ON SOLUTIONS OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION OF PEXIDER TYPE

Mohammad Janfada* ${ }^{* \dagger}$ and Rahele Shourvazi ${ }^{\ddagger}$

Received 24:10:2010 : Accepted 11:10:2011

Abstract

In this paper we study general solutions of the following Pexider functional equation $$
\begin{aligned} & \left.(4-k) f_{1}\left(\sum_{i=1}^{k} x_{i}\right)+\sum_{j=2}^{k} f_{j}\left(\left(\sum_{i=1, i \neq j}^{k} x_{i}\right)-x_{j}\right)\right) \\ & +f_{k+1}\left(-x_{1}+\sum_{i=2}^{k} x_{i}\right)=4 \sum_{j=1}^{k} f_{k+j+1}\left(x_{j}\right), \end{aligned}
$$

on a vector space over a field of characteristic different from 2 , for $k \geq 3$.
Keywords: Quadratic functional equation, Pexiderized quadratic functional equation. 2000 AMS Classification: Primary 11D25, 11D04. Secondary 11D72.

1. Introduction

It is easy to see that the quadratic function $f(x)=x^{2}$ is a solution for each of the following functional equations
(1.1) $\quad f(x+y)+f(x-y)=2 f(x)+2 f(y)$

$$
\begin{gathered}
f(x+y+z)+f(x-y+z)+f(x+y-z)+f(-x+y+z) \\
=4 f(x)+4 f(y)+4 f(z) .
\end{gathered}
$$

So, it is natural that these equations are called quadratic functional equations. In particular, every solution of the original quadratic functional equation (1.1) is said to be a quadratic function.

[^0]It is well known that a function f between real vector spaces is quadratic if and only if there exists a unique symmetric bi-additive function B such that $f(x)=B(x, x)$, for all x (see [1], [2], [7], [14], [15]).

It was proved in [12] that the functional equations (1.1) and (1.2) are equivalent. Solutions and the Hyers-Ulam-Rassias stability of the following generalization of (1.2),

$$
\begin{equation*}
\left.D f\left(x_{1}, \ldots, x_{k}\right):=(4-k) f\left(\sum_{i=1}^{k} x_{i}\right)+\sum_{j=1}^{k} f\left(\left(\sum_{i=1, i \neq j}^{k} x_{i}\right)-x_{j}\right)\right)-4 \sum_{i=1}^{k} f\left(x_{i}\right) \tag{1.3}
\end{equation*}
$$

also were investigated in [8].
Solutions and the stability of various functional equations in several variables are also studied by many authors (see for example [3]-[6], [9]-[11], [13], [16], [17]-[21]).

Solutions of the following Pexiderized form of (1.2) were considered in [12]

$$
\begin{gather*}
f_{1}(x+y+z)+f_{2}(x-y+z)+f_{3}(x+y-z)+f_{4}(-x+y+z) \\
=4 f_{5}(x)+4 f_{6}(y)+4 f_{7}(z) \tag{1.4}
\end{gather*}
$$

Indeed the following theorem was proved in [12].
1.1. Theorem. Assume that X and Y are vector spaces over fields of characteristic different 2, respectively. The functions $f_{i}: X \rightarrow Y, i=1, \ldots, 7$, satisfy the functional equation (1.4) if and only if there exist a quadratic function $Q: X \rightarrow Y$, constants $c_{i} \in Y, i=1, \ldots, 7$, and additive functions $a_{i}: X \rightarrow Y, i=1, \ldots, 4$, such that

$$
\begin{aligned}
& f_{1}(x)=Q(x)+2 a_{1}(x)+a_{2}(x)+a_{3}(x)-a_{4}(x)+c_{1} \\
& f_{2}(x)=Q(x)-a_{2}(x)+a_{3}(x)+a_{4}(x)+c_{2} \\
& f_{3}(x)=Q(x)+a_{2}(x)-a_{3}(x)+a_{4}(x)+c_{3} \\
& f_{4}(x)=Q(x)-2 a_{1}(x)+a_{2}(x)+a_{3}(x)+a_{4}(x)+c_{4} \\
& f_{5}(x)=Q(x)+a_{1}(x)+c_{5} \\
& f_{6}(x)=Q(x)+a_{2}(x)+c_{6} \\
& f_{7}(x)=Q(x)+a_{3}(x)+c_{7}
\end{aligned}
$$

