), 7, 8)(y)-

Since f is injective, there exists a unique « € f~*({y}) such that

f(®(>‘7r7 5))(3/) > @()\,’f’, 5)(x) > D(f@\)ﬂ’v 5)(y)'

There exists an (r, s)-accumulation point z; of A on (X, 71, 7{) such that

DA, r,8)(x) = £ > D(f(N),r,8)(f(2))-

Therefore f(z): = f(x:) is not an (r, s)-accumulation point of f(\). Hence there exists
p € IV with f(xt)qp, m2(p) > r and 75 (p) < s such that pg(f(A\)\f(z¢)). Since f is
injective, by Lemma 1.4 (4), f(\ )\f(xt) = f(A\z¢). By the IF continuity of f, we have
n(f7'(p)) = m(p) > r and 77 (f 1 (p)) < 75(p) < s. Then we have f(z:)gp =
xeqf ' (p), which implies pgf(AM\z:) = f~'(p)g(M\\z:). Hence z: is not an (r,s)-
accumulation point of A. It is a contradiction. Hence f(D(A,r,s)) < D(f(N),r,s),
for each \ € IX, relgand s € 1.

(2) = (3): Easily proved from the following:
fe(\rs)=f(AVD(Ars)) (By Theorem 2.3(2))

=FN)V (DA, 1,5))
S FA)VDFR), ) (by (2))
= C(f(N),7,9).
(3) = (1): Easily proved. O

3. (7, s)-cluster points and (7, s)-limit points
3.1. Definition. Let (X, 7,7") be an ifts, u € I* z, € Py(X),r €Iy and s € I. Then:
(1) @ is called an (r,s)-cluster point of S, denoted by S(gg)mt, if for every p €

N(z¢, 7, 8), S is frequently quasi-coincident with u, i.e., for each n € D, there
exists ng € D such that ng > n and 8(no)qu.

(2) @, is called an (r,s)-limit point of 8, denoted by S(T—sgmt, if for every p €
N(z¢, 7, 8), S is eventually quasi-coincident with p, i.e., there exists ng € D
such that for each n € D with n > ng, we have 8(n)qu

We write
clu(8 \/{mt | z; € P;(X) and x¢ is an (r, s)-cluster point of 8},

lim (8 \/{mt | z; € P;(X) and x¢ is an (r, s)-limit point of 8}.
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3.2. Theorem. Let (X,7,7") be an ifts, 8 : D — Pi(X) a fuzzy net and W : E — Py(X)
a subnet of 8. For r,m € Iy and s € I1, the following properties hold:

(r, T,5)

(1) 1 8", then 8'5a.

(2) lim(8,7,s) < clu(8,r,s).

®3) Ifs(gé)a:z and T = Tm, then 858z,

(4) Ifs(r—’sgmz and T > T, then S(T—’Sgﬂfm-

(5) 8(8’03)% iff ¢+ € clu(8,r,s).

6) $C%a, iff w0 € lim(S, 7, 5).
(r,s

(7

(8)

(9)

10)

If S—Qm, then W(T—’Sgwt.
lim(8,r,s) < lim(W,r,s).

If W(gos):vt, then S(gs)xt.

clu(W,r, s) < clu(8,r,s).

(3) For every p € N(xm,1,s), since zm < x¢ then p € N(zy, 7, s). Since S(&g)mt, for
each n € D, there exists ng € D such that no > n and 8(no)qu. Hence S(S’S)xm.

(4) Similar to (3).

(5) = . Clear.

<. Let z; € clu(8,r,s) and u € N(z¢,r,s). Since ziqu and clu(8,r,s)(z) > t, we
have

w(x) + clu(8,r,s)(z) > p(z) +t > 1.

From the definition of clu(8,r,s), there exists an (r,s)-cluster point z, € P;(X) of §
such that

w(x) + clu(8,r, s)(z) > p(z) + m > 1.
Thus p € N(xm,r, s). Since zr, is an (r, s)-cluster point of 8, for each n € D, there exists
ng € D such that no > n and 8(no)qu. Hence 8(803)%.
(6) Similar to (5).
(7) For every u € N(z¢,r,s), since S(T—’S;mt, there exists ng € D such that for all

n > no, 8(n)qu. Let N : E — D be a cofinal selection on 8. Then for ng € D, there
exists mo € E such that N(m) > ng for all m > mo. Thus W(m) = 8(N(m))qu for

m > mg. Therefore, W(T—’ngt.
(8) Clear from (7).

