ON FUNCTIONS THAT ARE JANOWSKI STARLIKE WITH RESPECT TO N-SYMMETRIC POINTS

Nikola Tuneski* and Maslina Darus ${ }^{\dagger \ddagger}$

Received 06:12:2010 : Accepted 23:09:2011

Abstract

In this paper sufficient conditions for a function to be Janowski starlike with respect to N-symmetric points are given in terms of the quotient of analytical representations of starlikeness and convexity with respect to N-symmetric points.

Keywords: Analytic function, Janowski starlike, N-symmetric points, Sufficient condition.

2000 AMS Classification: 30 C 45.

1. Introduction and preliminaries

Let \mathcal{A} denote the class of analytic functions in the unit disk $\mathcal{U}=\{z:|z|<1\}$ normalized such that $f(0)=f^{\prime}(0)-1=0$.

Further, let f and g be analytic functions in the unit disc \mathcal{U}. Then we say that f is subordinate to g, and we write $f \prec g$ or $f(z) \prec g(z)$ if there exists function ω, analytic in the unit disc \mathcal{U}, such that $\omega(0)=0,|\omega(z)|<1$ and $f(z)=g(\omega(z))$ for all $z \in \mathcal{U}$. Specially, if g is univalent in \mathcal{U}, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(\mathcal{U}) \subset g(\mathcal{U})$.

Now, a function $f \in \mathcal{A}$ is said to be in the class of Janowski starlike functions with respect to N-symmetric points, denoted by $S_{N}^{*}[A, B],-1 \leq B<A \leq 1, N=1,2,3, \ldots$, if

$$
\frac{z f^{\prime}(z)}{f_{N}(z)} \prec \frac{1+A z}{1+B z},
$$

[^0]where
$$
f_{N}(z)=z+\sum_{m=2}^{\infty} a_{m \cdot N+1} z^{m \cdot N+1}
$$

Geometrically, this means that the image of \mathcal{U} by $z f^{\prime}(z) / f_{N}(z)$ is inside the open disk centered on the real axis, on the right hand side of the complex plane, with diameter end points $(1-A) /(1-B)$ and $(1+A) /(1+B)$. Thus, $S_{N}^{*}[A, B]$ is subclass of the class of close-to-convex (univalent) functions (see [2, p.314]). Special selections of A and B lead us to the following classes:

- $S_{N}^{*}(\alpha) \equiv S_{N}^{*}[1-2 \alpha,-1], 0 \leq \alpha<1$, with analytic representation
$\operatorname{Re} \frac{z f^{\prime}(z)}{f_{N}(z)}>\alpha, \quad z \in \mathcal{U}$,
is the class of functions that are starlike of order α with respect to N-symmetric points;
- $S_{N}^{*} \equiv S_{N}^{*}[1,-1]=S_{N}^{*}(0)$, with analytic representation

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f_{N}(z)}>0, \quad z \in \mathcal{U}
$$

is the class of functions that are starlike with respect to N-symmetric points, first introduced by Sakaguchi in [4];

- $S_{N}^{*}[\alpha, 0], 0<\alpha \leq 1$ is the class defined by

$$
\left|\frac{z f^{\prime}(z)}{f_{N}(z)}-1\right|<\alpha, \quad z \in \mathcal{U}
$$

Bearing in mind that $f_{1}(z)=f(z)$, for $N=1$ classes defined above yield the well known classes of univalent functions: $S^{*}[A, B] \equiv S_{1}^{*}[A, B]$ is the class of Janowski starlike functions, first defined in [1]; $S^{*}(\alpha) \equiv S_{1}^{*}(\alpha), 0 \leq \alpha<1$, is the class of starlike functions of order α, and $S^{*} \equiv S_{1}^{*}$ is the class of starlike functions. One can also note that $S_{N}^{*}[A, B] \subseteq S_{N}^{*}((1-A) /(1-B))$.

Geometrical characterization of a function $f(z) \in S_{N}^{*}, N \geq 2$, is: if $\varepsilon=\exp (2 \pi i / N)$ and r is close to $1, r<1$, then the angular velocity of $f(z)$ about the point

$$
M_{f, N}\left(z_{0}\right)=\frac{1}{\sum_{j=1}^{N-1} \varepsilon^{-j}} \cdot \sum_{j=1}^{N-1} \varepsilon^{-j} \cdot f\left(\varepsilon^{j} z_{0}\right)
$$

is positive at $z=z_{0}$ as z traverses the circle $|z|=r$ in the positive direction.
Further, a function $f \in \mathcal{A}$ is Janowski convex with respect to N-symmetric points if

$$
\frac{\left[z f^{\prime}(z)\right]^{\prime}}{f_{N}^{\prime}(z)} \prec \frac{1+A z}{1+B z}
$$

and the corresponding class is denoted by $\mathcal{K}_{N}[A, B]$. In a similar way as before, special choices of N, A and B lead to some well known classes of univalent functions.

