$\label{eq:constraint} \begin{array}{c} \mbox{Hacettepe Journal of Mathematics and Statistics} \\ \mbox{Volume 41 (2) (2012), 277-282} \end{array}$

CLASSIFICATION OF CUBIC EDGE-TRANSITIVE GRAPHS OF ORDER $14p^2$

Mehdi Alaeiyan^{*†} and Mohsen Lashani^{*}

Received 11:12:2010 : Accepted 01:11:2011

Abstract

A graph is called *edge-transitive* if its automorphism group acts transitively on its set of edges. In this paper we classify all connected cubic edge-transitive graphs of order $14p^2$, where p is a prime.

Keywords: Symmetric graphs, Semisymmetric graphs, *s*-regular graphs, Regular coverings.

2000 AMS Classification: 05 C 10, 05 C 25.

1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For a graph X, we denote by V(X), E(X), A(X) and Aut(X) the vertex set, the edge set, the arc set and the full automorphism group of X, respectively. For the group-theoretic concepts and notations not defined here we refer to [3, 4, 14, 19, 24].

Let G be a finite group and S a subset of G such that $1 \notin S$ and $S = S^{-1}$. The Cayley graph $X = \operatorname{Cay}(G, S)$ on G with respect to S is defined to have vertex set V(X) = G and edge set $E(X) = \{(g, sg) | g \in G, s \in S\}$. The Cayley graph $X = \operatorname{Cay}(G, S)$ is said to be normal if $G \leq \operatorname{Aut}(X)$. By definition, $\operatorname{Cay}(G, S)$ is connected if and only if S generates the group G.

An s-arc of a graph X is an ordered (s + 1)-tuple $(v_0, v_1, \ldots, v_{s-1}, v_s)$ of vertices of X such that v_{i-1} is adjacent to v_i for $1 \le i \le s$ and $v_{i-1} \ne v_{i+1}$ for $1 \le i < s$. A graph X is said to be *s-arc-transitive* if $\operatorname{Aut}(X)$ acts transitively on the set of its *s*-arcs. In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive means *arc-transitive* or *symmetric*. X is said to be *s-regular* if $\operatorname{Aut}(X)$ acts regularly on the set of its *s*-arcs. Tutte [20] showed that every finite connected cubic symmetric graph is *s*-regular for $1 \le s \le 5$. A subgroup of $\operatorname{Aut}(X)$ is said to be *s*-regular if it acts regularly

^{*}Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran. E-mail: (M. Alaeiyan) alaeiyan@iust.ac.ir (M. Lashani) lashani@iust.ac.ir

 $^{^{\}dagger}\mathrm{Corresponding}$ Author

on the set of s-arcs of X. If a subgroup G of Aut(X) acts transitively on V(X) and E(X), we say that X is G-vertex-transitive and G-edge-transitive, respectively. In the special case, when G = Aut(X), we say that X is vertex-transitive and edge-transitive, respectively.

It can be shown that a *G*-edge-transitive but not *G*-vertex-transitive graph X is necessarily bipartite, where the two parts of the bipartition are orbits of $G \leq \operatorname{Aut}(X)$. Moreover, if X is regular then these two parts have the same cardinality. A regular *G*-edge-transitive but not *G*-vertex-transitive graph X will be referred to as a *G*-semisymmetric graph. In particular if $G = \operatorname{Aut}(X)$, X is said to be semisymmetric.

The classification of cubic symmetric graphs of different orders is given in many papers. In [2, 3], the cubic *s*-regular graphs up to order 2048 are classified. Throughout this paper, p and q are prime numbers. The *s*-regular cubic graphs of some orders such as $2p^2$, $4p^2$, $6p^2$, $10p^2$ were classified in [8-11]. Recently cubic *s*-regular graphs of order 2pq were classified in [25].

The study of semisymmetric graphs was initiated by Folkman [13]. For example, cubic semisymmetric graphs of orders $6p^2$, $8p^2$ and 2pq were classified in [15, 1, 7]. In this paper we classify cubic edge-transitive (symmetric or semisymmetric) graphs of order $14p^2$.