with

$$
c_{1}+c_{2}+c_{4}+c_{4}=4 c_{5}+4 c_{6}+4 c_{7}
$$

To prove our main result, we need the proof of this theorem. In this proof with $F_{i}(x)=f_{i}(x)-f_{i}(0)$, if F_{i}^{e} and F_{i}^{o} denote the even part and odd part of F_{i}, respectively, then it is proved that there exist additive functions $a_{i}: X \rightarrow Y, i=1, \ldots, 4$, such that

$$
\begin{array}{llll}
(1.5) & F_{1}^{o}=2 a_{1}+a_{2}+a_{3}-a_{4}, & F_{2}^{o}=-a_{2}+a_{3}+a_{4}, & F_{3}^{o}=a_{2}-a_{3}+a_{4} \\
(1.6) & F_{4}^{o}=-2 a_{1}+a_{2}+a_{3}+a_{4}, & F_{5}^{o}=a_{1}, \quad F_{6}^{o}=a_{2}, & F_{7}^{o}=a_{3}
\end{array}
$$

and there exists a quadratic function $Q: X \rightarrow Y$ such that
(1.7) $\quad F_{1}^{e}=F_{2}^{e}=F_{3}^{e}=F_{4}^{e}=F_{5}^{e}=F_{6}^{e}=F_{7}^{e}=Q$.

In this paper we consider the following Pexiderized form of (1.3)

$$
\begin{gather*}
\left.(4-k) f_{1}\left(\sum_{i=1}^{k} x_{i}\right)+\sum_{j=2}^{k} f_{j}\left(\left(\sum_{i=1, i \neq j}^{k} x_{i}\right)-x_{j}\right)\right)+f_{k+1}\left(-x_{1}+\sum_{i=2}^{k} x_{i}\right) \\
=4 \sum_{j=1}^{k} f_{k+j+1}\left(x_{j}\right) \tag{1.8}
\end{gather*}
$$

for $k \geq 3$, and general solutions of this functional equation will be investigated in Section 2 . Note that f_{1} does not exist when $k=4$.

2. Solution of equation (1.8)

2.1. Theorem. Assume that X and Y are vector spaces over fields of characteristic different from 2, respectively and k is a natural number with $k \geq 3$. Then functions $f_{i}: X \rightarrow Y, i=1, \ldots, 2 k+1$, satisfy the functional equation (1.8) if and only if there exist a quadratic function $Q: X \rightarrow Y$, constants $c_{i} \in Y, i=1, \ldots, 2 k+1$, and additive functions $a_{i}: X \rightarrow Y, i=1, \ldots, k$, and $a_{i}^{\prime}: X \rightarrow Y, i=3, \ldots, k$ such that

$$
\begin{align*}
f_{1}(x) & =Q(x)+\frac{1}{4-k}\left(2 a_{1}+(5-k) a_{2}+\sum_{i=3}^{k} a_{i}-\sum_{i=3}^{k} a_{i}^{\prime}\right)(x)+c_{1}, k \neq 4 \\
f_{2}(x) & =Q(x)-a_{2}(x)+a_{3}(x)+a_{3}^{\prime}(x)+c_{2} \tag{2.1}\\
f_{j}(x) & =Q(x)+a_{2}(x)-a_{j}(x)+a_{j}^{\prime}(x)+c_{j}, j=3,4, \ldots, k \\
f_{k+j+1}(x) & =Q(x)+a_{j}(x)+c_{k+j+1}, j=0,1,2, \ldots, k
\end{align*}
$$

with

$$
\begin{equation*}
\sum_{i=1}^{k+1} c_{i}=4 \sum_{i=k+2}^{2 k+1} c_{i} \tag{2.2}
\end{equation*}
$$

Proof. Define $c_{i}=f_{i}(0), i=1, \ldots, 2 k+1$. By letting $x_{i}=0, i \geq 1$, in (1.8) it is clear that the c_{i} 's satisfy the relation (2.2). For $i=1, \ldots, 2 k+1$, define $F_{i}(x)=f_{i}(x)-c_{i}$. It then follows from (1.8) and (2.2) that the F_{i} 's satisfy the functional equation (1.8) with $F_{i}(0)=0$.

