CLASSIFICATION OF CUBIC EDGE-TRANSITIVE GRAPHS OF ORDER $14 p^{2}$

Mehdi Alaeiyan*† and Mohsen Lashani*

Received 11:12:2010 : Accepted 01:11:2011

Abstract

A graph is called edge-transitive if its automorphism group acts transitively on its set of edges. In this paper we classify all connected cubic edge-transitive graphs of order $14 p^{2}$, where p is a prime.

Keywords: Symmetric graphs, Semisymmetric graphs, s-regular graphs, Regular coverings.
2000 AMS Classification: $05 \mathrm{C} 10,05 \mathrm{C} 25$.

1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For a graph X, we denote by $V(X), E(X), A(X)$ and $\operatorname{Aut}(X)$ the vertex set, the edge set, the arc set and the full automorphism group of X, respectively. For the group-theoretic concepts and notations not defined here we refer to [3, 4, 14, 19, 24].

Let G be a finite group and S a subset of G such that $1 \notin S$ and $S=S^{-1}$. The Cayley graph $X=\operatorname{Cay}(G, S)$ on G with respect to S is defined to have vertex set $V(X)=G$ and edge set $E(X)=\{(g, s g) \mid g \in G, s \in S\}$. The Cayley graph $X=\operatorname{Cay}(G, S)$ is said to be normal if $G \unlhd \operatorname{Aut}(X)$. By definition, $\operatorname{Cay}(G, S)$ is connected if and only if S generates the group G.

An s-arc of a graph X is an ordered $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s-1}, v_{s}\right)$ of vertices of X such that v_{i-1} is adjacent to v_{i} for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i<s$. A graph X is said to be s-arc-transitive if $\operatorname{Aut}(X)$ acts transitively on the set of its s arcs. In particular, 0 -arc-transitive means vertex-transitive, and 1 -arc-transitive means arc-transitive or symmetric. X is said to be s-regular if $\operatorname{Aut}(X)$ acts regularly on the set of its s-arcs. Tutte [20] showed that every finite connected cubic symmetric graph is s-regular for $1 \leq s \leq 5$. A subgroup of $\operatorname{Aut}(X)$ is said to be s-regular if it acts regularly

[^0]on the set of s-arcs of X. If a subgroup G of $\operatorname{Aut}(X)$ acts transitively on $V(X)$ and $E(X)$, we say that X is G-vertex-transitive and G-edge-transitive, respectively. In the special case, when $G=\operatorname{Aut}(X)$, we say that X is vertex-transitive and edge-transitive, respectively.

It can be shown that a G-edge-transitive but not G-vertex-transitive graph X is necessarily bipartite, where the two parts of the bipartition are orbits of $G \leq \operatorname{Aut}(X)$. Moreover, if X is regular then these two parts have the same cardinality. A regular G-edgetransitive but not G-vertex-transitive graph X will be referred to as a G-semisymmetric graph. In particular if $G=\operatorname{Aut}(X), X$ is said to be semisymmetric.

The classification of cubic symmetric graphs of different orders is given in many papers. In [2, 3], the cubic s-regular graphs up to order 2048 are classified. Throughout this paper, p and q are prime numbers. The s-regular cubic graphs of some orders such as $2 p^{2}, 4 p^{2}$, $6 p^{2}, 10 p^{2}$ were classified in [8-11]. Recently cubic s-regular graphs of order $2 p q$ were classified in [25].

The study of semisymmetric graphs was initiated by Folkman [13]. For example, cubic semisymmetric graphs of orders $6 p^{2}, 8 p^{2}$ and $2 p q$ were classified in [15, 1, 7]. In this paper we classify cubic edge-transitive (symmetric or semisymmetric) graphs of order $14 p^{2}$.
1.1. Theorem. Let p be a prime and X a connected cubic edge-transitive graph of order $14 p^{2}$. Then X is isomorphic either to the semisymmetric graph $S 126$ or to one s-regular graph, where $1 \leq s \leq 3$. Furthermore,
(1) X is 1-regular if and only if X is isomorphic to one of the graphs F56A, F126, F350, F686A, F686C, F1694, EF14p ${ }^{2}$, where $p \geq 13$, or to $\operatorname{Cay}(G, S)$, where $G=<a, b \mid a^{2}=b^{7 p^{2}}=1, a b a=b^{-1}>\cong D_{14 p^{2}}, S=\left\{a, b a, b^{t+1} a\right\}, t^{2}+t+1=0$ $\left(\bmod 7 p^{2}\right), p \geq 13$ and $3 \mid(p-1)$.
(2) X is 2-regular if and only if X is isomorphic to one of the graphs $F 56 B$ and F686B.
(3) X is 3 -regular if and only if X is isomorphic to $F 56 C$.