1.1. Theorem. Let p be a prime and X a connected cubic edge-transitive graph of order $14p^2$. Then X is isomorphic either to the semisymmetric graph S126 or to one s-regular graph, where $1 \le s \le 3$. Furthermore,

- (1) X is 1-regular if and only if X is isomorphic to one of the graphs F56A, F126, F350, F686A, F686C, F1694, $EF14p^2$, where $p \ge 13$, or to Cay(G, S), where $G = \langle a, b | a^2 = b^{7p^2} = 1$, $aba = b^{-1} \ge D_{14p^2}$, $S = \{a, ba, b^{t+1}a\}$, $t^2 + t + 1 = 0$ (mod7p²), $p \ge 13$ and 3|(p-1).
- (2) X is 2-regular if and only if X is isomorphic to one of the graphs F56B and F686B.
- (3) X is 3-regular if and only if X is isomorphic to F56C.

2. Preliminaries

Let X be a graph and N a subgroup of Aut(X). For $u, v \in V(X)$, denote by $\{u, v\}$ the edge incident to u and v in X, and by $N_X(u)$ the set of vertices adjacent to u in X. The quotient graph X_N (also denoted by X/N) induced by N is defined as the graph such that the set Σ of N-orbits in V(X) is the vertex set of X_N , and $B, C \in \Sigma$ are adjacent if and only if there exist $u \in B$ and $v \in C$ such that $\{u, v\} \in E(X)$.

A graph \widetilde{X} is called a *covering* of a graph X with projection $\wp : \widetilde{X} \to X$ if there is a surjection $\wp : V(\widetilde{X}) \to V(X)$ such that $\wp|_{N_{\widetilde{X}}(\widetilde{v})} : N_{\widetilde{X}}(\widetilde{v}) \to N_X(v)$ is a bijection for any vertex $v \in V(X)$ and $\widetilde{v} \in \wp^{-1}(v)$. A covering graph \widetilde{X} of X with projection \wp is said to be *regular* (or a *K*-covering) if there is a semiregular subgroup K of the automorphism group $\operatorname{Aut}(\widetilde{X})$ such that the graph X is isomorphic to the quotient graph \widetilde{X}_K , say by h, and the quotient map $\widetilde{X} \to \widetilde{X}_K$ is the composition $\wp h$ of \wp and h. The fibre of an edge or a vertex is its preimage under \wp .

The group of automorphisms of \tilde{X} mapping fibres to fibres is called the fibre-preserving subgroup of $\operatorname{Aut}(\tilde{X})$.

Let X be a graph and let K be a finite group. By a^{-1} we mean the reverse arc to an arc a. A voltage assignment (or, a K-voltage assignment) of X is a function $\phi : A(X) \to K$ with the property that $\phi(a^{-1}) = \phi(a)^{-1}$ for each arc $a \in A(X)$. The values of ϕ are called voltages, and K is the voltage group. The graph $X \times_{\phi} K$ derived from a voltage assignment $\phi : A(X) \to K$ has vertex set $V(X) \times K$ and edge set $E(X) \times K$, so that

the edge (e,g) of $X \times_{\phi} K$ joins the vertex (u,g) to $(v,\phi(a)g)$ for $a = (u,v) \in A(X)$ and $g \in K$, where e = u, v.

Clearly, the derived graph $X \times_{\phi} K$ is a covering of X; the first coordinate projection $\wp : X \times_{\phi} K \to X$ is called the *natural projection*. By defining $(u, g')^g = (u, g'g)$ for any $g \in K$ and $(u, g') \in V(X \times_{\phi} K)$, K becomes a subgroup of $\operatorname{Aut}(X \times_{\phi} K)$ which acts semiregularly on $V(X \times_{\phi} K)$. Therefore, $X \times_{\phi} K$ can be viewed as a *K*-covering. For each $u \in V(X)$ and $u, v \in E(X)$, the vertex set $\{(u, g) \mid g \in K\}$ is the fibre of u and the edge set $\{(u, g)(v, \phi(a)g) \mid g \in K\}$ is the fibre of u, v, where a = (u, v). Conversely, each regular covering \tilde{X} of X with a covering transformation group K can be derived from a K-voltage assignment.

