\bigwedge Hacettepe Journal of Mathematics and Statistics Volume 41 (2) (2012), 271–275

ON FUNCTIONS THAT ARE JANOWSKI STARLIKE WITH RESPECT TO *N*-SYMMETRIC POINTS

Nikola Tuneski* and Maslina $\mathrm{Darus}^{\dagger\ddagger}$

Received 06:12:2010 : Accepted 23:09:2011

Abstract

In this paper sufficient conditions for a function to be Janowski starlike with respect to N-symmetric points are given in terms of the quotient of analytical representations of starlikeness and convexity with respect to N-symmetric points.

Keywords: Analytic function, Janowski starlike, *N*-symmetric points, Sufficient condition.

2000 AMS Classification: 30 C 45.

1. Introduction and preliminaries

Let \mathcal{A} denote the class of analytic functions in the unit disk $\mathcal{U} = \{z : |z| < 1\}$ normalized such that f(0) = f'(0) - 1 = 0.

Further, let f and g be analytic functions in the unit disc \mathcal{U} . Then we say that f is subordinate to g, and we write $f \prec g$ or $f(z) \prec g(z)$ if there exists function ω , analytic in the unit disc \mathcal{U} , such that $\omega(0) = 0$, $|\omega(z)| < 1$ and $f(z) = g(\omega(z))$ for all $z \in \mathcal{U}$. Specially, if g is univalent in \mathcal{U} , then $f \prec g$ if and only if f(0) = g(0) and $f(\mathcal{U}) \subset g(\mathcal{U})$.

Now, a function $f \in A$ is said to be in the class of Janowski starlike functions with respect to N-symmetric points, denoted by $S_N^*[A, B]$, $-1 \leq B < A \leq 1$, N = 1, 2, 3, ..., if

$$\frac{zf'(z)}{f_N(z)} \prec \frac{1+Az}{1+Bz},$$

^{*}Faculty of Mechanical Engineering, Karpoš II b.b., 1000 Skopje, Republic of Macedonia. E-mail: nikolat@mf.edu.mk

[†]School of Mathematical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia. E-mail: maslina@ukm.my

[‡]Corresponding Author.

where

$$f_N(z) = z + \sum_{m=2}^{\infty} a_{m \cdot N+1} z^{m \cdot N+1}.$$

Geometrically, this means that the image of \mathfrak{U} by $zf'(z)/f_N(z)$ is inside the open disk centered on the real axis, on the right hand side of the complex plane, with diameter end points (1 - A)/(1 - B) and (1 + A)/(1 + B). Thus, $S_N^*[A, B]$ is subclass of the class of close-to-convex (univalent) functions (see [2, p.314]). Special selections of A and B lead us to the following classes:

- $S_N^*(\alpha) \equiv S_N^*[1-2\alpha,-1], \ 0 \le \alpha < 1$, with analytic representation

$$\operatorname{Re} \frac{zf'(z)}{f_N(z)} > \alpha, \quad z \in \mathcal{U},$$

is the class of functions that are starlike of order α with respect to N-symmetric points;

- $S_N^* \equiv S_N^*[1, -1] = S_N^*(0)$, with analytic representation

$$\operatorname{Re} \frac{zf(z)}{f_N(z)} > 0, \quad z \in \mathcal{U},$$

is the class of functions that are starlike with respect to N-symmetric points, first introduced by Sakaguchi in [4];

- $S_N^*[\alpha, 0], \, 0 < \alpha \leq 1$ is the class defined by

$$\left|\frac{zf'(z)}{f_N(z)} - 1\right| < \alpha, \quad z \in \mathfrak{U}.$$

Bearing in mind that $f_1(z) = f(z)$, for N = 1 classes defined above yield the well known classes of univalent functions: $S^*[A, B] \equiv S_1^*[A, B]$ is the class of Janowski starlike functions, first defined in [1]; $S^*(\alpha) \equiv S_1^*(\alpha)$, $0 \le \alpha < 1$, is the class of starlike functions of order α , and $S^* \equiv S_1^*$ is the class of starlike functions. One can also note that $S_N^*[A, B] \subseteq S_N^*((1 - A)/(1 - B)).$

Geometrical characterization of a function $f(z) \in S_N^*$, $N \ge 2$, is: if $\varepsilon = \exp(2\pi i/N)$ and r is close to 1, r < 1, then the angular velocity of f(z) about the point

$$M_{f,N}(z_0) = \frac{1}{\sum_{j=1}^{N-1} \varepsilon^{-j}} \cdot \sum_{j=1}^{N-1} \varepsilon^{-j} \cdot f(\varepsilon^j z_0)$$

is positive at $z = z_0$ as z traverses the circle |z| = r in the positive direction.