In this paper we will study the quotient of analytical representations of starlikeness and convexity with respect to N-symmetric points, i.e. we will study the expression

$$
\frac{\left[z f^{\prime}(z)\right]^{\prime} / f_{N}^{\prime}(z)}{z f^{\prime}(z) / f_{N}(z)}=\frac{1+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f_{N}^{\prime}(z) / f_{N}(z)}
$$

and obtain necessary conditions that will embed $f(z)$ in the class $S_{N}^{*}[A, B]$.
The classical case when $N=1$ is studied in the following papers: $N=a=b=1$ in [3], [5], [8]; $N=b=1$ and a real in [6], [7]; and the most general case when $N=1$ and a, b real in [9]. Therefore we will consider only $N \in \mathbb{N} \backslash\{1\}$.

For obtaining our main results we will make use of the following lemma from the theory of differential subordinations which is a special case of [2, Theorem 2.3h].
1.1. Lemma. Let Ω be a subset of the complex plane \mathbb{C} and let the function $\psi: \mathbb{C}^{2} \times \mathcal{U} \rightarrow$ \mathbb{C} satisfy $\psi\left(M e^{i \theta}, K e^{i \theta} ; z\right) \notin \Omega$ for all real $\theta, K \geq M$ and for all $z \in \mathcal{U}$. If the function $p(z)$ is analytic in $\mathcal{U}, p(0)=0$ and $\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for all $z \in \mathcal{U}$ then $|p(z)|<M$, $z \in \mathcal{U}$.

2. Main results and consequences

2.1. Lemma. Let $f \in \mathcal{A}, N \in \mathbb{N} \backslash\{1\}$ and $-1 \leq B<A \leq 1$. Also, let $\Omega=\mathbb{C} \backslash \Omega_{1}$, where

$$
\Omega_{1}=\left\{1+K(A-B) \cdot \frac{f_{N}(z)}{z f_{N}^{\prime}(z)} \cdot \frac{e^{i \theta}}{\left(1+A e^{i \theta}\right)\left(1+B e^{i \theta}\right)}: z \in \mathcal{U}, \quad \theta \in \mathbb{R}, K \geq 1\right\} .
$$

If

$$
\frac{\left[z f^{\prime}(z)\right]^{\prime} / f_{N}^{\prime}(z)}{z f^{\prime}(z) / f_{N}(z)} \in \Omega, \quad z \in \mathcal{U}
$$

then $f \in S_{N}^{*}[A, B]$.
Proof. Let us define functions $p(z)=\frac{z f^{\prime}(z)}{f_{N}(z)}$ and $p_{1}(z)$, such that $p(z)=\frac{1+A p_{1}(z)}{1+B p_{1}(z)}$. Both functions are analytic in \mathcal{U} and $p(0)-1=p_{1}(0)=0$. Using Lemma 1.1 with

$$
\psi(r, s ; z)=1+(A-B) \cdot \frac{f_{N}(z)}{z f_{N}^{\prime}(z)} \cdot \frac{s}{(1+A r)(1+B r)}
$$

and $M=1$, after verifying that

$$
\psi\left(p_{1}(z), z p_{1}^{\prime}(z) ; z\right)=\frac{\left[z f^{\prime}(z)\right]^{\prime} / f_{N}^{\prime}(z)}{z f^{\prime}(z) / f_{N}(z)}
$$

we conclude $\left|p_{1}(z)\right|<1, z \in \mathcal{U}$. This inequality is equivalent to the subordinations

$$
p_{1}(z)=\frac{1-p(z)}{B p(z)-A} \prec z \text { and } p(z) \prec \frac{1+A z}{1+B z},
$$

which proves that $f \in S_{N}^{*}[A, B]$.
Using Lemma 2.1, we will prove our main result.
2.2. Theorem. Let $f \in \mathcal{A}, N \in \mathbb{N} \backslash\{1\},-1 \leq B<A \leq 1$ and $\mu>1$. Also let

$$
\lambda \equiv \begin{cases}\frac{2 \mu \sqrt{A|B|}}{1-A B}, & A B<0 \text { and } 4 A B \leq(A+B)(1+A B) \leq 4 A|B|, \\ \frac{(A-B) \mu}{(1+|A|)(1+|B|)}, & \text { otherwise. }\end{cases}
$$

If

$$
\left|\frac{z f_{N}^{\prime}(z)}{f_{N}(z)}\right|>\frac{1}{\mu}
$$

and

$$
\left|\frac{\left[z f^{\prime}(z)\right]^{\prime} / f_{N}^{\prime}(z)}{z f^{\prime}(z) / f_{N}(z)}-1\right|<\lambda
$$

for all $z \in \mathcal{U}$ then $f \in S_{N}^{*}[A, B]$.