(9) Suppose that W(gs)xt andn € D. If N : E — D is a cofinal selection on 8,

then there exists m € E such that N(k) > n for k > m. Since W(g’s)xt, for every p €
N(z¢, 7, s), there exists mo € E such that mo > m and W(mq)gqu. We let no = N(mo).
Then ng > n, and since 8(no) = W(myo) we have 8(no)qu.

(10) Clear from (9). O

3.3. Theorem. Let (X,7,7%) be an ifts, x+ € Pi(X), r € Io and s € I1. For every fuzzy
net 8, S(T"sgxt iff W(g’s)xt for every fuzzy subnet W of 8.
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Proof. = . From Theorem 3.2 (7), S(T—’sgmt implies W(r—’s;mt. From Theorem 3.2 (1),
W(T—’S;mt implies W(&;)mt.

<. Suppose z; is not an (r,s)-limit point of 8. Then there exists p € N(z¢,r, s)
satisfying the following: for each n € D, there exists N(n) € D such that N(n) > n
and 8(N(n))gu. So we get a cofinal selection N : D — D. Since N is a cofinal selection
on 8, W = 8o N is a fuzzy subnet of 8. Since for u € N(z,r,s) and for each n € D,
W(n) = 8(N(n))qu, x+ is not an (r, s)-cluster point of W. O
3.4. Theorem. Let (X,7,7%) be an ifts, x+ € Pi(X), r € Io and s € I1. For every fuzzy
net 8 : D — P,(X), we have S(SS)xt iff 8 has a fuzzy subnet W such that W(r—’sgmt.
Proof. = . Let E = D X N(z¢,r,8) = {(m,\) | m € D, € N(z¢,7,5)}. Define a
relation on E by

V(m,A),(n,p) € E, (m,A) < (n,p) <= m<n,A>pu

For each (m, \), (n,u) € E, we have A\, u € N(z¢,7,8) = A A p € N(x¢,7,5) and there
exists k € D such that m < k and n < k. Hence there exists (k, A\ A ) € E such that
(m,\) < (k,A\A p) and (n,p) < (k, XA p). So, E is a directed set.

For each (n,u) € E, since S(&g)mt, there exists N(n,u) € D such that N(n,u) > n

and 8(N(n, p))qu. So, we can define N : E — D. For each no € D, since S(SS)m, for
1o € N(x¢,r,s), there exists (no,po) € E such that N(no, po) > no. Hence for every
(n,u) > (no, po), since n > ng, we have N(n,u) > n > ng. Therefore N is a cofinal
selection on 8. So, W = 8 o N is a fuzzy subnet of 8.

Now we show that W(Ti;xt. For each po € N(z¢,7,5), since S(gos):vt, for no € D,
there exists N(no, po) € D such that S(N(no, 1o))quo. Hence for every (n, u) > (no, o),
8(N(n, u))gp implies (N (n, 1))guo because p < po. So, W(T—’S;mt.

<=. From Theorem 3.2(1), W(r—’sg:vt implies W(gos):vt. From Theorem 3.2 (9), W(g’s)xt

implies S(&g)mt. ]

3.5. Theorem. Let (X,7,7%) be an ifts, z+ € Py(X), r € Iy and s € I. Then the
following statements are equivalent:

(1) x¢ € C(A,1,9).
(2) There exists a fuzzy net 8 in A such that 8(805):&5.
(3) There exists a fuzzy net 8 in A such that 8@%.

Proof. (1) = (2) Define a relation on N(z¢,r, s) by,

v3wif w<v, VYv,wée& N(z,r,s).
Then (N(z¢,7,s),X) is a directed set. For each pu € N(z¢,r,s), since zy € C(A\, 7, s) we
have C(\, r, s)(z)+p(z) > t+pu(z) > 1. From Theorem 2.2, there exists an (r, s)-adherent
point x,, of A such that

CA, rys)(x) + p(x) > m~+ p(z) > 1.
Since z, is an (r, s)-adherent point of A and u € N(zm,, 1, s), we have Agu. Then there
exist y € X and n € I such that

Ay) +uy) > n+puly) > 1.

