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Abstract

We introduce the notions of (r, s)-adherent point, (r, s)-accumulation
point, (r, s)-cluster point, (r, s)-limit point and (r, s)-derived set in
an intuitionistic fuzzy topological spaces and investigate some of their
properties. Also, we define (r, s)-convergent nets and investigate some
of their properties.
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1. Introduction and preliminaries

Pu and Liu [19] introduced the notions of Q-neighborhood and fuzzy net with respect
to Q-neighborhoods and established the convergence theory in fuzzy topological spaces.
Chen and Cheng [6] introduced the concepts of fuzzy cluster and fuzzy limit point in
fuzzy topological spaces with respect to R-neighborhoods instead of Q-neighborhoods.
The convergence theory in fuzzy topological spaces has been developed in many directions
[6,7,11,24].

Kubiak [15] and Šostak [21] introduced the fundamental concept of a fuzzy topological
structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that
not only the objects are fuzzified, but also the axiomatics. In [22,23], Šostak gave some
rules and showed how such an extension can be realized. Chattopadhyay et al. [4] have
redefined the same concept under the name gradation of openness. A general approach
to the study of topological type structures on fuzzy power sets was developed in [12-16].

As a generalization of fuzzy sets, the notion of intuitionistic fuzzy set was introduced
by Atanassov [2]. By using intuitionistic fuzzy sets, Çoker and his coworker [8,9] defined
the topology of intuitionistic fuzzy sets. Recently, Samanta and Mondal [20], introduced
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the notion of intuitionistic fuzzy gradation of openness of fuzzy sets, where to each fuzzy
subsets there is a definite grade of openness and there is a grade of non-openness. Thus,
the concept of intuitionistic fuzzy gradation of openness is a generalization of the concept
of gradation of openness and the topology of intuitionistic fuzzy sets.

In this paper, we introduce the notions of (r, s)-adherent point, (r, s)-accumulation
point, (r, s)-cluster point, (r, s)-limit point and (r, s)-derived set in an intuitionistic
fuzzy topological spaces and investigate some of their properties. Also, we define (r, s)-
convergent nets and investigate some of their properties.

Throughout this paper, let X be a nonempty set, I = [0, 1], I0 = (0, 1] and I1 = [0, 1).
For α ∈ I , α(x) = α for all x ∈ X. A fuzzy point xt for t ∈ I0 is an element of IX such
that

xt(y) =

{

t, if y = x,

0, if y 6= x.

The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point xt ∈ λ iff t < λ(x).
A fuzzy set λ is quasi-coincident with µ, denoted by λ q µ, if there exists x ∈ X such
that λ(x) + µ(x) > 1. If λ is not quasi-coincident with µ, we write λ q µ.

1.1. Definition. [20] An intuitionistic fuzzy gradation of openness (IFGO, for short) on
X is an ordered pair (τ, τ∗) of functions from IX to I such that

(IGO1) τ (λ) + τ∗(λ) ≤ 1, ∀λ ∈ IX ,
(IGO2) τ (0) = τ (1) = 1, τ∗(0) = τ∗(1) = 0,
(IGO3) τ (λ1∧λ2) ≥ τ (λ1)∧τ (λ2) and τ∗(λ1∧λ2) ≤ τ∗(λ1)∨τ

∗(λ2), for each λ1, λ2 ∈ IX ,
(IGO4) τ (

∨

i∈∆ λi) ≥
∧

i∈∆ τ (λi) and τ∗(
∨

i∈∆ λi) ≤
∨

i∈∆ τ∗(λi), for each λi ∈ IX ,
i ∈ ∆.

The triplet (X, τ, τ∗) is called an intuitionistic fuzzy topological space (ifts, for short). τ

and τ∗ may be interpreted as fuzzy gradation of openness and fuzzy gradation of nonopen-

ness, respectively.

1.2. Theorem. [1,17] Let (X, τ, τ∗) be an ifts. For each r ∈ I0, s ∈ I1, λ ∈ IX , we

define an operator C : IX × I0 × I1 → IX as follows:

C(λ, r, s) =
∧

{µ | µ ≥ λ, τ (1− µ) ≥ r, τ
∗(1− µ) ≤ s}.

Then it satisfies the following properties:

(1) C(0, r, s) = 0,C(1, r, s) = 1, for all r ∈ I0, s ∈ I1.

(2) C(λ, r, s) ≥ λ.

(3) C(λ1, r, s) ≤ C(λ2, r, s), if λ1 ≤ λ2.

(4) C(λ ∨ µ, r, s) = C(λ, r, s) ∨ C(µ, r, s), for all r ∈ I0, s ∈ I1.

(5) C(λ, r, s) ≤ C(λ, r′, s′), if r ≤ r′, s ≥ s′, where r, r′ ∈ I0, s, s
′ ∈ I1.

(6) C(C(λ, r, s), r, s) = C(λ, r, s). �

Let (X, τ1, τ
∗
1 ) and (Y, τ2, τ

∗
2 ) be intuitionistic fuzzy topological spaces. A function

f : X → Y is called IF continuous if τ2(µ) ≤ τ1(f
−1(µ)) and τ∗

2 (µ) ≥ τ∗
1 (f

−1(µ)) for all
µ ∈ IY .

1.3. Definition. [19] Let λ, µ ∈ IX . Define the fuzzy quasi-difference of λ and µ, denoted
by λ\µ, as

(λ\µ)(x) =











λ(x), if µ(x) = 0,

0, if λ(x) ≥ µ(x) > 0,

λ(x), if λ(x) < µ(x).

1.4. Lemma. [19] For λ, µ ∈ IX and xt ∈ Pt(X), the following properties hold:



(r, s)-Convergent Nets 177

(1) λ\µ ≤ λ and λ\0 = λ.

(2) If xt 6∈ λ, then λ\xt = λ. If xt ∈ λ, then, for each y ∈ X,

(λ\xt)(y) =

{

λ(y), if y 6= x,

0, if y = x.

(3) (λ ∨ µ)\xt ≤ (λ\xt) ∨ (µ\xt).
(4) If f : X → Y is injective, then f(λ\µ) = f(λ)\f(µ).

1.5. Definition. [10] Let (X, τ, τ∗) be an ifts, µ ∈ IX , xt ∈ Pt(X), r ∈ I0 and s ∈ I1.
Then µ is called an (r, s)-open Q-neighborhood of xt if xtqµ with τ (µ) ≥ r and τ∗(µ) ≤ s.
We write

N(xt, r, s) = {µ | µ ∈ I
X
, xtqµ, τ (µ) ≥ r and τ

∗(µ) ≤ s}.