Denote by $F_{i}^{e}(x)$ and $F_{i}^{o}(x)$ the even part and the odd part of $F_{i}(x)$, respectively. If we replace x_{i} in (1.8) by $-x_{i}$, for any $i=1, \ldots, k$, and if we add (subtract) the resulting equation to (from) (1.8), we can see that the F_{i}^{o} 's as well as the F_{i}^{e} 's also satisfy (1.8).

Let us consider (1.8) for the F_{i}^{o} 's

$$
\begin{align*}
(4-k) F_{1}^{o}\left(\sum_{i=1}^{k} x_{i}\right)+ & \left.\sum_{j=2}^{k} F_{j}^{o}\left(\left(\sum_{i=1, i \neq j}^{k} x_{i}\right)-x_{j}\right)\right)+F_{k+1}^{o}\left(-x_{1}+\sum_{i=2}^{k} x_{i}\right) \tag{2.3}\\
& =4 \sum_{j=1}^{k} F_{k+j+1}^{o}\left(x_{j}\right)
\end{align*}
$$

Step I By letting $x_{i}=0, i \geq 4$, in (2.3) we get

$$
\begin{gathered}
\left((4-k) F_{1}^{o}+F_{4}^{o}+F_{5}^{o}+\cdots+F_{k}^{o}\right)\left(x_{1}+x_{2}+x_{3}\right)+F_{2}^{o}\left(x_{1}-x_{2}+x_{3}\right) \\
+F_{3}^{o}\left(x_{1}+x_{2}-x_{3}\right)+F_{k+1}^{o}\left(-x_{1}+x_{2}+x_{3}\right) \\
=4 F_{k+2}^{o}\left(x_{1}\right)+4 F_{k+3}^{o}\left(x_{2}\right)+4 F_{k+4}^{o}\left(x_{3}\right)
\end{gathered}
$$

So, by relations (1.5) and (1.6), there exist additive functions $a_{i}: X \rightarrow Y, i=1,2,3$, and an additive function $a_{3}^{\prime}: X \rightarrow Y$ such that

$$
\begin{aligned}
& F_{k+2}^{o}=a_{1} \\
& F_{k+3}^{o}=a_{2} \\
& F_{k+4}^{o}=a_{3} \\
& F_{3}^{o}=a_{2}-a_{3}+a_{3}^{\prime} \\
& F_{2}^{o}=-a_{2}+a_{3}+a_{3}^{\prime}
\end{aligned}
$$

(2.4) $\quad(4-k) F_{1}^{o}+F_{4}^{o}+F_{5}^{o}+\cdots+F_{k}^{o}=2 a_{1}+a_{2}+a_{3}-a_{3}^{\prime}$
and also

$$
F_{k+1}^{o}=-2 a_{1}+a_{2}+a_{3}+a_{3}^{\prime} .
$$

Step II By putting $x_{i}=0$, for $i \geq 3, i \neq 4$, in (2.3) we have

$$
\begin{gathered}
\left((4-k) F_{1}^{o}+F_{3}^{o}+F_{5}^{o}+F_{6}^{o}+\cdots+F_{k}^{o}\right)\left(x_{1}+x_{2}+x_{4}\right)+F_{2}^{o}\left(x_{1}-x_{2}+x_{4}\right) \\
+F_{4}^{o}\left(x_{1}+x_{2}-x_{4}\right)+F_{k+1}^{o}\left(-x_{1}+x_{2}+x_{4}\right) \\
=4 F_{k+2}^{o}\left(x_{1}\right)+4 F_{k+3}^{o}\left(x_{2}\right)+4 F_{k+5}^{o}\left(x_{4}\right) .
\end{gathered}
$$