Hence y, € A and p € N(yn,7,s). For each u € N(zy,7,s), we can define a fuzzy net
8 : N(x¢,7,8) = Pe(X) by 8(u) = yn. Then 8(u)qu and 8(u) € A.
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Now we will show that 8(803)%. Let p € N(z¢,7,5). Then for every v € N(x¢, 7, s), we
have p Av € N(z¢,r,s) and 8(u Av)g(uAv). Thus v X p A v and 8(u A v)qpu.

(2) = (1) Suppose there exists a fuzzy net 8§ in A such that S(&g)mt, i.e., for each
1 € N(z¢,7,8) and for each n € D, there exists ng € D such that ng > n and 8(no)qu is
satisfied for the fuzzy net 8 in A. Then since 8(ng) € A, 8(no)gu implies Agu. Hence x;
is an (r, s)-adherent point of A, that is, z; € C(A,, s).

(2) = (3) Easily proved from Theorem 3.4.

(3) = (2) Easily proved from Theorem 3.2 (1). O
3.6. Theorem. Let (X, 7,7") be an ifts and 8 : D — P:(X) a fuzzy net. For r € Iy and
s € I, the following properties hold:

(1) e(clu(8,r,s),r,s) =clu(8,r,s).
(2) clu(8,r,s) <C(V 8(n),r,s).
Proof. (1) From Theorem 1.2 (2), we have
C(clu(8,r,s),r,s) > clu(8,r,s).
Suppose C(clu(8,r,s),r,s) £ clu(8,r,s). From Theorem 2.2, there exists an (r,s)-
adherent point z; of clu(8,r, s), such that
C(clu(8,r,s),r, s)(z) >t > clu(8,r,s)(x).
Since z: is an (r,s)-adherent point of clu(8,r,s), for each u € N(x¢r,s) we have
ugclu(8, r, s). Since ugclu(8, r, s) there exists y € X such that

(y) + clu(s,r,s)(y) >
From the definition of clu(8,r, s ) there exists an (r, s)-cluster point y, of 8§ such that
n(y) + clu(S,r,s)(y) = p(y) +p > 1.

nebD

Thus p € N(yp,r,s). Since 8 & yp and p € N(yp,r,s), for each n € D there exists
ng € D such that no > n and 8(no)gu. Hence x: is an (r,s)-cluster point of 8. So,
clu(8,r, s)(z) > t. It is a contradiction. Hence C(clu(8,r,s),r,s) < clu(8,r,s).

(2) Suppose clu(8,r,s) £ €(V, cp8(n),r,s). Then there exists an (r, s)-cluster point
x; of 8§ such that
(1) clu(8, 7, 8)(z) > t > e( \/ 8(n),r, s) ().

neD

Since z; is an (r, s)-cluster point of 8, for each u € N(x¢,, s), for each n € D, there exists
no > n with 8(no)qu. Since 8(no) <V, cp 8(n), we have \/, ., 8(n)qu. Hence x; is an
(r, s)-adherent point of \/,,., 8(n). Thus C(\/, . 8(n),r,s)(x) > t. It is a contradiction
for (I). Hence clu(8,r,s) < C(V 8(n),r,s). O

3.7. Theorem. Let (X,7,7%) be an ifts and 8,U : D — P,(X) fuzzy nets such that
8(n) vV U(n),8(n) AU(n) € P(X) for each n € D. Define §VU,8 AU : D — Py(X) by,
for each n € D,
SV U)(n) =8(n) VUN) and (8 AU)(n) = 8(n) A U(n).
For each v € Iy and s € I, the following properties hold:
(1) If 8(n) < U(n) for allmn € D, then
clu(8,r,s) <clu(U,r,s) and lim(8,r,s) < lim(U,r,s).
(2) clu(8VU,r,s)=clu(8,r,s)VclulU,r,s).
(3) clu(8 AU, r,s) <clu(8,r,s) Aclu(U,r,s).

nebD
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(4) im(8VU,r,s) > lm(8,r,s)ViIm(U,r,s).
(5) Im(8 AU, 7, s) <lm(8,r,s) Alm(U,r,s).

Proof. (1) Let z: be an (r, s)-cluster point of 8. For each p € N(z¢,7,s) and for each
n € D, there exists no € D such that ng > n and 8(ng)gu. Since 8(n) < U(n) for all
n € D, U(no)gqu. Thus z; is an (r, s)-cluster point of U. Hence clu(8,r,s) < clu(U,r, s).