2. Preliminaries

Let X be a graph and N a subgroup of $\operatorname{Aut}(X)$. For $u, v \in V(X)$, denote by $\{u, v\}$ the edge incident to u and v in X, and by $N_{X}(u)$ the set of vertices adjacent to u in X. The quotient graph X_{N} (also denoted by X / N) induced by N is defined as the graph such that the set Σ of N-orbits in $V(X)$ is the vertex set of X_{N}, and $B, C \in \Sigma$ are adjacent if and only if there exist $u \in B$ and $v \in C$ such that $\{u, v\} \in E(X)$.

A graph \tilde{X} is called a covering of a graph X with projection $\wp: \widetilde{X} \rightarrow X$ if there is a surjection $\wp: V(\widetilde{X}) \rightarrow V(X)$ such that $\left.\wp\right|_{N_{\widetilde{X}}(\tilde{v})}: N_{\tilde{X}}(\tilde{v}) \rightarrow N_{X}(v)$ is a bijection for any vertex $v \in V(X)$ and $\tilde{v} \in \wp^{-1}(v)$. A covering graph \widetilde{X} of X with projection \wp is said to be regular (or a K-covering) if there is a semiregular subgroup K of the automorphism $\operatorname{group} \operatorname{Aut}(\widetilde{X})$ such that the graph X is isomorphic to the quotient graph \widetilde{X}_{K}, say by h, and the quotient map $\widetilde{X} \rightarrow \widetilde{X}_{K}$ is the composition $\wp h$ of \wp and h. The fibre of an edge or a vertex is its preimage under \wp.

The group of automorphisms of \widetilde{X} mapping fibres to fibres is called the fibre-preserving subgroup of $\operatorname{Aut}(\widetilde{X})$.

Let X be a graph and let K be a finite group. By a^{-1} we mean the reverse arc to an arc a. A voltage assignment (or, a K-voltage assignment) of X is a function $\phi: A(X) \rightarrow K$ with the property that $\phi\left(a^{-1}\right)=\phi(a)^{-1}$ for each arc $a \in A(X)$. The values of ϕ are called voltages, and K is the voltage group. The graph $X \times_{\phi} K$ derived from a voltage assignment $\phi: A(X) \rightarrow K$ has vertex set $V(X) \times K$ and edge set $E(X) \times K$, so that
the edge (e, g) of $X \times_{\phi} K$ joins the vertex (u, g) to $(v, \phi(a) g)$ for $a=(u, v) \in A(X)$ and $g \in K$, where $e=u, v$.

Clearly, the derived graph $X \times_{\phi} K$ is a covering of X; the first coordinate projection $\wp: X \times_{\phi} K \rightarrow X$ is called the natural projection. By defining $\left(u, g^{\prime}\right)^{g}=\left(u, g^{\prime} g\right)$ for any $g \in K$ and $\left(u, g^{\prime}\right) \in V\left(X \times_{\phi} K\right), K$ becomes a subgroup of $\operatorname{Aut}\left(X \times_{\phi} K\right)$ which acts semiregularly on $V\left(X \times_{\phi} K\right)$. Therefore, $X \times_{\phi} K$ can be viewed as a K-covering. For each $u \in V(X)$ and $u, v \in E(X)$, the vertex set $\{(u, g) \mid g \in K\}$ is the fibre of u and the edge set $\{(u, g)(v, \phi(a) g) \mid g \in K\}$ is the fibre of u, v, where $a=(u, v)$. Conversely, each regular covering \widetilde{X} of X with a covering transformation group K can be derived from a K-voltage assignment.

Let \widetilde{X} be a K-covering of X with a projection \wp. If $\alpha \in \operatorname{Aut}(X)$ and $\tilde{\alpha} \in \operatorname{Aut}(\tilde{X})$ satisfy $\tilde{\alpha} \wp=\wp \alpha$, we call $\tilde{\alpha}$ a lift of α, and α the projection of $\tilde{\alpha}$. Concepts such as a lift of a subgroup of $\operatorname{Aut}(X)$ and the projection of a subgroup of $\operatorname{Aut}(\widetilde{X})$ are selfexplanatory. The lifts and the projections of such subgroups are of course subgroups in $\operatorname{Aut}(\widetilde{X})$ and $\operatorname{Aut}(X)$, respectively. In particular, if the covering graph \widetilde{X} is connected, then the covering transformation group K is the lift of the trivial group, that is $K=$ $\{\tilde{\alpha} \in \operatorname{Aut}(\widetilde{X}): \wp=\tilde{\alpha} \wp\}$.