Further, a function $f \in A$ is Janowski convex with respect to N-symmetric points if [zf'(z)]' = 1 + Az

$$\frac{\left[z f'(z)\right]}{f'_N(z)} \prec \frac{1+Az}{1+Bz},$$

and the corresponding class is denoted by $\mathcal{K}_N[A, B]$. In a similar way as before, special choices of N, A and B lead to some well known classes of univalent functions.

In this paper we will study the quotient of analytical representations of starlikeness and convexity with respect to N-symmetric points, i.e. we will study the expression

$$\frac{[zf'(z)]'/f'_N(z)}{zf'(z)/f_N(z)} = \frac{1+zf''(z)/f'(z)}{zf'_N(z)/f_N(z)}$$

and obtain necessary conditions that will embed f(z) in the class $S_N^*[A, B]$.

The classical case when N = 1 is studied in the following papers: N = a = b = 1 in [3], [5], [8]; N = b = 1 and a real in [6], [7]; and the most general case when N = 1 and a, b real in [9]. Therefore we will consider only $N \in \mathbb{N} \setminus \{1\}$.

272

For obtaining our main results we will make use of the following lemma from the theory of differential subordinations which is a special case of [2, Theorem 2.3h].

1.1. Lemma. Let Ω be a subset of the complex plane \mathbb{C} and let the function $\psi : \mathbb{C}^2 \times \mathbb{U} \to \mathbb{C}$ satisfy $\psi(Me^{i\theta}, Ke^{i\theta}; z) \notin \Omega$ for all real $\theta, K \ge M$ and for all $z \in \mathbb{U}$. If the function p(z) is analytic in $\mathbb{U}, p(0) = 0$ and $\psi(p(z), zp'(z); z) \in \Omega$ for all $z \in \mathbb{U}$ then |p(z)| < M, $z \in \mathbb{U}$.

2. Main results and consequences

2.1. Lemma. Let $f \in A$, $N \in \mathbb{N} \setminus \{1\}$ and $-1 \leq B < A \leq 1$. Also, let $\Omega = \mathbb{C} \setminus \Omega_1$, where

$$\Omega_1 = \left\{ 1 + K(A - B) \cdot \frac{f_N(z)}{zf'_N(z)} \cdot \frac{e^{i\theta}}{(1 + Ae^{i\theta})(1 + Be^{i\theta})} : z \in \mathcal{U}, \ \theta \in \mathbb{R}, K \ge 1 \right\}.$$

If

$$\frac{[zf'(z)]'/f'_N(z)}{zf'(z)/f_N(z)} \in \Omega, \quad z \in \mathfrak{U},$$

then $f \in S_N^*[A, B]$.

Proof. Let us define functions $p(z) = \frac{zf'(z)}{f_N(z)}$ and $p_1(z)$, such that $p(z) = \frac{1+Ap_1(z)}{1+Bp_1(z)}$. Both functions are analytic in \mathcal{U} and $p(0) - 1 = p_1(0) = 0$. Using Lemma 1.1 with

$$\psi(r,s;z) = 1 + (A - B) \cdot \frac{f_N(z)}{zf'_N(z)} \cdot \frac{s}{(1 + Ar)(1 + Br)}$$

and M = 1, after verifying that

$$\psi(p_1(z), zp'_1(z); z) = \frac{[zf'(z)]'/f'_N(z)}{zf'(z)/f_N(z)},$$

we conclude $|p_1(z)| < 1, z \in \mathcal{U}$. This inequality is equivalent to the subordinations

$$p_1(z) = \frac{1 - p(z)}{Bp(z) - A} \prec z \text{ and } p(z) \prec \frac{1 + Az}{1 + Bz},$$

which proves that $f \in S_N^*[A, B]$.

Using Lemma 2.1, we will prove our main result.