Similarly, we have lim(8,r, s) < lim(U,r, s).

(2) Since 8 < VU and U < 8§V U, by (1) we have clu(8 VU,r,s) > clu(8,r,s) V
clu(U,r,s). Suppose clu(8 vV U,r,s) £ clu(S,r,s) V clu(U,r,s). Then there exists an
(r, s)-cluster point z; of 8 VU such that

clu(8 v U, s)(x) >t > clu(8,r,s)(z) Vclu(lU, r,s)(z).
Hence ¢ & clu(8,r, s) and z: & clu(U, r, s).

Since z; is not an (r, s)-cluster point of 8, there exist u1 € N(z¢,r, s) and n1 € D such
that 8(n)qu1 for every n € D with n > ni.

Since z: is not an (r, s)-cluster point of U, there exist p2 € N(x¢,7,s) and ne € D
such that U(n)qus for every n € D with n > ns.

Let p = p1 Apz and let ng € D be such that ng > n1 and ng > na. Since u1 < 1—38(n)
and p2 < 1—U(n) for n > n3, we have g1 A pe <1 — (8(n) VU(n)). So, p € N(z¢,r,s)
and n3 € D are such that (8 V U)(n)gu for every n € D with n > n3. Thus z; is not
an (r,s)-cluster point of 8 V U. It is a contradiction. Hence we have clu(8 VU, r,s) <
clu(8,r,s) Vclu(U,r, s).

(3), (4) and (5) are easily proved. O

3.8. Theorem. Let (X, 7,7%) be an ifts and 8 : D — Pi(X) a fuzzy net. Then we have

clu(8,r,s) = /\ 6( \/ S(n),r,s).

ng€D n>ng

Proof. Let x¢ € clu(8,r,s). From Theorem 3.2 (5), since x is an (r, s)-cluster point of 8,
for each u € N(x¢,r, s) and for each ng € D, there exists n € D such that n > ng and
8(n)gp. Since 8(n) <V, 5, 8(n), we have \/ 8(n)qu. Hence z; is an (r, s)-adherent
point of Vnzno 8(n), for all ng € D, that is,

e N e( \/ S(n),r,s).

ng€D n>ng

n>ng

Then we have

Suppose
clu(8,r,s) # /\ G( \/ S(n),r,s).
no€D n>ng

There exists an (r, s)-adherent point x; of \/ 8(n), for all ng € D, such that

n>ng

clu(8,r, s) <t§6( \/ S(n),r,s).

n>ng
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Since z; is an (r,s)-adherent point of \/

N(z¢,r, s), we have

\ S(n)qu.

n>ng

8(n), for each no € D, for each p €

n>ng

Since \/ 8(n)qu, there exists y € X such that

n>ng
\ 8 )+ uly) > 1.
n>ng
Then there exists n € D such that n > ng and
\ 8()(w) + uly) > S$(n)(y) + uly) > 1.

n>ng
It implies 8(n)qu. Hence z; is an (r, s)-cluster point of 8, that is, z; € clu(8,r,s). It is a
contradiction. Hence clu(8,r,s) > A\, cp (3( Vs, $(n), 7, s). O

3.9. Theorem. Let (X,7,7%) be an ifts and 8 : D — Py(X) a fuzzy net. Then the
following properties hold:

(1) e(im(8,r,s),r,s) =lim(8,r,s).

(2) A,ep8(n) <lim(§,r,s).

3) Vigen(Nnzn, 8(n)) <lim(S, 7, s).
Proof. (1) Similar to that of Theorem 3.6 (1).

(2) Suppose A, cp 8(n) £ lim(8,r,s). Then there exist x € X and ¢ € (0, 1) such that
/\ 8(n)(z) >t > lim(8,r, s)(z).
neD
Since ¢ > lim(8, r, s)(z), by Theorem 3.2 (6), z; is not an (r, s)-limit point of 8. So, there
exists u € N(x¢, 7, s) such that for each n € D, there exists ng € D satisfying no > n and
1g8(no). Since x¢qu, we have
8(no)(z) +1—1t < 8(no)(z) + pu(z) < 1.
Thus 8(no)(x) < t implies A, cp8(n)(z) < t. It is a contradiction. Hence we have
/\neD 8(n) < lim(8,r,s).