1.6. Definition. [19] Let D be a directed set and λ ∈ IX . A function S : D → Pt(X) is
called a fuzzy net. We say S is a fuzzy net in λ if S(n) ∈ λ for every n ∈ D. A fuzzy net
S is increasing (resp. decreasing) if S(m) ≤ S(n) (resp. S(n) ≤ S(m)) for every m ≤ n

with m,n ∈ D.

1.7. Definition. [19] Let S : D → Pt(X) and W : E → Pt(X) be two fuzzy nets. Then,
W is called a subnet of S if there exists a function N : E → D, called by a cofinal selection

on S, such that

(1) W = S ◦N ,
(2) For every n0 ∈ D, there exists m0 ∈ E such that N(m) ≥ n0 for m ≥ m0.

2. (r, s)-derived sets in intuitionistic fuzzy topological spaces

2.1. Definition. Let (X, τ, τ∗) be an ifts, λ ∈ IX , xt ∈ Pt(X), r ∈ I0 and s ∈ I1. Then:

(1) xt is called an (r, s)-adherent point of λ if for every xtqµ with τ (µ) ≥ r and
τ∗(µ) ≤ s, we have µqλ.

(2) xt is called an (r, s)-accumulation point of λ if for every xtqµ with τ (µ) ≥ r and
τ∗(µ) ≤ s, we have µq(λ\xt).

Define the (r, s)-derived set of λ, denote by D(λ, r, s), as

D(λ, r, s) =
∨

{xt | xt ∈ Pt(X) and xt is an (r, s)-accumulation point of λ}.

2.2. Theorem. Let (X, τ, τ∗) be an ifts. For λ ∈ IX , r ∈ I0 and s ∈ I1, we have

C(λ, r, s) =
∨

{xt | xt ∈ Pt(X) and xt is an (r, s)-adherent point of λ}.

Proof. Put ρ =
∨

{xt ∈ Pt(X) | xt is an (r, s)-adherent point of λ}. Suppose C(λ, r, s) 6≤
ρ. Then there exist x ∈ X and t ∈ I0 such that

C(λ, r, s)(x) ≥ t > ρ(x).

Since ρ(x) < t, xt is not an (r, s)-adherent point of λ. Hence there exists µ ∈ IX with
xtqµ, τ (µ) ≥ r and τ∗(µ) ≤ s such that λqµ, that is, λ ≤ 1 − µ. Then λ ≤ C(λ, r, s) ≤
1 − µ. Since xtqµ and µ ≤ 1 − C(λ, r, s), we have xtq(1 − C(λ, r, s)). This implies
t > C(λ, r, s)(x), a contradiction. Hence, C(λ, r, s) ≤ ρ.

Suppose C(λ, r, s) 6≥ ρ. Then there exists an (r, s)-adherent point xt ∈ Pt(X) such
that

C(λ, r, s)(x) < t ≤ ρ(x).

Since C(λ, r, s)(x) < t, then xtq(1−C(λ, r, s)), τ (1−C(λ, r, s)) ≥ r and τ∗(1−C(λ, r, s)) ≤
s. Moreover, since λ ≤ C(λ, r, s) we have

λq(1− C(λ, r, s)).
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So xt is not an (r, s)-adherent point of λ. It is a contradiction. Hence, C(λ, r, s) ≥ ρ. �

2.3. Theorem. Let (X, τ, τ∗) be an ifts. For λ, µ ∈ IX , r ∈ I0 and s ∈ I1, the following

properties hold:

(1) D(λ, r, s) ≤ C(λ, r, s).
(2) C(λ, r, s) = λ ∨D(λ, r, s).
(3) C(λ, r, s) = λ iff D(λ, r, s) ≤ λ.

(4) If r1 ≥ r and s1 ≤ s, then D(λ, r, s) ≤ D(λ, r1, s1).
(5) D(λ ∨ µ, r, s) ≤ D(λ, r, s) ∨D(µ, r, s).

Proof. (1) Clear because every (r, s)-accumulation point of λ is an (r, s)-adherent point
of λ.

(2) Since λ ≤ C(λ, r, s) and D(λ, r, s) ≤ C(λ, r, s), we have

λ ∨D(λ, r, s) ≤ C(λ, r, s).

Conversely, suppose C(λ, r, s) 6≤ λ ∨ D(λ, r, s). Then there exist x ∈ X and t ∈ I0 such
that

C(λ, r, s)(x) > t > λ(x) ∨D(λ, r, s)(x).

Since λ(x) ∨ D(λ, r, s)(x) < t, then xt 6∈ λ and xt is not an (r, s)-accumulation point of
λ. Hence there exists µ ∈ IX with xtqµ, τ (µ) ≥ r and τ∗(µ) ≤ s such that µq(λ\xt).
Since xt 6∈ λ, we have (λ\xt) = λ. Thus µqλ which implies λ ≤ C(λ, r, s) ≤ 1− µ. Since
xtqµ, that is, (1− µ)(x) < t,

C(λ, r, s)(x) ≤ (1− µ)(x) < t.

It is a contradiction. Hence C(λ, r, s) ≤ λ ∨D(λ, r, s).

(3) Follows immediately from (2).

(4) Suppose D(λ, r, s) 6≤ D(λ, r1, s1). Then there exists an (r, s)-accumulation point
xt ∈ Pt(X) of λ such that

D(λ, r, s)(x) ≥ t > D(λ, r1, s1)(x).

Since D(λ, r1, s1)(x) < t, then xt is not an (r1, s1)-accumulation point of λ. Hence
there exists ρ ∈ IX with xtqρ, τ (ρ) ≥ r1 and τ∗(ρ) ≤ s1 such that ρq(λ\xt). Since
τ (ρ) ≥ r1 ≥ r and τ∗(ρ) ≤ s1 ≤ s, then xt is not an (r, s)-accumulation point of λ. It is
a contradiction.

(5) Suppose D(λ ∨ µ, r, s) 6≤ D(λ, r, s) ∨ D(µ, r, s). Then there exists an (r, s)-
accumulation point xt ∈ Pt(X) of λ ∨ µ such that

D(λ ∨ µ, r, s)(x) ≥ t > D(λ, r, s)(x) ∨D(µ, r, s)(x).