2.2. Theorem. Let $f \in A$, $N \in \mathbb{N} \setminus \{1\}$, $-1 \leq B < A \leq 1$ and $\mu > 1$. Also let

$$\lambda \equiv \begin{cases} \frac{2\mu\sqrt{A|B|}}{1-AB}, & AB < 0 \text{ and } 4AB \le (A+B)(1+AB) \le 4A|B|, \\ \frac{(A-B)\mu}{(1+|A|)(1+|B|)}, & otherwise. \end{cases}$$

If

$$\left|\frac{zf_N'(z)}{f_N(z)}\right| > \frac{1}{\mu}$$

and

$$\left|\frac{[zf'(z)]'/f'_N(z)}{zf'(z)/f_N(z)} - 1\right| < \lambda$$

for all $z \in \mathcal{U}$ then $f \in S_N^*[A, B]$.

Proof. Let us define a set of complex numbers $\Sigma = \{w : |w-1| < \lambda\}$. In view of Lemma 2.1, to prove this theorem it is enough to show that $\Sigma \subseteq \Omega$, i.e. $\Sigma \cap \Omega_1 = \emptyset$. If $w \in \Omega_1$ then for some $z \in \mathcal{U}, \ \theta \in \mathbb{R}$ and $K \ge 1$, we have

$$\begin{split} |w-1| &= \left| K(A-B) \cdot \frac{f_N(z)}{z f'_N(z)} \cdot \frac{e^{i\theta}}{(1+Ae^{i\theta})(1+Be^{i\theta})} \right| \\ &> \frac{(A-B) \cdot \mu}{|1+Ae^{i\theta}| \cdot |1+Be^{i\theta}|} = \frac{(A-B) \cdot \mu}{\sqrt{1+A^2+2At} \cdot \sqrt{1+B^2+2Bt}} \equiv h(t), \end{split}$$

where $t = \cos \theta \in [-1, 1]$. If we show that $h(t) \ge \lambda$ for all $t \in [-1, 1]$, it will mean that $w \notin \Sigma$ and the proof will be completed.

Indeed, if $0 \leq B < A$ then $AB \geq 0$ and $h(t) \geq h(1) = \frac{(A-B)\cdot\mu}{(1+A)\cdot(1+B)} = \lambda$ for all $t \in [-1, 1]$. Similarly, if $B < A \leq 0$ then $h(t) \geq h(-1) = \frac{(A-B)\cdot\mu}{(1-A)\cdot(1-B)} = \lambda$ for all $t \in [-1, 1]$. Finally, let B < 0 < A, i.e. AB < 0. Then the function h(t) attains its minimal value for $t_* = -\frac{(A+B)(1+AB)}{4AB}$, which is in [-1, 1] if and only if $4AB \leq (A+B)(1+AB) \leq 4A|B|$. That value is $h(t_*) = \frac{2\mu\sqrt{A|B|}}{1-AB} = \lambda$.

Now we will give several corollaries that can be obtained from Theorem 2.2.

2.3. Corollary. Let $f \in A$, $N \in \mathbb{N} \setminus \{1\}$, $-1 \leq B \leq -3 + 2\sqrt{2} = -0.172...$ and $\mu > 1$. Also, let $|zf'_N(z)/f_N(z)| > 1/\mu$ for all $z \in \mathcal{U}$.

(i) If $0 < A \le |B|$ and

$$\begin{aligned} \left| \frac{[zf'(z)]'/f'_{N}(z)}{zf'(z)/f_{N}(z)} - 1 \right| &< \frac{2\mu\sqrt{A|B|}}{1 - AB} \\ for all \ z \in \mathcal{U} \ then \ f \in S_{N}^{*}[A, B]. \end{aligned}$$
(ii) If $|B| \le A \le 1$ and
$$\left| \frac{[zf'(z)]'/f'_{N}(z)}{zf'(z)/f_{N}(z)} - 1 \right| &< \frac{(A - B)\mu}{(1 + |A|)(1 + |B|)} \\ for \ all \ z \in \mathcal{U} \ then \ f \in S_{N}^{*}[A, B]. \end{aligned}$$