Let \tilde{X} be a K-covering of X with a projection \wp . If $\alpha \in \operatorname{Aut}(X)$ and $\tilde{\alpha} \in \operatorname{Aut}(\tilde{X})$ satisfy $\tilde{\alpha}\wp = \wp \alpha$, we call $\tilde{\alpha}$ a *lift* of α , and α the *projection* of $\tilde{\alpha}$. Concepts such as a lift of a subgroup of $\operatorname{Aut}(X)$ and the projection of a subgroup of $\operatorname{Aut}(\tilde{X})$ are selfexplanatory. The lifts and the projections of such subgroups are of course subgroups in $\operatorname{Aut}(\tilde{X})$ and $\operatorname{Aut}(X)$, respectively. In particular, if the covering graph \tilde{X} is connected, then the covering transformation group K is the lift of the trivial group, that is $K = {\tilde{\alpha} \in \operatorname{Aut}(\tilde{X}) : \wp = \tilde{\alpha}\wp}$.

Clearly, if $\tilde{\alpha}$ is a lift of α , then $K\tilde{\alpha}$ are all the lifts of α . The projection φ is called *vertex-transitive (edge-transitive)* if some vertex-transitive (edge-transitive) subgroup of Aut(X) lifts along φ , and *semisymmetric* if it is edge- but not vertex-transitive.

The next proposition is a special case of [22, Proposition 2.5].

2.1. Proposition. Let X be a G-semisymmetric cubic graph with bipartition sets U(X) and W(X), where $G \leq A := Aut(X)$. Moreover, suppose that N is a normal subgroup of G. Then,

- (1) If N is intransitive on bipartition sets, then N acts semiregularly on both U(X)and W(X), and X is a regular N-covering of the G/N-semisymmetric graph X_N .
- (2) If 3 does not divide |A/N|, then N is semisymmetric on X.

2.2. Proposition. [17, Proposition 2.4] The vertex stabilizers of a connected G-semisymmetric cubic graph X have order $2^r \cdot 3$, where $0 \le r \le 7$. Moreover, if u and v are two adjacent vertices, then the edge stabilizer $G_u \cap G_v$ is a common Sylow 2-subgroup of G_u and G_v .

2.3. Proposition. [19, pp.236] Let G be a finite group and let p be a prime. If G has an abelian Sylow p-subgroup, then p does not divide $|G' \cap Z(G)|$.

2.4. Proposition. [24, Proposition 4.4] Every transitive abelian group G on a set Ω is regular, and the centralizer of G in the symmetric group on Ω is G.

2.5. Proposition. [12, Theorem 9] Let X be a connected symmetric graph of prime valency and let G be an s-regular subgroup of Aut(X) for some $s \ge 1$. If a normal subgroup N of G has more than two orbits, then it is semiregular and G/N is an s-regular subgroup of $Aut(X_N)$, where X_N is the quotient graph of X corresponding to the orbits of N. Furthermore, X is a regular N-covering of X_N .

The next proposition is a special case of [23, Theorem 1.1].

2.6. Proposition. Let X be a connected edge-transitive Z_n -cover of the Heawood graph F14. Then $n = 3^k p_1^{e_1} \cdots p_t^{e_t}$, k = 0 or 1, $t \ge 1$, the primes p_i , $i = 1, \ldots, t$, are different primes with $p_i = 1 \pmod{3}$, and X is symmetric and isomorphic to a normal Cayley graph Cay(G, S) for some group G with respect to a generating set S. Furthermore, if 7

Π

is coprime to n, then $G = \langle a, b | a^2 = b^{7n} = 1$, $aba = b^{-1} \geq D_{14n}$, $S = \{a, ba, b^{t+1}a\}$, $t^2 + t + 1 = 0 \pmod{7n}$, and X is 1-regular.

3. Main results

Let p be a prime and let X be a cubic edge-transitive graph of order $14p^2$. By [21], every cubic edge and vertex-transitive graph is arc-transitive and consequently, X is either symmetric or semisymmetric.

For a prime $p \ge 13$, denote by $EF14p^2$ the $Z_p \times Z_p$ -covering of the Heawood graph F14 with voltage assignment (2, 0), (-1, 1), (1, -1), (1, 1), (-1, -1), (1, 1), (0, 0), (2, 0).

By [2, 3], we have the following lemma.

3.1. Lemma. Let p be a prime and X a connected cubic symmetric graph of order $14p^2$, where p < 13. Then X is isomorphic to one of the 1-regular graphs F56A, F126, F350, F686A, F686C and F1694, or to the 2-regular graphs F56B or F686B, or to the 3-regular graph F56C.