Since D(λ, r, s)(x) < t and D(µ, r, s)(x) < t, then xt is not an (r, s)-accumulation point
of either λ or µ. Hence there exist ρ1, ρ2 ∈ IX with xtqρi, τ (ρi) ≥ r and τ∗(ρi) ≤ s, for
i = 1, 2, such that

ρ1q(λ\xt) and ρ2q(µ\xt).

Take ρ = ρ1 ∧ ρ2. Then xtq(ρ1 ∧ ρ2), τ (ρ1 ∧ ρ2) ≥ r and τ∗(ρ1 ∧ ρ2) ≤ s. Moreover,

(λ ∨ µ)\xt ≤ (λ\xt) ∨ (µ\xt) by Lemma 1.4(3)

≤ (1− ρ1) ∨ (1− ρ2)

= 1− (ρ1 ∧ ρ2)

= 1− ρ.
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Hence, ρq((λ ∨ µ)\xt). Thus xt is not an (r, s)-accumulation point of λ ∨ µ. It is a
contradiction. Therefore, D(λ ∨ µ, r, s) ≤ D(λ, r, s) ∨D(µ, r, s). �

2.4. Theorem. Let (X, τ1, τ
∗
1 ) and (Y, τ2, τ

∗
2 ) be ifts’s and f : X → Y an injective

function. Then the following statements are equivalent:

(1) f is IF continuous.

(2) f(D(λ, r, s)) ≤ D(f(λ), r, s), for each λ ∈ IX , r ∈ I0 and s ∈ I1.

(3) f(C(λ, r, s)) ≤ C(f(λ), r, s), for each λ ∈ IX , r ∈ I0 and s ∈ I1

Proof. (1) =⇒ (2): Suppose there exist λ ∈ IX , r ∈ I0 and s ∈ I1 such that

f(D(λ, r, s)) 6≤ D(f(λ), r, s).

Then there exists y ∈ Y such that

f(D(λ, r, s))(y) > D(f(λ), r, s)(y).

Since f is injective, there exists a unique x ∈ f−1({y}) such that

f(D(λ, r, s))(y) ≥ D(λ, r, s)(x) > D(f(λ), r, s)(y).

There exists an (r, s)-accumulation point xt of λ on (X, τ1, τ
∗
1 ) such that

D(λ, r, s)(x) ≥ t > D(f(λ), r, s)(f(x)).

Therefore f(x)t = f(xt) is not an (r, s)-accumulation point of f(λ). Hence there exists
ρ ∈ IY with f(xt)qρ, τ2(ρ) ≥ r and τ∗

2 (ρ) ≤ s such that ρq(f(λ)\f(xt)). Since f is
injective, by Lemma 1.4 (4), f(λ)\f(xt) = f(λ\xt). By the IF continuity of f , we have
τ1(f

−1(ρ)) ≥ τ2(ρ) ≥ r and τ∗
1 (f

−1(ρ)) ≤ τ∗
2 (ρ) ≤ s. Then we have f(xt)qρ =⇒

xtqf
−1(ρ), which implies ρqf(λ\xt) =⇒ f−1(ρ)q(λ\xt). Hence xt is not an (r, s)-

accumulation point of λ. It is a contradiction. Hence f(D(λ, r, s)) ≤ D(f(λ), r, s),
for each λ ∈ IX , r ∈ I0 and s ∈ I1.

(2) =⇒ (3): Easily proved from the following:

f(C(λ, r, s)) = f(λ ∨D(λ, r, s)) (By Theorem 2.3(2))

= f(λ) ∨ f(D(λ, r, s))

≤ f(λ) ∨D(f(λ), r, s) (by (2))

= C(f(λ), r, s).

(3) =⇒ (1): Easily proved. �

3. (r, s)-cluster points and (r, s)-limit points

3.1. Definition. Let (X, τ, τ∗) be an ifts, µ ∈ IX , xt ∈ Pt(X), r ∈ I0 and s ∈ I1. Then:

(1) xt is called an (r, s)-cluster point of S, denoted by S
(r,s)
∞ xt, if for every µ ∈

N(xt, r, s), S is frequently quasi-coincident with µ, i.e., for each n ∈ D, there
exists n0 ∈ D such that n0 ≥ n and S(n0)qµ.

(2) xt is called an (r, s)-limit point of S, denoted by S
(r,s)
−→xt, if for every µ ∈

N(xt, r, s), S is eventually quasi-coincident with µ, i.e., there exists n0 ∈ D

such that for each n ∈ D with n ≥ n0, we have S(n)qµ.

We write

clu(S, r, s) =
∨

{xt | xt ∈ Pt(X) and xt is an (r, s)-cluster point of S},

lim(S, r, s) =
∨

{xt | xt ∈ Pt(X) and xt is an (r, s)-limit point of S}.
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3.2. Theorem. Let (X, τ, τ∗) be an ifts, S : D → Pt(X) a fuzzy net and W : E → Pt(X)
a subnet of S. For r,m ∈ I0 and s ∈ I1, the following properties hold:

(1) If S
(r,s)
−→xt, then S

(r,s)
∞ xt.

(2) lim(S, r, s) ≤ clu(S, r, s).

(3) If S
(r,s)
∞ xt and xt ≥ xm, then S

(r,s)
∞ xm.

(4) If S
(r,s)
−→xt and xt ≥ xm, then S

(r,s)
−→xm.

(5) S
(r,s)
∞ xt iff xt ∈ clu(S, r, s).

(6) S
(r,s)
−→xt iff xt ∈ lim(S, r, s).

(7) If S
(r,s)
−→xt, then W

(r,s)
−→xt.

(8) lim(S, r, s) ≤ lim(W, r, s).

(9) If W
(r,s)
∞ xt, then S

(r,s)
∞ xt.

(10) clu(W, r, s) ≤ clu(S, r, s).

Proof. (1) and (2) are clear.

(3) For every µ ∈ N(xm, r, s), since xm ≤ xt then µ ∈ N(xt, r, s). Since S
(r,s)
∞ xt, for

each n ∈ D, there exists n0 ∈ D such that n0 ≥ n and S(n0)qµ. Hence S
(r,s)
∞ xm.

(4) Similar to (3).

(5) =⇒ . Clear.

⇐=. Let xt ∈ clu(S, r, s) and µ ∈ N(xt, r, s). Since xtqµ and clu(S, r, s)(x) ≥ t, we
have

µ(x) + clu(S, r, s)(x) ≥ µ(x) + t > 1.