Proof. In both cases, (i) and (ii), AB < 0. So, in order to prove (i), it is enough to show that

$$4AB \le (A+B)(1+AB) \le 4A|B|,$$

and the rest follows from Theorem 2.2. Indeed, if $-1 \le B \le -3 + 2\sqrt{2}$ and $0 < A \le |B|$ then $A + B \le 0$, and the second inequality is obvious. The first inequality, $4AB \le (A + B)(1 + AB)$, is equivalent to $\frac{A}{(1-A)^2} \ge -\frac{B}{(1-B)^2}$. This one is also true because

$$\frac{A}{(1-A)^2} \ge \frac{1}{4} \ge -\frac{B}{(1-B)^2}$$

for all A and B in the specified range. The proof of (ii) goes in a similar way.

If we put $A = 1 - 2\alpha$ ($0 \le \alpha < 1$) and B = -1 in Theorem 2.2 we receive

2.4. Corollary. Let $f \in A$, $N \in \mathbb{N} \setminus \{1\}$, $0 \le \alpha < 1$ and $\mu > 1$. Also let

$$\lambda_1 \equiv \begin{cases} \mu/2, & 0 \le \alpha \le 1/2\\ \frac{1-\alpha}{2\alpha}\mu, & 1/2 < \alpha < 1 \end{cases}$$

$$\left|\frac{zf_N'(z)}{f_N(z)}\right| > \frac{1}{\mu}$$

If

and

$$\left|\frac{[zf'(z)]'/f'_N(z)}{zf'(z)/f_N(z)} - 1\right| < \lambda_1$$

for all $z \in \mathcal{U}$ then $f \in S_N^*(\alpha)$.

Proof. First, let us note that $\lambda_1 = \frac{(1-\alpha)\mu}{1+|1-2\alpha|} = \frac{(A-B)\mu}{(1+|A|)(1+|B|)}$. Further, if $0 \le \alpha \le \frac{1}{2}$ then $A \ge 0$, $AB \ge 0$ and the conclusion of the Corollary follows since $\lambda_1 = \lambda$. In the case when $\frac{1}{2} < \alpha < 1$, we have A > 0, AB < 0, but $(A+B)(1+AB) = -4\alpha^2 > 4(1-2\alpha) = 4A|B|$. Again the conclusion follows because of $\lambda_1 = \lambda$.

For $\alpha = 0$ in Corollary 2.4 we obtain

2.5. Corollary. Let $f \in A$, $N \in \mathbb{N} \setminus \{1\}$ and $\mu > 1$. Also, let $|zf'_N(z)/f_N(z)| > 1/\mu$ for all $z \in \mathcal{U}$. If

$$\left| \frac{[zf'(z)]'/f'_N(z)}{zf'(z)/f_N(z)} - 1 \right| < \frac{\mu}{2}$$
for all $z \in \mathcal{U}$ then $f \in S_N^*(0) = S_N^*[1, -1] = S_N^*.$

Acknowledgement

The second author was supported by UKM-ST-06-FRGS0107-2009.

References

- Janowski, W. Some extremal problems for certain families of analytic functions, I. Ann. Polon. Math. 28, 297–326, 1973.
- [2] Miller, S.S. and Mocanu, P.T. Differential Subordinations. Theory and Applications (Marcel Dekker, New York, Basel, 2000).
- [3] Obradović, M. and Tuneski, N. On the starlike criteria defined by Silverman, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 24 (181), 59–64, 2000.
- [4] Sakaguchi, K. On a certain univalent mapping, J. Math. Soc. Japan 11, 72–75, 1959.
- [5] Silverman, H. Convex and starlike criteria, Int. J. Math. Math. Sci. 22 (1), 75–79, 1999.
- [6] Singh, V. and Tuneski, N. On a criteria for starlikeness and convexity of analytic functions, Acta Math. Sci. 24 (B4), 597–602, 2004.
- [7] Tuneski, N. On a Criteria for starlikeness of analytic functions, Integral Transform. Spec. Funct. 14 (3), 263–270, 2003.
- [8] Tuneski, N. On the quotient of the representations of convexity and starlikeness, Math. Nach. 248-249, 200-203, 2003.
- [9] Tuneski, N. and Irmak, H. Starlikeness and convexity of a class of analytic functions, Internat. J. Math. Math. Sci. 2006, Art. ID 38089, 8 pp, 2006.