Proof. Let us define a set of complex numbers $\Sigma=\{w:|w-1|<\lambda\}$. In view of Lemma 2.1, to prove this theorem it is enough to show that $\Sigma \subseteq \Omega$, i.e. $\Sigma \cap \Omega_{1}=\emptyset$.

If $w \in \Omega_{1}$ then for some $z \in \mathcal{U}, \theta \in \mathbb{R}$ and $K \geq 1$, we have

$$
\begin{aligned}
|w-1| & =\left|K(A-B) \cdot \frac{f_{N}(z)}{z f_{N}^{\prime}(z)} \cdot \frac{e^{i \theta}}{\left(1+A e^{i \theta}\right)\left(1+B e^{i \theta}\right)}\right| \\
& >\frac{(A-B) \cdot \mu}{\left|1+A e^{i \theta}\right| \cdot\left|1+B e^{i \theta}\right|}=\frac{(A-B) \cdot \mu}{\sqrt{1+A^{2}+2 A t} \cdot \sqrt{1+B^{2}+2 B t}} \equiv h(t)
\end{aligned}
$$

where $t=\cos \theta \in[-1,1]$. If we show that $h(t) \geq \lambda$ for all $t \in[-1,1]$, it will mean that $w \notin \Sigma$ and the proof will be completed.

Indeed, if $0 \leq B<A$ then $A B \geq 0$ and $h(t) \geq h(1)=\frac{(A-B) \cdot \mu}{(1+A) \cdot(1+B)}=\lambda$ for all $t \in$ $[-1,1]$. Similarly, if $B<A \leq 0$ then $h(t) \geq h(-1)=\frac{(A-B) \cdot \mu}{(1-A) \cdot(1-B)}=\lambda$ for all $t \in[-1,1]$. Finally, let $B<0<A$, i.e. $A B<0$. Then the function $h(t)$ attains its minimal value for $t_{*}=-\frac{(A+B)(1+A B)}{4 A B}$, which is in $[-1,1]$ if and only if $4 A B \leq(A+B)(1+A B) \leq 4 A|B|$. That value is $h\left(t_{*}\right)=\frac{2 \mu \sqrt{A|B|}}{1-A B}=\lambda$.

Now we will give several corollaries that can be obtained from Theorem 2.2.
2.3. Corollary. Let $f \in \mathcal{A}, N \in \mathbb{N} \backslash\{1\},-1 \leq B \leq-3+2 \sqrt{2}=-0.172 \ldots$ and $\mu>1$. Also, let $\left|z f_{N}^{\prime}(z) / f_{N}(z)\right|>1 / \mu$ for all $z \in \mathcal{U}$.
(i) If $0<A \leq|B|$ and
$\left|\frac{\left[z f^{\prime}(z)\right]^{\prime} / f_{N}^{\prime}(z)}{z f^{\prime}(z) / f_{N}(z)}-1\right|<\frac{2 \mu \sqrt{A|B|}}{1-A B}$
for all $z \in \mathcal{U}$ then $f \in S_{N}^{*}[A, B]$.
(ii) If $|B| \leq A \leq 1$ and
$\left|\frac{\left[z f^{\prime}(z)\right]^{\prime} / f_{N}^{\prime}(z)}{z f^{\prime}(z) / f_{N}(z)}-1\right|<\frac{(A-B) \mu}{(1+|A|)(1+|B|)}$
for all $z \in \mathcal{U}$ then $f \in S_{N}^{*}[A, B]$.
Proof. In both cases, (i) and (ii), $A B<0$. So, in order to prove (i), it is enough to show that

$$
4 A B \leq(A+B)(1+A B) \leq 4 A|B|
$$

and the rest follows from Theorem 2.2. Indeed, if $-1 \leq B \leq-3+2 \sqrt{2}$ and $0<A \leq|B|$ then $A+B \leq 0$, and the second inequality is obvious. The first inequality, $4 A B \leq$ $(A+B)(1+A B)$, is equivalent to $\frac{A}{(1-A)^{2}} \geq-\frac{B}{(1-B)^{2}}$. This one is also true because