From the definition of clu(S, r, s), there exists an (r, s)-cluster point xm ∈ Pt(X) of S
such that

µ(x) + clu(S, r, s)(x) ≥ µ(x) +m > 1.

Thus µ ∈ N(xm, r, s). Since xm is an (r, s)-cluster point of S, for each n ∈ D, there exists

n0 ∈ D such that n0 ≥ n and S(n0)qµ. Hence S
(r,s)
∞ xt.

(6) Similar to (5).

(7) For every µ ∈ N(xt, r, s), since S
(r,s)
−→xt, there exists n0 ∈ D such that for all

n ≥ n0, S(n)qµ. Let N : E → D be a cofinal selection on S. Then for n0 ∈ D, there
exists m0 ∈ E such that N(m) ≥ n0 for all m ≥ m0. Thus W(m) = S(N(m))qµ for

m ≥ m0. Therefore, W
(r,s)
−→xt.

(8) Clear from (7).

(9) Suppose that W
(r,s)
∞ xt and n ∈ D. If N : E → D is a cofinal selection on S,

then there exists m ∈ E such that N(k) ≥ n for k ≥ m. Since W
(r,s)
∞ xt, for every µ ∈

N(xt, r, s), there exists m0 ∈ E such that m0 ≥ m and W(m0)qµ. We let n0 = N(m0).
Then n0 ≥ n, and since S(n0) = W(m0) we have S(n0)qµ.

(10) Clear from (9). �

3.3. Theorem. Let (X, τ, τ∗) be an ifts, xt ∈ Pt(X), r ∈ I0 and s ∈ I1. For every fuzzy

net S, S
(r,s)
−→xt iff W

(r,s)
∞ xt for every fuzzy subnet W of S.
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Proof. =⇒ . From Theorem 3.2 (7), S
(r,s)
−→xt implies W

(r,s)
−→xt. From Theorem 3.2 (1),

W
(r,s)
−→xt implies W

(r,s)
∞ xt.

⇐=. Suppose xt is not an (r, s)-limit point of S. Then there exists µ ∈ N(xt, r, s)
satisfying the following: for each n ∈ D, there exists N(n) ∈ D such that N(n) ≥ n

and S(N(n))qµ. So we get a cofinal selection N : D → D. Since N is a cofinal selection
on S, W = S ◦ N is a fuzzy subnet of S. Since for µ ∈ N(xt, r, s) and for each n ∈ D,
W(n) = S(N(n))qµ, xt is not an (r, s)-cluster point of W. �

3.4. Theorem. Let (X, τ, τ∗) be an ifts, xt ∈ Pt(X), r ∈ I0 and s ∈ I1. For every fuzzy

net S : D → Pt(X), we have S
(r,s)
∞ xt iff S has a fuzzy subnet W such that W

(r,s)
−→xt.

Proof. =⇒ . Let E = D × N(xt, r, s) = {(m,λ) | m ∈ D, λ ∈ N(xt, r, s)}. Define a
relation on E by

∀(m,λ), (n, µ) ∈ E, (m,λ) ≤ (n, µ) ⇐⇒ m ≤ n, λ ≥ µ.

For each (m,λ), (n, µ) ∈ E, we have λ, µ ∈ N(xt, r, s) =⇒ λ ∧ µ ∈ N(xt, r, s) and there
exists k ∈ D such that m ≤ k and n ≤ k. Hence there exists (k, λ ∧ µ) ∈ E such that
(m,λ) ≤ (k, λ ∧ µ) and (n, µ) ≤ (k, λ ∧ µ). So, E is a directed set.

For each (n, µ) ∈ E, since S
(r,s)
∞ xt, there exists N(n, µ) ∈ D such that N(n, µ) ≥ n

and S(N(n, µ))qµ. So, we can define N : E → D. For each n0 ∈ D, since S
(r,s)
∞ xt, for

µ0 ∈ N(xt, r, s), there exists (n0, µ0) ∈ E such that N(n0, µ0) ≥ n0. Hence for every
(n, µ) ≥ (n0, µ0), since n ≥ n0, we have N(n, µ) ≥ n ≥ n0. Therefore N is a cofinal
selection on S. So, W = S ◦N is a fuzzy subnet of S.

Now we show that W
(r,s)
−→xt. For each µ0 ∈ N(xt, r, s), since S

(r,s)
∞ xt, for n0 ∈ D,

there exists N(n0, µ0) ∈ D such that S(N(n0, µ0))qµ0. Hence for every (n, µ) ≥ (n0, µ0),

S(N(n, µ))qµ implies S(N(n, µ))qµ0 because µ ≤ µ0. So, W
(r,s)
−→xt.

⇐=. From Theorem 3.2(1), W
(r,s)
−→xt implies W

(r,s)
∞ xt. From Theorem 3.2 (9), W

(r,s)
∞ xt

implies S
(r,s)
∞ xt. �

3.5. Theorem. Let (X, τ, τ∗) be an ifts, xt ∈ Pt(X), r ∈ I0 and s ∈ I1. Then the

following statements are equivalent:

(1) xt ∈ C(λ, r, s).

(2) There exists a fuzzy net S in λ such that S
(r,s)
∞ xt.

(3) There exists a fuzzy net S in λ such that S
(r,s)
−→xt.

Proof. (1) =⇒ (2) Define a relation on N(xt, r, s) by,

ν � ω iff ω ≤ ν, ∀ν, ω ∈ N(xt, r, s).

Then (N(xt, r, s),�) is a directed set. For each µ ∈ N(xt, r, s), since xt ∈ C(λ, r, s) we
have C(λ, r, s)(x)+µ(x) ≥ t+µ(x) > 1. From Theorem 2.2, there exists an (r, s)-adherent
point xm of λ such that

C(λ, r, s)(x) + µ(x) ≥ m+ µ(x) > 1.

Since xm is an (r, s)-adherent point of λ and µ ∈ N(xm, r, s), we have λqµ. Then there
exist y ∈ X and n ∈ I0 such that

λ(y) + µ(y) ≥ n+ µ(y) > 1.

Hence yn ∈ λ and µ ∈ N(yn, r, s). For each µ ∈ N(xt, r, s), we can define a fuzzy net
S : N(xt, r, s) → Pt(X) by S(µ) = yn. Then S(µ)qµ and S(µ) ∈ λ.
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Now we will show that S
(r,s)
∞ xt. Let µ ∈ N(xt, r, s). Then for every ν ∈ N(xt, r, s), we

have µ ∧ ν ∈ N(xt, r, s) and S(µ ∧ ν)q(µ ∧ ν). Thus ν � µ ∧ ν and S(µ ∧ ν)qµ.