(3) Suppose V., cp(A,5n, $(n)) £ lim(8,7,s). Then there exist z € X and t € (0,1)
such that a

\/ ( /\ S(n)) (z) >t > lim(8,r, s)(x).
no€D “n>ng
Since t <V, cp (/\nzn0 S(n)) (x), there exists no € D such that z; € A 8(n). This

implies ¢t < 8(n)(z) for all n > ng. Hence for each p € N(x¢,r,s), t + p(z) > 1 implies
8(n)(z)+p(z) > 1, for all n > ng. So, z is an (r, s)-limit point of 8. It is a contradiction.
Hence we have \/, (A5, $(n)) <lm(S,r,s). O

n>ng

3.10. Theorem. Let (X,7,7%) be an ifts and 8 : D — Pi(X) a decreasing fuzzy net.
Then, for each r € Iy and s € I1, we have

clu(8,r, s) = /\ C(8(n),r,s).

neD
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Proof. Suppose
clu(8,r,s) £ /\ C(8(n),r,s).
nebD
Then there exists an (r, s)-cluster point z; of § such that
clu(8,r,s)(x) >t > J\ €(S8(n),r,s)(x).
nebD

Since z; is an (r, s)-cluster point of 8, for each u € N(z¢,7,s) and n € D, there exists
ng € D such that ng > n and 8(no)qu. Since § is a decreasing fuzzy net, for no > n,
8(no)qp implies 8(n)qu. Hence z: is an (r, s)-adherent point of 8(n), for each n € D,
that is,

Tt € /\ C(8(n),r,s).

nebD
It is a contradiction. Hence clu(8,r,s) < A, p C(8(n),r,s).
Suppose
clu(8,r,s) 2 /\ C(8(n),r, s).

neD

Then there exists an (r, s)-adherent point z; of 8(n), for all n € D, such that

clu(8,r,s)(z) <t < ( /\ C(8(n),r, 5)) (z).

nebD

Since z: is an (r, s)-adherent point of 8(n), for n € D, for each u € N(xz¢,7,s), there
exists ng € D such that ng > n and 8(no)qu. Hence z: is an (r, s)-cluster point of 8,
that is, 2 € clu(8,r, s). It is a contradiction. Hence clu(8,r,s) > A, C(8(n),r,s). O

3.11. Theorem. Let (X,7,7%) be an ifts and 8 : D — P,(X) an increasing fuzzy net.
Then, for each r € Iy and s € I1, we have

lim(8,r,s) = G( \/ 8(n),r, s).
nebD
Proof. Suppose
lim(8,r,s) £ G( \/ 8(n),r, s).
neD
Then there exists an (r, s)-limit point x+ of 8 such that
lim(8,r, s)(x) >t > G( \/ 8(n),r, s) (z).
neD

Since z; is an (r,s)-limit point of 8, for each u € N(x¢, 7, s), there exists ng € D such
that for all n > no, 8(n)qu. It implies \/, . , 8(n)qu. Hence x; is an (r, s)-adherent point

of \V,,cp 8(n). It is a contradiction. Hence lim(8,r,s) < (3( Voep 8(n),m, s).
Suppose

lim(8, 7, s) # e( \/ 8(n),r, s).

nebD

Then there exists an (r, s)-adherent point z; of \/, _ 8(n) such that

nebD

lim(8,r, s)(z) <t < e( \V S(n),r,s) (z).

neD
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Since z: is an (r,s)-adherent point of \/ _,8(n), for each u € N(zs,r,s), we have
Vanep 8(n)qu, then there exists no € D such that 8(no)gu. Since 8 is an increasing
fuzzy net, for n > no, 8(no)qu implies 8(n)gu. Hence z; is an (r, s)-limit point of 8, that

is, z¢ € lim(8,r,s). It is a contradiction. Hence lim(8,r,s) > G(\/neD 8(n),r, s). O

3.12. Theorem. Let (X, 71,7) and (Y,72,75) be ifts’s. For every fuzzy net 8§ : D —
P(X), N € IX, r eIy and s € I, the following statements are equivalent:
(1) f: (X 7'1,7'1) (Y, 7'2,7'2) is IF continuous.
(2) IfS & x¢, then f(8 ) (m)
3) I fSngt, then f(8 gf(:v
(4) F(C(A,7,8)) < C(f(A),7,5).
1) = (2) Let u € N(f(x)s,7,8). Since f is IF continuous, then 71 (f~'(u)) >
o) > 7, 7(F (1) < () <+ and F(z)uqu imples weq~ (). Heneo £ (1) €
). Since 8 oo)xt, for f~1(u) € N(zy,7,s) and for each n € D, there exists no € D

such that no > n and 8(no)qf " (). This implies f(S(no))qu. Hence f(8 )(ob)f( )t.