3.2. Lemma. Let $p \ge 13$ be a prime and X a connected cubic symmetric graph of order $14p^2$. Then X is isomorphic to one of the 1-regular graphs $EF14p^2$ or Cay(G,S), where $G = \langle a, b \mid a^2 = b^{7p^2} = 1$, $aba = b^{-1} \ge D_{14p^2}$ and $S = \{a, ba, b^{t+1}a\}$, such that $t^2 + t + 1 = 0 \pmod{7p^2}$ and 3|(p-1).

Proof. By Tutte [20], X is at most 5-regular and hence $|A| = 2^s \cdot 3 \cdot 7 \cdot p^2$ for some s, where $1 \leq s \leq 5$. Let $Q = O_p(A)$ be the maximal normal p-subgroup of A. We show that $|Q| = p^2$ as follows.

Let N be a minimal normal subgroup of A. Thus $N \cong L \times \cdots \times L = L^k$, where L is a simple group. If N is unsolvable then by [4], $L \cong PSL(2,7)$ or PSL(2,13) of orders $2^3 \cdot 3 \cdot 7$ and $2^2 \cdot 3 \cdot 7 \cdot 13$, respectively. Since $3^2 \nmid |A|$, we have k = 1 and so $N \cong PSL(2,7)$ or PSL(2,13). Thus N has more than two orbits and then by Proposition 2.5, N is semiregular. Therefore, $|N| \mid 14p^2$, and this is impossible. Hence N is solvable and so elementary abelian.

Suppose first that Q = 1. Thus N is an elementary abelian q-group, for q = 2, 3 or 7 and so N has more than two orbits on X. By Proposition 2.5, N is semiregular and hence $|N| | 14p^2$. It follows that |N| = 2 or 7. If |N| = 2, by Proposition 2.5 X_N is a cubic symmetric graph of odd order $7p^2$, a contradiction.

Suppose that |N| = 7. By Proposition 2.5, X_N is a cubic A/N-symmetric graph of order $2p^2$. Let T/N be a minimal normal subgroup of A/N. By a similar argument as above, T/N is elementary abelian and hence |T/N| = 2 or p. If |T/N| = 2, then |T| = 14 and X_T is a cubic symmetric graph of odd order p^2 , a contradiction. So, |T/N| = p and also |T| = 7p. Since $p \ge 13$, the Sylow *p*-subgroup of T is characteristic and so normal in A, a contrary to the our assumption that Q = 1.

We now suppose that |Q| = p. Let P be a Sylow p-subgroup of A and $C = C_A(Q)$ the centralizer of Q in A. Clearly, Q < P and also $P \leq C$ because P is abelian. Thus $p^2 \mid |C|$. If $p^2 \mid |C'|$ (C' is the derived subgroup of C) then $Q \leq C'$ and hence $p \mid |C' \cap Q|$, forcing that $p \mid |C' \cap Z(C)|$ because $Q \leq Z(C)$. This contradicts Proposition 2.3. Consequently, $p^2 \nmid |C'|$ and so C' has more than two orbits on X. By Proposition 2.5, C' is semiregular on X and hence $|C'| \mid 14p^2$.

Let K/C' be a Sylow *p*-subgroup of C/C'. Since C/C' is abelian, K/C' is characteristic and hence normal in A/C', implying that $K \triangleleft A$. Note that $p^2 \mid |K|$ and $|K| \mid 14p^2$. If $|K| = 14p^2$ then K has a normal subgroup of order $7p^2$, say H. Since $p \ge 13$, the Sylow *p*-subgroup of H is characteristic and consequently normal in K and also normal in A. Also, if $|K| < 14p^2$, K has a characteristic Sylow *p*-subgroup of order p^2 which is normal in A. However, this is contrary to our assumption |Q| = p. Therefore, $|Q| = p^2$.