(2) =⇒ (1) Suppose there exists a fuzzy net S in λ such that S
(r,s)
∞ xt, i.e., for each

µ ∈ N(xt, r, s) and for each n ∈ D, there exists n0 ∈ D such that n0 ≥ n and S(n0)qµ is
satisfied for the fuzzy net S in λ. Then since S(n0) ∈ λ, S(n0)qµ implies λqµ. Hence xt

is an (r, s)-adherent point of λ, that is, xt ∈ C(λ, r, s).

(2) =⇒ (3) Easily proved from Theorem 3.4.

(3) =⇒ (2) Easily proved from Theorem 3.2 (1). �

3.6. Theorem. Let (X, τ, τ∗) be an ifts and S : D → Pt(X) a fuzzy net. For r ∈ I0 and

s ∈ I1, the following properties hold:

(1) C(clu(S, r, s), r, s) = clu(S, r, s).
(2) clu(S, r, s) ≤ C(

∨

n∈D
S(n), r, s).

Proof. (1) From Theorem 1.2 (2), we have

C(clu(S, r, s), r, s) ≥ clu(S, r, s).

Suppose C(clu(S, r, s), r, s) 6≤ clu(S, r, s). From Theorem 2.2, there exists an (r, s)-
adherent point xt of clu(S, r, s), such that

C(clu(S, r, s), r, s)(x) ≥ t > clu(S, r, s)(x).

Since xt is an (r, s)-adherent point of clu(S, r, s), for each µ ∈ N(xt, r, s) we have
µqclu(S, r, s). Since µqclu(S, r, s), there exists y ∈ X such that

µ(y) + clu(S, r, s)(y) > 1.

From the definition of clu(S, r, s), there exists an (r, s)-cluster point yp of S such that

µ(y) + clu(S, r, s)(y) ≥ µ(y) + p > 1.

Thus µ ∈ N(yp, r, s). Since S
(r,s)
∞ yp and µ ∈ N(yp, r, s), for each n ∈ D there exists

n0 ∈ D such that n0 ≥ n and S(n0)qµ. Hence xt is an (r, s)-cluster point of S. So,
clu(S, r, s)(x) ≥ t. It is a contradiction. Hence C(clu(S, r, s), r, s) ≤ clu(S, r, s).

(2) Suppose clu(S, r, s) 6≤ C(
∨

n∈D
S(n), r, s). Then there exists an (r, s)-cluster point

xt of S such that

(I) clu(S, r, s)(x) ≥ t > C

(

∨

n∈D

S(n), r, s
)

(x).

Since xt is an (r, s)-cluster point of S, for each µ ∈ N(xt, r, s), for each n ∈ D, there exists
n0 ≥ n with S(n0)qµ. Since S(n0) ≤

∨

n∈D
S(n), we have

∨

n∈D
S(n)qµ. Hence xt is an

(r, s)-adherent point of
∨

n∈D
S(n). Thus C(

∨

n∈D
S(n), r, s)(x) ≥ t. It is a contradiction

for (I). Hence clu(S, r, s) ≤ C(
∨

n∈D
S(n), r, s). �

3.7. Theorem. Let (X, τ, τ∗) be an ifts and S,U : D → Pt(X) fuzzy nets such that

S(n) ∨ U(n), S(n) ∧ U(n) ∈ Pt(X) for each n ∈ D. Define S ∨ U, S ∧ U : D → Pt(X) by,

for each n ∈ D,

(S ∨ U)(n) = S(n) ∨ U(n) and (S ∧ U)(n) = S(n) ∧ U(n).

For each r ∈ I0 and s ∈ I1, the following properties hold:

(1) If S(n) ≤ U(n) for all n ∈ D, then

clu(S, r, s) ≤ clu(U, r, s) and lim(S, r, s) ≤ lim(U, r, s).

(2) clu(S ∨ U, r, s) = clu(S, r, s) ∨ clu(U, r, s).
(3) clu(S ∧ U, r, s) ≤ clu(S, r, s) ∧ clu(U, r, s).
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(4) lim(S ∨ U, r, s) ≥ lim(S, r, s) ∨ lim(U, r, s).
(5) lim(S ∧ U, r, s) ≤ lim(S, r, s) ∧ lim(U, r, s).

Proof. (1) Let xt be an (r, s)-cluster point of S. For each µ ∈ N(xt, r, s) and for each
n ∈ D, there exists n0 ∈ D such that n0 ≥ n and S(n0)qµ. Since S(n) ≤ U(n) for all
n ∈ D, U(n0)qµ. Thus xt is an (r, s)-cluster point of U. Hence clu(S, r, s) ≤ clu(U, r, s).

Similarly, we have lim(S, r, s) ≤ lim(U, r, s).

(2) Since S ≤ S ∨ U and U ≤ S ∨ U, by (1) we have clu(S ∨ U, r, s) ≥ clu(S, r, s) ∨
clu(U, r, s). Suppose clu(S ∨ U, r, s) � clu(S, r, s) ∨ clu(U, r, s). Then there exists an
(r, s)-cluster point xt of S ∨ U such that

clu(S ∨ U, r, s)(x) ≥ t > clu(S, r, s)(x) ∨ clu(U, r, s)(x).

Hence xt 6∈ clu(S, r, s) and xt 6∈ clu(U, r, s).

Since xt is not an (r, s)-cluster point of S, there exist µ1 ∈ N(xt, r, s) and n1 ∈ D such
that S(n)qµ1 for every n ∈ D with n ≥ n1.

Since xt is not an (r, s)-cluster point of U, there exist µ2 ∈ N(xt, r, s) and n2 ∈ D

such that U(n)qµ2 for every n ∈ D with n ≥ n2.

Let µ = µ1∧µ2 and let n3 ∈ D be such that n3 ≥ n1 and n3 ≥ n2. Since µ1 ≤ 1−S(n)
and µ2 ≤ 1− U(n) for n ≥ n3, we have µ1 ∧ µ2 ≤ 1 − (S(n) ∨ U(n)). So, µ ∈ N(xt, r, s)
and n3 ∈ D are such that (S ∨ U)(n)qµ for every n ∈ D with n ≥ n3. Thus xt is not
an (r, s)-cluster point of S ∨ U. It is a contradiction. Hence we have clu(S ∨ U, r, s) ≤
clu(S, r, s) ∨ clu(U, r, s).