N(ze,ry s

(2) = (3) Let 8%z, For every subnet U: E — P,(Y) of f(8), there exists a cofinal
selection N : E — D such that U= f(8)o N = fo(S8oN). Put T =80 N. Then T is a
subnet of §. This follows from the following:

S(T—’sgxt = T(r—’s;mt (by Theorem 3.2(7))
= T(&;)mt (by Theorem 3.2(1))
— /(1) = U f(a) (by (2))
S)igf(m)t (by Theorem 3.3)

(3) = (4) Suppose there exist A € I, r € Iy and s € I; such that

F(CA 7, 8)) £ C(f(A),7,9).

Then there exists y € Y such that

(II) €A1, 8))(y) > E(f(A), 7, 5) ().

So, there exists x € f~'({y}) such that
FCA 7, 8))(y) = C(A, 7, 8)(z) > C(f(N),7,9))(y)-

From Theorem 2.2, there exists an (r, s)-adherent point ¢ of A on (X, 71, 7{) such that
CA 7, 8)(z) >t > C(f(N),r,8)(f(2)).

Since x: € C(\, 7, s), by Theorem 3.5, there exists a fuzzy net 8 in A such that S(T—’S;xt.

By ( ng )¢ with f(8) in f(A). From Theorem 3.5, we have f(z); = y; €
G(f(/\) r, s) It is a contradiction for (IT). Hence, for all A € I, r € Iy and s € Iy, we
have f(C(A,7,5) < C(f(A), 7, 5).

(4) = (1) Similar to Theorem 2.4. O
From Theorem 3.12, we can easily obtain the following corollary.

3.13. Corollary. Let (X,m1,71) and (Y,72,75) be ifts’s. For every fuzzy net 8 : D —
P(X), A€ IX, r eIy and s € I, the following statements are equivalent:

1) f:(X,11,71) = (Y, 72,75) is IF continuous.
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(2) f(clu(S,r,s)) < clu(f(S),7,5)
(3) f(lim(S,r,s)) < im(£(8),r,s).
(4) F(E(A7,5)) < C(F(N), 7. 5)- 0

4. (r,s)-convergent nets

4.1. Definition. Let (X,7,7*) be an ifts, p € I*, 2, € P(X), r € Ip and s € I,. A
fuzzy net 8 is said to be (r, s)-convergent to u, denoted by con(8,r, s) = p, if clu(8,r, s) =
lim(8,r, s) = u.

4.2. Theorem. Let (X,7,7%) be an ifts and 8,U : D — P;(X), (r, s)-convergent nets
such that 8(n) VU(n) € Py(X) for each n € D. Then

con(8 VU,r,s) = con(8,r,s)Vcon(U,r,s).

Proof. From Theorem 3.7, § VU is a fuzzy net. This is easily proved by the following:
clu(8vU,r,s)=clu(8,r,s) Vclu(lU,r,s) (by Theorem 3.7(2))

= lim(8, 7, s) V im(U, r, s)

<lim(8VU,r,s) (by Theorem 3.7(4))

<clu(8VvVU,r,s). (by Theorem 3.2(2)) O
4.3. Theorem. Let (X, 7,7") be an ifts, 8 a fuzzy net and H = {T | T is a subnet of
8}. Then the following statements hold:

(1) Um(8,r,s) = /\TGO{ clu(T,r,s).

(2) clu(8,r,8) = Vg im(T, 7, 5).
(3) If con(8,r,s) = p, then con(T,r,s) = u for each T € H.

Proof. (1) For each T' € 3, by Theorem 3.2 (2,8,10), we have
(111) lim(8,r,s) < lm(T,r,s) < clu(T,r,s) <clu(8,r,s).