Clearly, if $\tilde{\alpha}$ is a lift of α, then $K \tilde{\alpha}$ are all the lifts of α. The projection \wp is called vertex-transitive (edge-transitive) if some vertex-transitive (edge-transitive) subgroup of $\operatorname{Aut}(X)$ lifts along \wp, and semisymmetric if it is edge- but not vertex-transitive.

The next proposition is a special case of [22, Proposition 2.5].
2.1. Proposition. Let X be a G-semisymmetric cubic graph with bipartition sets $U(X)$ and $W(X)$, where $G \leq A:=\operatorname{Aut}(X)$. Moreover, suppose that N is a normal subgroup of G. Then,
(1) If N is intransitive on bipartition sets, then N acts semiregularly on both $U(X)$ and $W(X)$, and X is a regular N-covering of the G / N-semisymmetric graph X_{N}.
(2) If 3 does not divide $|A / N|$, then N is semisymmetric on X.
2.2. Proposition. [17, Proposition 2.4] The vertex stabilizers of a connected G-semisymmetric cubic graph X have order $2^{r} \cdot 3$, where $0 \leq r \leq 7$. Moreover, if u and v are two adjacent vertices, then the edge stabilizer $G_{u} \cap G_{v}$ is a common Sylow 2-subgroup of G_{u} and G_{v}.
2.3. Proposition. [19, pp.236] Let G be a finite group and let p be a prime. If G has an abelian Sylow p-subgroup, then p does not divide $\left|G^{\prime} \cap Z(G)\right|$.
2.4. Proposition. [24, Proposition 4.4] Every transitive abelian group G on a set Ω is regular, and the centralizer of G in the symmetric group on Ω is G.
2.5. Proposition. [12, Theorem 9] Let X be a connected symmetric graph of prime valency and let G be an s-regular subgroup of $\operatorname{Aut}(X)$ for some $s \geq 1$. If a normal subgroup N of G has more than two orbits, then it is semiregular and G / N is an sregular subgroup of $\operatorname{Aut}\left(X_{N}\right)$, where X_{N} is the quotient graph of X corresponding to the orbits of N. Furthermore, X is a regular N-covering of X_{N}.

The next proposition is a special case of [23, Theorem 1.1].
2.6. Proposition. Let X be a connected edge-transitive Z_{n}-cover of the Heawood graph F14. Then $n=3^{k} p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}, k=0$ or $1, t \geq 1$, the primes $p_{i}, i=1, \ldots, t$, are different primes with $p_{i}=1(\bmod 3)$, and X is symmetric and isomorphic to a normal Cayley graph Cay (G, S) for some group G with respect to a generating set S. Furthermore, if 7
is coprime to n, then $G=<a, b \mid a^{2}=b^{7 n}=1, a b a=b^{-1}>\cong D_{14 n}, S=\left\{a, b a, b^{t+1} a\right\}$, $t^{2}+t+1=0(\bmod 7 n)$, and X is 1-regular.

3. Main results

Let p be a prime and let X be a cubic edge-transitive graph of order $14 p^{2}$. By [21], every cubic edge and vertex-transitive graph is arc-transitive and consequently, X is either symmetric or semisymmetric.

For a prime $p \geq 13$, denote by $E F 14 p^{2}$ the $Z_{p} \times Z_{p}$-covering of the Heawood graph $F 14$ with voltage assignment $(2,0),(-1,1),(1,-1),(1,1),(-1,-1),(1,1),(0,0),(2,0)$.

By [2, 3], we have the following lemma.
3.1. Lemma. Let p be a prime and X a connected cubic symmetric graph of order $14 p^{2}$, where $p<13$. Then X is isomorphic to one of the 1-regular graphs F56A, F126, F350, F686A, F686C and F1694, or to the 2-regular graphs F56B or $F 686 B$, or to the 3 -regular graph $F 56 C$.
3.2. Lemma. Let $p \geq 13$ be a prime and X a connected cubic symmetric graph of order $14 p^{2}$. Then X is isomorphic to one of the 1-regular graphs $E F 14 p^{2}$ or $\operatorname{Cay}(G, S)$, where $G=<a, b \mid a^{2}=b^{7 p^{2}}=1, a b a=b^{-1}>\cong D_{14 p^{2}}$ and $S=\left\{a, b a, b^{t+1} a\right\}$, such that $t^{2}+t+1=0\left(\bmod 7 p^{2}\right)$ and $3 \mid(p-1)$.