(3), (4) and (5) are easily proved. �

3.8. Theorem. Let (X, τ, τ∗) be an ifts and S : D → Pt(X) a fuzzy net. Then we have

clu(S, r, s) =
∧

n0∈D

C

(

∨

n≥n0

S(n), r, s
)

.

Proof. Let xt ∈ clu(S, r, s). From Theorem 3.2 (5), since xt is an (r, s)-cluster point of S,
for each µ ∈ N(xt, r, s) and for each n0 ∈ D, there exists n ∈ D such that n ≥ n0 and
S(n)qµ. Since S(n) ≤

∨

n≥n0
S(n), we have

∨

n≥n0
S(n)qµ. Hence xt is an (r, s)-adherent

point of
∨

n≥n0
S(n), for all n0 ∈ D, that is,

xt ∈
∧

n0∈D

C

(

∨

n≥n0

S(n), r, s

)

.

Then we have

clu(S, r, s) ≤
∧

n0∈D

C

(

∨

n≥n0

S(n), r, s

)

.

Suppose

clu(S, r, s) 6≥
∧

n0∈D

C

(

∨

n≥n0

S(n), r, s

)

.

There exists an (r, s)-adherent point xt of
∨

n≥n0
S(n), for all n0 ∈ D, such that

clu(S, r, s) < t ≤ C

(

∨

n≥n0

S(n), r, s

)

.
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Since xt is an (r, s)-adherent point of
∨

n≥n0
S(n), for each n0 ∈ D, for each µ ∈

N(xt, r, s), we have
∨

n≥n0

S(n)qµ.

Since
∨

n≥n0
S(n)qµ, there exists y ∈ X such that

∨

n≥n0

S(n)(y) + µ(y) > 1.

Then there exists n ∈ D such that n ≥ n0 and
∨

n≥n0

S(n)(y) + µ(y) ≥ S(n)(y) + µ(y) > 1.

It implies S(n)qµ. Hence xt is an (r, s)-cluster point of S, that is, xt ∈ clu(S, r, s). It is a

contradiction. Hence clu(S, r, s) ≥
∧

n0∈D
C

(

∨

n≥n0
S(n), r, s

)

. �

3.9. Theorem. Let (X, τ, τ∗) be an ifts and S : D → Pt(X) a fuzzy net. Then the

following properties hold:

(1) C(lim(S, r, s), r, s) = lim(S, r, s).
(2)

∧

n∈D
S(n) ≤ lim(S, r, s).

(3)
∨

n0∈D
(
∧

n≥n0
S(n)) ≤ lim(S, r, s).

Proof. (1) Similar to that of Theorem 3.6 (1).

(2) Suppose
∧

n∈D
S(n) 6≤ lim(S, r, s). Then there exist x ∈ X and t ∈ (0, 1) such that

∧

n∈D

S(n)(x) > t > lim(S, r, s)(x).

Since t > lim(S, r, s)(x), by Theorem 3.2 (6), xt is not an (r, s)-limit point of S. So, there
exists µ ∈ N(xt, r, s) such that for each n ∈ D, there exists n0 ∈ D satisfying n0 ≥ n and
µqS(n0). Since xtqµ, we have

S(n0)(x) + 1− t < S(n0)(x) + µ(x) ≤ 1.

Thus S(n0)(x) < t implies
∧

n∈D
S(n)(x) < t. It is a contradiction. Hence we have

∧

n∈D
S(n) ≤ lim(S, r, s).

(3) Suppose
∨

n0∈D
(
∧

n≥n0
S(n)) � lim(S, r, s). Then there exist x ∈ X and t ∈ (0, 1)

such that
∨

n0∈D

(

∧

n≥n0

S(n)

)

(x) > t > lim(S, r, s)(x).

Since t <
∨

n0∈D

(

∧

n≥n0
S(n)

)

(x), there exists n0 ∈ D such that xt ∈
∧

n≥n0
S(n). This

implies t ≤ S(n)(x) for all n ≥ n0. Hence for each µ ∈ N(xt, r, s), t + µ(x) > 1 implies
S(n)(x)+µ(x) > 1, for all n ≥ n0. So, xt is an (r, s)-limit point of S. It is a contradiction.
Hence we have

∨

n0∈D
(
∧

n≥n0
S(n)) ≤ lim(S, r, s). �

3.10. Theorem. Let (X, τ, τ∗) be an ifts and S : D → Pt(X) a decreasing fuzzy net.

Then, for each r ∈ I0 and s ∈ I1, we have

clu(S, r, s) =
∧

n∈D

C(S(n), r, s).
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Proof. Suppose

clu(S, r, s) 6≤
∧

n∈D

C(S(n), r, s).

Then there exists an (r, s)-cluster point xt of S such that

clu(S, r, s)(x) ≥ t >
∧

n∈D

C(S(n), r, s)(x).

Since xt is an (r, s)-cluster point of S, for each µ ∈ N(xt, r, s) and n ∈ D, there exists
n0 ∈ D such that n0 ≥ n and S(n0)qµ. Since S is a decreasing fuzzy net, for n0 ≥ n,
S(n0)qµ implies S(n)qµ. Hence xt is an (r, s)-adherent point of S(n), for each n ∈ D,
that is,

xt ∈
∧

n∈D

C(S(n), r, s).

It is a contradiction. Hence clu(S, r, s) ≤
∧

n∈D
C(S(n), r, s).

Suppose

clu(S, r, s) 6≥
∧

n∈D

C(S(n), r, s).

Then there exists an (r, s)-adherent point xt of S(n), for all n ∈ D, such that

clu(S, r, s)(x) < t ≤

(

∧

n∈D

C(S(n), r, s)

)

(x).

Since xt is an (r, s)-adherent point of S(n), for n ∈ D, for each µ ∈ N(xt, r, s), there
exists n0 ∈ D such that n0 ≥ n and S(n0)qµ. Hence xt is an (r, s)-cluster point of S,
that is, xt ∈ clu(S, r, s). It is a contradiction. Hence clu(S, r, s) ≥

∧

n∈D
C(S(n), r, s). �

3.11. Theorem. Let (X, τ, τ∗) be an ifts and S : D → Pt(X) an increasing fuzzy net.

Then, for each r ∈ I0 and s ∈ I1, we have

lim(S, r, s) = C

(

∨

n∈D

S(n), r, s

)

.