Then by relations (1.5) and (1.6), there exist additive functions $a_{4}: X \rightarrow Y$ and a_{i}^{\prime} : $X \rightarrow Y, i=3,4$, such that

$$
\begin{aligned}
& F_{k+2}^{o}=a_{1} \\
& F_{k+3}^{o}=a_{2} \\
& F_{k+5}^{o}=a_{4} \\
& F_{4}^{o}=a_{2}-a_{4}+a_{4}^{\prime} \\
& F_{2}^{o}=-a_{2}+a_{3}+a_{3}^{\prime} \\
& (4-k) F_{1}^{o}+F_{3}^{o}+F_{5}^{o}+F_{6}^{o}+\cdots+F_{k}^{o}=2 a_{1}+a_{2}+a_{4}-a_{4}^{\prime} .
\end{aligned}
$$

Step III If we put $x_{i}=0$ for $i \geq 3, i \neq j$, in (2.3) then we get

$$
\begin{gathered}
\left((4-k) F_{1}^{o}+F_{3}^{o}+\cdots+F_{j-1}^{o}+F_{j+1}^{o}+F_{j+2}^{o}+\cdots+F_{k}^{o}\right)\left(x_{1}+x_{2}+x_{j}\right) \\
+F_{2}^{o}\left(x_{1}-x_{2}+x_{j}\right)+F_{j}^{o}\left(x_{1}+x_{2}-x_{j}\right)+F_{k+1}^{o}\left(-x_{1}+x_{2}+x_{j}\right) \\
=4 F_{k+2}^{o}\left(x_{1}\right)+4 F_{k+3}^{o}\left(x_{2}\right)+4 F_{k+j+1}^{o}\left(x_{j}\right) .
\end{gathered}
$$

So, by relations (1.5) and (1.6), there exist additive functions $a_{j}: X \rightarrow Y$, and $a_{j}^{\prime}: X \rightarrow$ Y such that

$$
\begin{aligned}
& F_{k+2}^{o}=a_{1} \\
& F_{k+3}^{o}=a_{2} \\
& F_{k+j+1}^{o}=a_{j} \\
& F_{j}^{o}=a_{2}-a_{j}+a_{j}^{\prime} \\
& F_{2}^{o}=-a_{2}+a_{3}+a_{3}^{\prime} \\
& (4-k) F_{1}^{o}+F_{3}^{o}+\cdots+F_{j-1}^{o}+F_{j+1}^{o}+F_{j+2}^{o}+\cdots+F_{k}^{o}=2 a_{1}+a_{2}+a_{j}-a_{j}^{\prime}
\end{aligned}
$$

Step IV If we put $x_{i}=0$ for $i \geq 3, i \neq k$, in (2.3), then we have

$$
\begin{gathered}
\left((4-k) F_{1}^{o}+F_{3}^{o}+F_{4}^{o}+\cdots+F_{k-1}^{o}\right)\left(x_{1}+x_{2}+x_{k}\right)+F_{2}^{o}\left(x_{1}-x_{2}+x_{k}\right) \\
+F_{k}^{o}\left(x_{1}+x_{2}-x_{k}\right)+F_{k+1}^{o}\left(-x_{1}+x_{2}+x_{k}\right) \\
=4 F_{k+2}^{o}\left(x_{1}\right)+4 F_{k+3}^{o}\left(x_{2}\right)+4 F_{2 k+1}^{o}\left(x_{k}\right) .
\end{gathered}
$$

Using relations (1.5) and (1.6) we may find additive functions $a_{k}: X \rightarrow Y$, and $a_{k}^{\prime}: X \rightarrow$ Y such that

$$
\begin{aligned}
& F_{k+2}^{o}=a_{1} \\
& F_{k+3}^{o}=a_{2} \\
& F_{2 k+1}^{o}=a_{k} \\
& F_{k}^{o}=a_{2}-a_{k}+a_{k}^{\prime} \\
& F_{2}^{o}=-a_{2}+a_{3}+a_{3}^{\prime} \\
& (4-k) F_{1}^{o}+F_{3}^{o}+F_{4}^{o}+\cdots+F_{k-1}^{o}=2 a_{1}+a_{2}+a_{k}-a_{k}^{\prime} .
\end{aligned}
$$

By these steps we get all F_{i}^{o} 's, $i=2, \ldots, 2 k+1$. If $k=4$, then there is no need to consider F_{1}^{o}. For $k \neq 4$, using (2.4) we may find F_{1}^{o} as follows

$$
F_{1}^{o}(x)=\frac{1}{4-k}\left(2 a_{1}+(5-k) a_{2}+\left(a_{3}+a_{4}+a_{5}+\cdots+a_{k}\right)-\left(a_{3}^{\prime}+a_{4}^{\prime}+a_{5}^{\prime}+\cdots+a_{k}^{\prime}\right)\right) .
$$