Clearly, $Q \cong Z_{p^2}$ or $Z_p \times Z_p$. Then by Proposition 2.5, X is a regular Q-covering of the symmetric graph X_Q of order 14. By [3] the only cubic symmetric graph of order 14 is the Heawood graph F14. Suppose that $Q \cong Z_{p^2}$. Since $p \ge 13$, 7 is coprime to p^2 and hence by Proposition 2.6, X is isomorphic to a 1-regular graph Cay(G, S), where $G = \langle a, b | a^2 = b^{7p^2} = 1$, $aba = b^{-1} \ge D_{14p^2}$, $S = \{a, ba, b^{t+1}a\}$, $t^2 + t + 1 = 0 \pmod{7p^2}$, $p \ge 13$ and 3|(p-1).

Now, suppose that $Q \cong Z_p \times Z_p$. Then by [18, Table 2], X is isomorphic to $EF14p^2$, where $p \ge 13$. Hence the result follows.

3.3. Lemma. Let p be a prime. Then, S126 is the only cubic semisymmetric graph of order $14p^2$.

Proof. Let X be a cubic semisymmetric graph of order $14p^2$. If p < 11, then by [4] there is only one cubic semisymmetric graph S126 of order $14p^2$, in which p = 3. Hence we can assume that $p \ge 11$. Set $A := \operatorname{Aut}(X)$. By Proposition 2.2, $|A_v| = 2^r \cdot 3$, where $0 \le r \le 7$ and hence $|A| = 2^r \cdot 3 \cdot 7 \cdot p^2$. Let $Q = O_p(A)$ be the maximal normal *p*-subgroup of A. We show that $|Q| = p^2$ as follows.

Let N be a minimal normal subgroup of A. Thus $N \cong L^k$, where L is a simple group. Let N be unsolvable. By [5], L is isomorphic to PSL(2,7) or PSL(2,13) of orders $2^3 \cdot 3 \cdot 7$ and $2^2 \cdot 3 \cdot 7 \cdot 13$, respectively. Note that $3^2 \nmid |A|$, forcing k = 1. Also, 3 does not divide |A/N|, and hence by Proposition 2.1 N is semisymmetric on X. Consequently, $7p^2 \mid |N|$, a contradiction because $p \ge 11$. Therefore, N is solvable and so elementary abelian. It follows that N acts intransitively on the bipartition sets of X, and by Proposition 2.1 it is semiregular on each partition. Hence $|N| \mid 7p^2$.

Suppose first that Q = 1. This implies that $N \cong Z_7$. Consequently, by Proposition 2.1, X_N is a cubic A/N-semisymmetric graph of order $2p^2$. Let T/N be a minimal normal subgroup of A/N. If T/N is unsolvable then by a similar argument as above, T/N is isomorphic to one of the two simple groups in the previous paragraph, implying that $7^2 \mid |T|$ and this is impossible. Hence, T/N is solvable and so elementary abelian. If T/N acts transitively on one partition of X_N , by Proposition 2.4 $|T/N| = p^2$ and hence $|T| = 7p^2$. Since $p \ge 11$, the Sylow *p*-subgroup of *T* is characteristic and consequently normal in *A*. It contradicts our assumption Q = 1. Therefore, T/N acts intransitively on the bipartition sets of X_N and by Proposition 2.1, it is semiregular on each partition, which force $|T/N| \mid p^2$. Hence |T/N| = p and so |T| = 7p. Again, *A* has a normal *p*-subgroup, a contradiction.

We now suppose that |Q| = p. Let $C = C_A(Q)$ be the centralizer of Q in A and C' the derived subgroup of C. By the same argument as in the previous lemma, $p^2 \nmid |C'|$ and so C' acts intransitively on the bipartition sets of X. Then by Proposition 2.1, it is semiregular and hence $|C'| \mid 7p^2$.

Let K/C' be a Sylow *p*-subgroup of C/C'. Since C/C' is abelian, K/C' is characteristic and hence normal in A/C', implying that $K \triangleleft A$. Note that $p^2 \mid |K|$ and $|K| \mid 7p^2$. Then, K has a characteristic Sylow *p*-subgroup of order p^2 which is normal in A, contrary to our assumption |Q| = p.