Proof. By Tutte [20], X is at most 5 -regular and hence $|A|=2^{s} \cdot 3 \cdot 7 \cdot p^{2}$ for some s, where $1 \leq s \leq 5$. Let $Q=O_{p}(A)$ be the maximal normal p-subgroup of A. We show that $|Q|=p^{2}$ as follows.

Let N be a minimal normal subgroup of A. Thus $N \cong L \times \cdots \times L=L^{k}$, where L is a simple group. If N is unsolvable then by [4], $L \cong \operatorname{PSL}(2,7)$ or $\operatorname{PSL}(2,13)$ of orders $2^{3} \cdot 3 \cdot 7$ and $2^{2} \cdot 3 \cdot 7 \cdot 13$, respectively. Since $3^{2} \nmid|A|$, we have $k=1$ and so $N \cong \operatorname{PSL}(2,7)$ or $\operatorname{PSL}(2,13)$. Thus N has more than two orbits and then by Proposition $2.5, N$ is semiregular. Therefore, $|N| \mid 14 p^{2}$, and this is impossible. Hence N is solvable and so elementary abelian.

Suppose first that $Q=1$. Thus N is an elementary abelian q-group, for $q=2,3$ or 7 and so N has more than two orbits on X. By Proposition 2.5, N is semiregular and hence $|N| \mid 14 p^{2}$. It follows that $|N|=2$ or 7 . If $|N|=2$, by Proposition $2.5 X_{N}$ is a cubic symmetric graph of odd order $7 p^{2}$, a contradiction.

Suppose that $|N|=7$. By Proposition 2.5, X_{N} is a cubic A / N-symmetric graph of order $2 p^{2}$. Let T / N be a minimal normal subgroup of A / N. By a similar argument as above, T / N is elementary abelian and hence $|T / N|=2$ or p. If $|T / N|=2$, then $|T|=14$ and X_{T} is a cubic symmetric graph of odd order p^{2}, a contradiction. So, $|T / N|=p$ and also $|T|=7 p$. Since $p \geq 13$, the Sylow p-subgroup of T is characteristic and so normal in A, a contrary to the our assumption that $Q=1$.

We now suppose that $|Q|=p$. Let P be a Sylow p-subgroup of A and $C=C_{A}(Q)$ the centralizer of Q in A. Clearly, $Q<P$ and also $P \leq C$ because P is abelian. Thus $p^{2}| | C \mid$. If $p^{2}| | C^{\prime} \mid\left(C^{\prime}\right.$ is the derived subgroup of $\left.C\right)$ then $Q \leq C^{\prime}$ and hence $p \| C^{\prime} \cap Q \mid$, forcing that $p\left|\mid C^{\prime} \bigcap Z(C \mid\right.$ because $Q \leq Z(C)$. This contradicts Proposition 2.3. Consequently, $p^{2} \nmid\left|C^{\prime}\right|$ and so C^{\prime} has more than two orbits on X. By Proposition 2.5, C^{\prime} is semiregular on X and hence $\left|C^{\prime}\right| \mid 14 p^{2}$.

Let K / C^{\prime} be a Sylow p-subgroup of C / C^{\prime}. Since C / C^{\prime} is abelian, K / C^{\prime} is characteristic and hence normal in A / C^{\prime}, implying that $K \triangleleft A$. Note that $p^{2}| | K \mid$ and $|K| \mid 14 p^{2}$. If $|K|=14 p^{2}$ then K has a normal subgroup of order $7 p^{2}$, say H. Since $p \geq 13$, the Sylow p-subgroup of H is characteristic and consequently normal in K and also normal
in A. Also, if $|K|<14 p^{2}, K$ has a characteristic Sylow p-subgroup of order p^{2} which is normal in A. However, this is contrary to our assumption $|Q|=p$. Therefore, $|Q|=p^{2}$.

Clearly, $Q \cong Z_{p^{2}}$ or $Z_{p} \times Z_{p}$. Then by Proposition $2.5, X$ is a regular Q-covering of the symmetric graph X_{Q} of order 14. By [3] the only cubic symmetric graph of order 14 is the Heawood graph F14. Suppose that $Q \cong Z_{p^{2}}$. Since $p \geq 13,7$ is coprime to p^{2} and hence by Proposition 2.6, X is isomorphic to a 1-regular graph $\operatorname{Cay}(G, S)$, where $G=<a, b \mid a^{2}=b^{7 p^{2}}=1, a b a=b^{-1}>\cong D_{14 p^{2}}, S=\left\{a, b a, b^{t+1} a\right\}, t^{2}+t+1=0(\bmod$ $\left.7 p^{2}\right), p \geq 13$ and $3 \mid(p-1)$.