Proof. Suppose

lim(S, r, s) 6≤ C

(

∨

n∈D

S(n), r, s

)

.

Then there exists an (r, s)-limit point xt of S such that

lim(S, r, s)(x) ≥ t > C

(

∨

n∈D

S(n), r, s

)

(x).

Since xt is an (r, s)-limit point of S, for each µ ∈ N(xt, r, s), there exists n0 ∈ D such
that for all n ≥ n0, S(n)qµ. It implies

∨

n∈D
S(n)qµ. Hence xt is an (r, s)-adherent point

of
∨

n∈D
S(n). It is a contradiction. Hence lim(S, r, s) ≤ C

(

∨

n∈D
S(n), r, s

)

.

Suppose

lim(S, r, s) 6≥ C

(

∨

n∈D

S(n), r, s

)

.

Then there exists an (r, s)-adherent point xt of
∨

n∈D
S(n) such that

lim(S, r, s)(x) < t ≤ C

(

∨

n∈D

S(n), r, s

)

(x).
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Since xt is an (r, s)-adherent point of
∨

n∈D
S(n), for each µ ∈ N(xt, r, s), we have

∨

n∈D
S(n)qµ, then there exists n0 ∈ D such that S(n0)qµ. Since S is an increasing

fuzzy net, for n ≥ n0, S(n0)qµ implies S(n)qµ. Hence xt is an (r, s)-limit point of S, that

is, xt ∈ lim(S, r, s). It is a contradiction. Hence lim(S, r, s) ≥ C

(

∨

n∈D
S(n), r, s

)

. �

3.12. Theorem. Let (X, τ1, τ
∗
1 ) and (Y, τ2, τ

∗
2 ) be ifts’s. For every fuzzy net S : D →

Pt(X), λ ∈ IX , r ∈ I0 and s ∈ I1, the following statements are equivalent:

(1) f : (X, τ1, τ
∗
1 ) → (Y, τ2, τ

∗
2 ) is IF continuous.

(2) If S
(r,s)
∞ xt, then f(S)

(r,s)
∞ f(x)t.

(3) If S
(r,s)
−→xt, then f(S)

(r,s)
−→f(x)t.

(4) f(C(λ, r, s)) ≤ C(f(λ), r, s).

Proof. (1) =⇒ (2) Let µ ∈ N(f(x)t, r, s). Since f is IF continuous, then τ1(f
−1(µ)) ≥

τ2(µ) ≥ r, τ∗
1 (f

−1(µ)) ≤ τ∗
2 (µ) ≤ s and f(x)tqµ implies xtqf

−1(µ). Hence f−1(µ) ∈

N(xt, r, s). Since S
(r,s)
∞ xt, for f

−1(µ) ∈ N(xt, r, s) and for each n ∈ D, there exists n0 ∈ D

such that n0 ≥ n and S(n0)qf
−1(µ). This implies f(S(n0))qµ. Hence f(S)

(r,s)
∞ f(x)t.

(2) =⇒ (3) Let S
(r,s)
−→xt. For every subnet U : E → Pt(Y ) of f(S), there exists a cofinal

selection N : E → D such that U = f(S) ◦N = f ◦ (S ◦N). Put T = S ◦N . Then T is a
subnet of S. This follows from the following:

S
(r,s)
−→xt =⇒ T

(r,s)
−→xt (by Theorem 3.2(7))

=⇒ T
(r,s)
∞ xt (by Theorem 3.2(1))

=⇒ f(T ) = U
(r,s)
∞ f(x)t (by (2))

=⇒ f(S)
(r,s)
−→f(x)t. (by Theorem 3.3)

(3) =⇒ (4) Suppose there exist λ ∈ IX , r ∈ I0 and s ∈ I1 such that

f(C(λ, r, s)) 6≤ C(f(λ), r, s).

Then there exists y ∈ Y such that

(II) f(C(λ, r, s))(y) > C(f(λ), r, s)(y).

So, there exists x ∈ f−1({y}) such that

f(C(λ, r, s))(y) ≥ C(λ, r, s)(x) > C(f(λ), r, s))(y).

From Theorem 2.2, there exists an (r, s)-adherent point xt of λ on (X, τ1, τ
∗
1 ) such that

C(λ, r, s)(x) ≥ t > C(f(λ), r, s)(f(x)).

Since xt ∈ C(λ, r, s), by Theorem 3.5, there exists a fuzzy net S in λ such that S
(r,s)
−→xt.

By (3), f(S)
(r,s)
−→f(x)t with f(S) in f(λ). From Theorem 3.5, we have f(x)t = yt ∈

C(f(λ), r, s). It is a contradiction for (II). Hence, for all λ ∈ IX , r ∈ I0 and s ∈ I1, we
have f(C(λ, r, s) ≤ C(f(λ), r, s).

(4) =⇒ (1) Similar to Theorem 2.4. �

From Theorem 3.12, we can easily obtain the following corollary.

3.13. Corollary. Let (X, τ1, τ
∗
1 ) and (Y, τ2, τ

∗
2 ) be ifts’s. For every fuzzy net S : D →

Pt(X), λ ∈ IX , r ∈ I0 and s ∈ I1, the following statements are equivalent:

(1) f : (X, τ1, τ
∗
1 ) → (Y, τ2, τ

∗
2 ) is IF continuous.
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(2) f(clu(S, r, s)) ≤ clu(f(S), r, s).
(3) f(lim(S, r, s)) ≤ lim(f(S), r, s).
(4) f(C(λ, r, s)) ≤ C(f(λ), r, s). �

4. (r, s)-convergent nets

4.1. Definition. Let (X, τ, τ∗) be an ifts, µ ∈ IX , xt ∈ Pt(X), r ∈ I0 and s ∈ I1. A
fuzzy net S is said to be (r, s)-convergent to µ, denoted by con(S, r, s) = µ, if clu(S, r, s) =
lim(S, r, s) = µ.

4.2. Theorem. Let (X, τ, τ∗) be an ifts and S,U : D → Pt(X), (r, s)-convergent nets

such that S(n) ∨ U(n) ∈ Pt(X) for each n ∈ D. Then

con(S ∨ U, r, s) = con(S, r, s) ∨ con(U, r, s).