$$
\frac{A}{(1-A)^{2}} \geq \frac{1}{4} \geq-\frac{B}{(1-B)^{2}}
$$

for all A and B in the specified range. The proof of (ii) goes in a similar way.
If we put $A=1-2 \alpha(0 \leq \alpha<1)$ and $B=-1$ in Theorem 2.2 we receive
2.4. Corollary. Let $f \in \mathcal{A}, N \in \mathbb{N} \backslash\{1\}, 0 \leq \alpha<1$ and $\mu>1$. Also let

$$
\lambda_{1} \equiv \begin{cases}\mu / 2, & 0 \leq \alpha \leq 1 / 2 \\ \frac{1-\alpha}{2 \alpha} \mu, & 1 / 2<\alpha<1\end{cases}
$$

If

$$
\left|\frac{z f_{N}^{\prime}(z)}{f_{N}(z)}\right|>\frac{1}{\mu}
$$

and

$$
\left|\frac{\left[z f^{\prime}(z)\right]^{\prime} / f_{N}^{\prime}(z)}{z f^{\prime}(z) / f_{N}(z)}-1\right|<\lambda_{1}
$$

for all $z \in U$ then $f \in S_{N}^{*}(\alpha)$.
Proof. First, let us note that $\lambda_{1}=\frac{(1-\alpha) \mu}{1+|1-2 \alpha|}=\frac{(A-B) \mu}{(1+|A|)(1+|B|)}$. Further, if $0 \leq \alpha \leq \frac{1}{2}$ then $A \geq 0, A B \geq 0$ and the conclusion of the Corollary follows since $\lambda_{1}=\lambda$. In the case when $\frac{1}{2}<\alpha<1$, we have $A>0, A B<0$, but $(A+B)(1+A B)=-4 \alpha^{2}>4(1-2 \alpha)=4 A|B|$. Again the conclusion follows because of $\lambda_{1}=\lambda$.

For $\alpha=0$ in Corollary 2.4 we obtain
2.5. Corollary. Let $f \in \mathcal{A}, N \in \mathbb{N} \backslash\{1\}$ and $\mu>1$. Also, let $\left|z f_{N}^{\prime}(z) / f_{N}(z)\right|>1 / \mu$ for all $z \in \mathcal{U}$. If

$$
\left|\frac{\left[z f^{\prime}(z)\right]^{\prime} / f_{N}^{\prime}(z)}{z f^{\prime}(z) / f_{N}(z)}-1\right|<\frac{\mu}{2}
$$

for all $z \in \mathcal{U}$ then $f \in S_{N}^{*}(0)=S_{N}^{*}[1,-1]=S_{N}^{*}$.

Acknowledgement

The second author was supported by UKM-ST-06-FRGS0107-2009.

References

[1] Janowski, W. Some extremal problems for certain families of analytic functions, I. Ann. Polon. Math. 28, 297-326, 1973.
[2] Miller, S. S. and Mocanu, P. T. Differential Subordinations. Theory and Applications (Marcel Dekker, New York, Basel, 2000).
[3] Obradović, M. and Tuneski, N. On the starlike criteria defined by Silverman, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 24 (181), 59-64, 2000.
[4] Sakaguchi, K. On a certain univalent mapping, J. Math. Soc. Japan 11, 72-75, 1959.
[5] Silverman, H. Convex and starlike criteria, Int. J. Math. Math. Sci. 22 (1), 75-79, 1999.
[6] Singh, V. and Tuneski, N. On a criteria for starlikeness and convexity of analytic functions, Acta Math. Sci. 24 (B4), 597-602, 2004.
[7] Tuneski, N. On a Criteria for starlikeness of analytic functions, Integral Transform. Spec. Funct. 14 (3), 263-270, 2003.
[8] Tuneski, N. On the quotient of the representations of convexity and starlikeness, Math. Nach. 248-249, 200-203, 2003.
[9] Tuneski, N. and Irmak, H. Starlikeness and convexity of a class of analytic functions, Internat. J. Math. Math. Sci. 2006, Art. ID 38089, 8 pp, 2006.

[^0]: *Faculty of Mechanical Engineering, Karpoš II b.b., 1000 Skopje, Republic of Macedonia. E-mail: nikolat@mf.edu.mk
 ${ }^{\dagger}$ School of Mathematical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia. E-mail: maslina@ukm.my
 \ddagger Corresponding Author.