We will now deal with (1.8) associated with the F_{i}^{e} 's;

$$
\begin{gather*}
(4-k) F_{1}^{e}\left(\sum_{i=1}^{k} x_{i}\right)+\sum_{j=2}^{k} F_{j}^{e}\left(\left(\sum_{i=1, i \neq j}^{k} x_{i}\right)-x_{j}\right)+F_{k+1}^{e}\left(-x_{1}+x_{2}+\cdots+x_{k}\right) \tag{2.5}\\
=4 F_{k+2}^{e}\left(x_{1}\right)+F_{k+3}^{e}\left(x_{2}\right)+F_{k+4}^{e}\left(x_{3}\right)+\cdots+F_{2 k+1}^{e}\left(x_{k}\right) .
\end{gather*}
$$

By putting $x_{i}=0$, for $i \geq 4$, in (2.5) we get

$$
\begin{gathered}
\left((4-k) F_{1}^{e}+F_{4}^{e}+\cdots+F_{k}^{e}\right)\left(x_{1}+x_{2}+x_{3}\right)+F_{2}^{e}\left(x_{1}-x_{2}+x_{3}\right) \\
+F_{3}^{e}\left(x_{1}+x_{2}-x_{3}\right)+F_{k+1}^{e}\left(-x_{1}+x_{2}+x_{3}\right) \\
=4 F_{k+2}^{e}\left(x_{1}\right)+4 F_{k+3}^{e}\left(x_{2}\right)+4 F_{k+4}^{e}\left(x_{3}\right) .
\end{gathered}
$$

Hence, by (1.7), there exists a quadratic function $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
(4-k) F_{1}^{e}+F_{4}^{e}+\cdots+F_{k}^{e}=F_{2}^{e}=F_{3}^{e}=F_{k+1}^{e}=F_{k+2}^{e}=F_{k+3}^{e}=F_{k+4}^{e}=Q \tag{2.6}
\end{equation*}
$$

Also for any $j=4,5, \ldots, k$, by letting $x_{i}=0$, for $3 \leq i \leq k, i \neq j$, in (2.5) we get

$$
\begin{gathered}
\left((4-k) F_{1}^{e}+F_{3}^{e}+\cdots+F_{j-1}^{e}+F_{j+1}^{e}+\cdots+F_{k}^{e}\right)\left(x_{1}+x_{2}+x_{j}\right) \\
\quad+F_{2}^{e}\left(x_{1}-x_{2}+x_{j}\right)+F_{j}^{e}\left(x_{1}+x_{2}-x_{j}\right)+F_{k+1}^{e}\left(-x_{1}+x_{2}+x_{j}\right) \\
=4 F_{k+2}^{e}\left(x_{1}\right)+4 F_{k+3}^{e}\left(x_{2}\right)+4 F_{k+j+1}^{e}\left(x_{j}\right) .
\end{gathered}
$$

Thus using (1.7), we get

$$
\begin{align*}
& (4-k) F_{1}^{e}+F_{3}^{e}+\cdots+F_{j-1}^{e}+F_{j+1}^{e}+\cdots+F_{k}^{e} \\
& \quad=F_{2}^{e}=F_{j}^{e}=F_{k+1}^{e}=F_{k+2}^{e}=F_{k+3}^{e}=F_{k+j+1}^{e}=Q \tag{2.7}
\end{align*}
$$

Therefore, for $i \geq 2, F_{i}^{e}$ is concluded by (2.6) and (2.7). For getting F_{1}^{e}, when $k \neq 4$, we note that

$$
(4-k) F_{1}^{e}+F_{3}^{e}+\cdots+F_{k-1}^{e}=Q
$$

Also from relations (2.6) and (2.7), we have

$$
F_{3}^{e}=\cdots=F_{k-1}^{e}=Q,
$$

and so we get

$$
F_{1}^{e}=Q
$$

Conversely, if there exist a quadratic function $Q: X \rightarrow Y$, constants $c_{i} \in Y, i=$ $1, \ldots, 2 k+1$, satisfying (2.2), and if there exist additive functions $a_{i}: X \rightarrow Y, i=$ $1, \ldots, k$, and $a_{i}^{\prime}: X \rightarrow Y, i=3, \ldots, k$, such that each of the equations in (2.1) holds true, then it is obvious that the f_{i} 's satisfy the functional equation (1.8).