Proof. From Theorem 3.7, S ∨ U is a fuzzy net. This is easily proved by the following:

clu(S ∨ U, r, s) = clu(S, r, s) ∨ clu(U, r, s) (by Theorem 3.7(2))

= lim(S, r, s) ∨ lim(U, r, s)

≤ lim(S ∨ U, r, s) (by Theorem 3.7(4))

≤ clu(S ∨ U, r, s). (by Theorem 3.2(2)) �

4.3. Theorem. Let (X, τ, τ∗) be an ifts, S a fuzzy net and H = {T | T is a subnet of

S}. Then the following statements hold:

(1) lim(S, r, s) =
∧

T∈H
clu(T, r, s).

(2) clu(S, r, s) =
∨

T∈H
lim(T, r, s).

(3) If con(S, r, s) = µ, then con(T, r, s) = µ for each T ∈ H.

Proof. (1) For each T ∈ H, by Theorem 3.2 (2,8,10), we have

(III) lim(S, r, s) ≤ lim(T, r, s) ≤ clu(T, r, s) ≤ clu(S, r, s).

Hence

lim(S, r, s) ≤
∧

T∈H

clu(T, r, s).

Suppose

lim(S, r, s) 6≥
∧

T∈H

clu(T, r, s).

Then there exist x ∈ X and t ∈ (0, 1) such that

(IV) lim(S, r, s)(x) < t <
∧

T∈H

clu(T, r, s).

Since lim(S, r, s)(x) < t, by Theorem 3.2 (6), xt is not an (r, s)-limit point of S, that
is, there exists µ ∈ N(xt, r, s) such that for each n ∈ D there exists N(n) ∈ D with
for N(n) ≥ n and S(N(n))qµ. Hence there exists a cofinal selection N : D → D such
that T = S ◦ N . Thus T is a subnet of S. Moreover, xt is not an (r, s)-cluster point
of T . By Theorem 3.2 (5), clu(T, r, s)(x) < t. It is a contradiction for (IV). Hence
lim(S, r, s) =

∧

T∈H
clu(T, r, s).

(2) From (III) of (1), we have
∨

T∈H

lim(T, r, s) ≤ clu(S, r, s).



188 H. Aygün, S.E. Abbas

Suppose
∨

T∈H

lim(T, r, s) 6≥ clu(S, r, s).

Then there exist x ∈ X and t ∈ (0, 1) such that

(V)
∨

T∈H

lim(T, r, s)(x) < t < clu(S, r, s)(x).

Since xt ∈ clu(S, r, s), by Theorem 3.2(5), we have S
(r,s)
∞ xt. By Theorem 3.4, there exists

a subnet T of S such that T
(r,s)
−→xt. Thus

xt ∈ lim(T, r, s) ≤
∨

T∈H

lim(T, r, s).

It is a contradiction for (V). Hence
∨

T∈H
lim(T, r, s) ≥ clu(S, r, s).

(3) Easily proved from (III) of (1). �

4.4. Theorem. Let (X, τ, τ∗) be an ifts, S a fuzzy net. If every subnet of S has a subnet

which is (r, s)-convergent to µ, then con(S, r, s) = µ.

Proof. Let H = {T | T is a subnet of S}. For each T ∈ H, since T has a subnet K with
con(K, r, s) = µ, by Theorem 3.2 (8), we have

lim(T, r, s) ≤ lim(K, r, s) = clu(K, r, s) = µ.

Hence, by Theorem 4.3 (2),

(VI) clu(S, r, s) =
∨

T∈H

lim(T, r, s) ≤ µ.

Conversely, by Theorem 3.2 (10),

µ = lim(K, r, s) = clu(K, r, s) ≤ clu(T, r, s).

Hence, by Theorem 4.3 (1),

(VII) µ ≤
∧

T∈H

clu(T, r, s) = lim(S, r, s).

By (VI) and (VII), clu(S, r, s) ≤ lim(S, r, s). Since lim(S, r, s) ≤ clu(S, r, s) from Theo-
rem 3.2 (2), clu(S, r, s) = lim(S, r, s), that is, con(S, r, s) = µ. �

4.5. Example. Let X = {a, b} be a set, N the set of natural numbers and let µ ∈ IX

be defined by µ(a) = 0.3 and µ(b) = 0.4. We define the IFGO, (τ, τ∗) as follows:

τ (λ) =











1, if λ = 0 or 1,
1
2
, if λ = µ,

0, otherwise,

τ
∗(λ) =











0, if λ = 0 or 1,
1
2
, if λ = µ,

1, otherwise.

Define a fuzzy net S : N → Pt(X) by

S(n) = xan
, an = 0.6 + (−1)n0.2.

We can show clu(S, 1
2
, 1
2
) = 1, from (1) and (2):

(1) xt for t ≤ 0.7 or ym for m ≤ 0.6 is an ( 1
2
, 1
2
)-cluster point of S, because, for

1 ∈ N(p, 1
2
, 1
2
) with p = xt or ym and for all n ∈ N , we have S(n)q1.

(2) xt for t > 0.7 or ym for m > 0.6 is an ( 1
2
, 1
2
)-cluster point of S, because, for

1, µ ∈ N(p, 1
2
, 1
2
) with p = xt or ym and for all n ∈ N , there exists 2n ∈ N such

that 2n ≥ n, S(2n) = x0.8qµ.

We can show lim(S, 1
2
, 1
2
) = 1− µ, from (3) and (4):
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(3) xt for t ≤ 0.7 or ym for m ≤ 0.6 is an ( 1
2
, 1
2
)-limit point of S, because, for

1 ∈ N(p, 1
2
, 1
2
) with p = xt or ym and for all n ∈ N , we have S(n)q1.

(4) xt for t > 0.7 or ym for m > 0.6 is not an ( 1
2
, 1
2
)-limit point of S, because,

for µ ∈ N(p, 1
2
, 1
2
) such that for all n ∈ N , there exists 2n + 1 ∈ N such that

2n+ 1 ≥ n, S(2n+ 1) = x0.4qµ.

Since clu(S, 1
2
, 1
2
) 6= lim(S, 1

2
, 1
2
), S is not ( 1

2
, 1
2
)-convergent.

By a similar method, we show for 0 < r ≤ 1
2
and 1

2
≤ s < 1,

1 = clu(S, r, s) 6= lim(S, r, s) = 1− µ,

and for r > 1
2
and s ≤ 1

2
,

1 = clu(S, r, s) = lim(S, r, s).
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[13] Höhle, U. and Šostak, A.P. A general theory of fuzzy topological spaces, Fuzzy Sets and

Systems 73, 131–149, 1995.
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