Therefore, $|Q| = p^2$. Clearly, $Q \cong Z_{p^2}$ or $Z_p \times Z_p$. By Proposition 2.1, the semisymmetric graph X is a regular Q-covering of a A/Q-semisymmetric graph X_Q of order 14 which is the Heawood graph F_{14} under a projection, say \wp . Since $Q \triangleleft A$, the group A is projected along \wp and consequently, \wp is a semisymmetric Q-covering projection and also, X is a semisymmetric Q-covering of the Heawood graph. But by Proposition 2.6,

there is no semisymmetric Z_{p^2} -covering of the Heawood graph and also by [16, Theorem 7.1], there is no semisymmetric $Z_p \times Z_p$ -covering projection of the Heawood graph, a contradiction. Hence the result follows.

Now, the proof of Theorem 1.1 follows by Lemmas 3.1, 3.2 and 3.3.

References

- Alaeiyan, M. and Ghasemi, M. Cubic edge-transitive graphs of order 8p², Bull. Austral. Math. Soc. 77,315–323, 2008.
- [2] Conder, M. Trivalent (cubic) symmetric graphs on up to 2048 vertices, 2006.
- http://www.math.auckland.ac.nz/~conder/~conder/symmcubic2048list.txt.
- [3] Conder, M. and Nedela, R. A refined classification of cubic symmetric graphs, Jornal of Algebra 322, 722–740, 2009.
- [4] Conder, M and Malnič, A., Marušič, D. and Potočnik, P. A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebr. Comb. 23, 255–294, 2006.
- [5] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A. An ATLAS of Finite Groups (Oxford University Press, Oxford, 1985).
- [6] Djoković, Ž. D. and Miller, G. L. Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29, 195–230, 1980.
- [7] Du, S.F. and Xu, M.Y. A classification of semisymmetric graphs of order 2pq, Com. in Algebra 28 (6), 2685–2715, 2000.
- [8] Feng, Y. Q. and Kwak, J. H. On regular cubic graphs of order a small number times a prime or a prime square, J. Aust. Math. Soc. 76, 345–356, 2004.
- [9] Feng, Y. Q. and Kwak, J. H. Classifying cubic symmetric graphs of order 10p or 10p², Sci. China Ser. A. Math. 49, 300–319, 2006.
- [10] Feng, Y. Q. and Kwak, J. H. Cubic symmetric graphs of order twice an odd prime-power, J. Aust. Math. Soc. 81, 153–164, 2006.
- [11] Feng, Y. Q. and Kwak, J. H. Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B 97, 627–646, 2007.
- [12] Y. Q. Feng, J. H. Kwak and Xu, M. Y. Cubic s-regular graphs of order 2p³, J. Graph Theory 52, 341–352, 2006.
- [13] Folkman, J. Regular line-symmetric graphs, J. Combin. Theory 3, 215–232, 1967.
- [14] Gross, J. L. and Tucker, T. W. Topological Graph Theory (Wiley-Interscience, New York, 1987).
- [15] Lu, Z., Wang, C. Q. and Xu, M. Y. On semisymmetric cubic graphs of order 6p², Science in China Ser. A Mathematics 47 (1), 1–17, 2004.
- [16] Malnič, A., Marušič, D. and Potočnik, P. Elementary abelian covers of graphs, J. Alg. Combin. 20, 71–97, 2004.
- [17] Malnič, A., Marušič, D. and Wang, C. Q. Cubic edge-transitive graphs of order 2p³, Discrete Math. 274, 187–198, 2004.
- [18] Oh, J. M. A classification of cubic s-regular graphs of order 14p, Discrete Math. 309, 2721– 2726, 2009.
- [19] Rose, J.S. A Course On Group Theory (Cambridg University Press, Cambridge, 1978).
- [20] Tutte, W. T. A family of cubical graphs, Proc. Cambridge Philos. Soc. 43, 459–474, 1947.
- [21] Tutte, W. T. Connectivity in graphs (Toronto University Press, Toronto, 1966).
- [22] Wang, C. Q. and Chen, T. S. Semisymmetric cubic graphs as regular covers of K_{3,3}, Acta Mathematica Sinica 24, 405–416, 2008.
- [23] Wang, C. Q. and Hao, Y. Edge-transitive regular Z_n-covers of the Heawood graph, Discrete Mathematics **310**, 1752–1758, 2010.
- [24] Wielandant, H. Finite Permutation Groups (Acadamic Press. New York, 1964).
- [25] Zhou, J.X. and Feng, Y.Q. Cubic vertex-transitive graphs of order 2pq, J. Graph Theory, DOI 10.1002/jgt.20481.