References

[1] Aczél, J. Lectures on Functional Equations and their Applications (Academic Press, New York, London, 1966).
[2] Aczél, J. and Dhombers, J. Functional Equations in Several Variables (Encyclopedia of Mathematics and its Applications 31, Cambridge University Press, Cambridge, 1989).
[3] Baak, C., Boo, D. and Rassias, Th. M. Generalized additive mapping in Banach modules and isomorphisms between C^{*}-algebras, J. Math. Anal. Appl. 314, 150-161, 2006.
[4] Baak, C., Hong, S. and Kim, M. Generalized quadratic mappings of r-type in several variables, J. Math. Anal. Appl. 310, 116-127, 2005.
[5] Chu, H. and Kang, D. On the stability of an n-dimensional cubic functional equation, J. Math. Anal. Appl. 325, 595-607, 2007.
[6] Gordji, M. E. and Khodaei, H. On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations, Abstr. Appl. Anal. 2009, 11 pages, 2009.
[7] Hyers, D., Isac, G. and Rassias, Th. M. Stability of Functional Equations in Several Variables (Birkhäuser Boston Inc., Boston, MA, 1998).
[8] Janfada, M. and Shourvazi, R. On solutions and Hyers-Ulam-Rassias stability of a generalized quadratic equation, Internat. J. Nonlinear Science 10 (2), 231-237, 2010.
[9] Jun, K. and Kim, H. Ulam stability problem for generalized A-quadratic mappings, J. Math. Anal. Appl. 305, 466-476, 2005.
[10] Jun, K. and Kim, H. On the generalized A-quadratic mappings associated with the variance of a discrete-type distribution, Nonlinear Analysis-TMA 62, 975-987, 2005.
[11] Jun, K. and Kim, H. Stability problem of Ulam for generalized forms of Cauchy functional equation, J. Math. Anal. Appl. 312, 535-547, 2005.
[12] Jung, S. Quadratic functional equations of Pexider type, Internat. J. Math. Math. Sci. 24 (5), 351-359, 2000.
[13] Kang, D. and Chu, H. Stability problem of Hyers-Ulam-Rassias for generalized forms of cubic functional equation, Acta Mathematica Sinica 24 (3), 491-502, 2007.
[14] Kannappan, P. Quadratic functional equation and inner product spaces, Results Math. 27 (3-4), 368-372, 1995.
[15] Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities (Birkäuser Verlag AG, ???, 2009).
[16] Lee, J. and Shin, D. On the Cauchy-Rassias stability of a generalized additive functional equation, J. Math. Anal. Appl. 339, 372-383, 2008.
[17] Najati, A. and Rassias, Th. M. Stability of a mixed functional equation in several variables on Banach modules, Nonlinear Analysis-TMA, 72 (3-4), 1755-1767, 2010.
[18] Park, C. and Rassias, Th. M. HyersûUlam stability of a generalized A pollonius type quadratic mapping, J. Math. Anal. Appl. 322, 371-381, 2006.
[19] Park, C. Cauchy-Rassias stability of a generalized TrifÆs mapping in Banach modules and its applications, Nonlinear Analysis-TMA 62, 595-613, 2005.
[20] Park, C. Generalized quadratic mappings in several variables, Nonlinear Analysis-TMA 57, 713-722, 2004.
[21] Zhang, D. and Cao, H. Stability of functional equations in several variables, Acta Mathematica Sinica 23 (2), 321-326, 2007.

[^0]: *Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran. E-mail: mjanfada@gmail.com
 ${ }^{\dagger}$ Corresponding Author.
 ${ }^{\ddagger}$ Faculty of Mathematics and Computer Sciences, Hakim Sabzevary University, P.O. Box 397, Sabzevar, Iran. E-mail: rshurvarzy@gmail.com