Hence
lim(8,r,s) < /\ clu(T,r,s).
TeX
Suppose
lim(8,r,s) 2 /\ clu(T,r,s).
TeX

Then there exist z € X and ¢t € (0,1) such that

(IvV)  lm(8,rs)(z) <t < /\ clu(T,r,s).
Tex

Since lim(8,r, s)(z) < t, by Theorem 3.2 (6), z¢ is not an (r, s)-limit point of §, that
is, there exists u € N(x¢, 7, s) such that for each n € D there exists N(n) € D with
for N(n) > n and 8(N(n))gu. Hence there exists a cofinal selection N : D — D such
that T = 8o N. Thus T is a subnet of 8. Moreover, z; is not an (r, s)-cluster point
of T. By Theorem 3.2(5), clu(T,r,s)(z) < t. It is a contradiction for (IV). Hence
lim(8,r,s) = Apeqe clu(T,r, ).

(2) From (III) of (1), we have

\/ m(T,r,s) < clu(S,r, s).
TeH
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Suppose
\/ Um(T, 7, s) # clu(8,r,s).

TeH
Then there exist z € X and ¢t € (0, 1) such that

(V) \/ Um(7T, 7, s)(z) < t < clu(8,r,s)(z).

TeH
Since z; € clu(8,r, s), by Theorem 3.2(5), we have S(&g)mt. By Theorem 3.4, there exists
a subnet T of 8 such that T(T—’ngt. Thus

z¢ € im(T, 7, s) < \/ lim(T,r, s).

TeH
It is a contradiction for (V). Hence \/ g im(T, 7, s) > clu(8, 7, s).
(3) Easily proved from (III) of (1). O

4.4. Theorem. Let (X, 7,7") be an ifts, 8 a fuzzy net. If every subnet of 8 has a subnet
which is (r, s)-convergent to p, then con(8,r,s) = u.

Proof. Let 5 = {T | T is a subnet of 8}. For each T' € H, since T has a subnet K with
con(K,r,s) = p, by Theorem 3.2 (8), we have

lim(7T,r,s) < lim(K,r,s) = clu(K,r,s) = p.
Hence, by Theorem 4.3 (2),
(VD) clu(8,r, s) = \/ lim(7T,r,s) < p.

TeH

Conversely, by Theorem 3.2 (10),

p=lm(K,r s) =clu(K,r,s) <clu(T,r,s).
Hence, by Theorem 4.3 (1),
(VII)  u< /\ clu(T,r,s) = lim(8,r,s).

TexH
By (VI) and (VII), clu(8,r,s) < lim(8,r,s). Since lim(8,r,s) < clu(8,r,s) from Theo-
rem 3.2 (2), clu(8,r,s) = lim(8,r, s), that is, con(8,r,s) = u. a

4.5. Example. Let X = {a,b} be a set, N the set of natural numbers and let u € I*
be defined by u(a) = 0.3 and p(b) = 0.4. We define the IFGO, (7,7") as follows:

1, ifA=0orl, 0, ifA=0orl,
T(A): %7 ifA=p, T*(/\): %7 if A= p,
0, otherwise, 1, otherwise.

Define a fuzzy net 8§ : N — P,(X) by
8(n) = za,, an =06+ (-1)"0.2.
We can show clu(8, 2,1) = 1, from (1) and (2):

12173
(1) @ for t < 0.7 or ym for m < 0.6 is an (1, 2)-cluster point of 8, because, for
1€ N(p, %, %) with p = x4 or ym, and for all n € N, we have 8(n)ql.
(2) a¢ for t > 0.7 or ym for m > 0.6 is an (3, 3)-cluster point of 8, because, for
1,1 € N(p, %, %) with p = x+ or y»,, and for all n € N, there exists 2n € N such
that 2n > n, 8(2n) = zo.sqpu.

We can show lim(8,%,1) =1 — p, from (3) and (4):

1202
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(3) @t for t < 0.7 or ym for m < 0.6 is an (%, 2)-limit point of 8, because, for
1€ N(p, %, %) with p = ¢ or ym and for all n € N, we have 8(n)ql.

(4) @ for t > 0.7 or ym, for m > 0.6 is not an (%, %)—limit point of 8, because,
for € N(p, 3,3) such that for all n € N, there exists 2n + 1 € N such that

2n+4+12>mn,8(2n+ 1) = zo.4qu.
Since clu(8, 1, 1) # lim(8, %, 1), 8 is not (

1
'35 N 5)-convergent.

1
29
r

By a similar method, we show for 0 < % and % <s<1,

1=clu(8,r,s) #1lim(8,r,s) =1—pu,

and for r > 5 and s < %,

1
2

1=clu(8,r,s) =1lm(8,r,s).
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