Now, suppose that $Q \cong Z_{p} \times Z_{p}$. Then by [18, Table 2], X is isomorphic to $E F 14 p^{2}$, where $p \geq 13$. Hence the result follows.
3.3. Lemma. Let p be a prime. Then, $S 126$ is the only cubic semisymmetric graph of order $14 p^{2}$.

Proof. Let X be a cubic semisymmetric graph of order $14 p^{2}$. If $p<11$, then by [4] there is only one cubic semisymmetric graph $S 126$ of order $14 p^{2}$, in which $p=3$. Hence we can assume that $p \geq 11$. Set $A:=\operatorname{Aut}(X)$. By Proposition $2.2,\left|A_{v}\right|=2^{r} \cdot 3$, where $0 \leq r \leq 7$ and hence $|A|=2^{r} \cdot 3 \cdot 7 \cdot p^{2}$. Let $Q=O_{p}(A)$ be the maximal normal p-subgroup of A. We show that $|Q|=p^{2}$ as follows.

Let N be a minimal normal subgroup of A. Thus $N \cong L^{k}$, where L is a simple group. Let N be unsolvable. By [5], L is isomorphic to $P S L(2,7)$ or $P S L(2,13)$ of orders $2^{3} \cdot 3 \cdot 7$ and $2^{2} \cdot 3 \cdot 7 \cdot 13$, respectively. Note that $3^{2} \nmid|A|$, forcing $k=1$. Also, 3 does not divide $|A / N|$, and hence by Proposition $2.1 N$ is semisymmetric on X. Consequently, $7 p^{2}| | N \mid$, a contradiction because $p \geq 11$. Therefore, N is solvable and so elementary abelian. It follows that N acts intransitively on the bipartition sets of X, and by Proposition 2.1 it is semiregular on each partition. Hence $|N| \mid 7 p^{2}$.

Suppose first that $Q=1$. This implies that $N \cong Z_{7}$. Consequently, by Proposition 2.1, X_{N} is a cubic A / N-semisymmetric graph of order $2 p^{2}$. Let T / N be a minimal normal subgroup of A / N. If T / N is unsolvable then by a similar argument as above, T / N is isomorphic to one of the two simple groups in the previous paragraph, implying that $7^{2}| | T \mid$ and this is impossible. Hence, T / N is solvable and so elementary abelian. If T / N acts transitively on one partition of X_{N}, by Proposition $2.4|T / N|=p^{2}$ and hence $|T|=7 p^{2}$. Since $p \geq 11$, the Sylow p-subgroup of T is characteristic and consequently normal in A. It contradicts our assumption $Q=1$. Therefore, T / N acts intransitively on the bipartition sets of X_{N} and by Proposition 2.1, it is semiregular on each partition, which force $|T / N| \mid p^{2}$. Hence $|T / N|=p$ and so $|T|=7 p$. Again, A has a normal p-subgroup, a contradiction.

We now suppose that $|Q|=p$. Let $C=C_{A}(Q)$ be the centralizer of Q in A and C^{\prime} the derived subgroup of C. By the same argument as in the previous lemma, $p^{2} \nmid\left|C^{\prime}\right|$ and so C^{\prime} acts intransitively on the bipartition sets of X. Then by Proposition 2.1, it is semiregular and hence $\left|C^{\prime}\right| \mid 7 p^{2}$.

Let K / C^{\prime} be a Sylow p-subgroup of C / C^{\prime}. Since C / C^{\prime} is abelian, K / C^{\prime} is characteristic and hence normal in A / C^{\prime}, implying that $K \triangleleft A$. Note that $p^{2}| | K \mid$ and $|K| \mid 7 p^{2}$. Then, K has a characteristic Sylow p-subgroup of order p^{2} which is normal in A, contrary to our assumption $|Q|=p$.

Therefore, $|Q|=p^{2}$. Clearly, $Q \cong Z_{p^{2}}$ or $Z_{p} \times Z_{p}$. By Proposition 2.1, the semisymmetric graph X is a regular Q-covering of a A / Q-semisymmetric graph X_{Q} of order 14 which is the Heawood graph F_{14} under a projection, say \wp. Since $Q \triangleleft A$, the group A is projected along \wp and consequently, \wp is a semisymmetric Q-covering projection and also, X is a semisymmetric Q-covering of the Heawood graph. But by Proposition 2.6,
there is no semisymmetric $Z_{p^{2}}$-covering of the Heawood graph and also by [16, Theorem 7.1], there is no semisymmetric $Z_{p} \times Z_{p}$-covering projection of the Heawood graph, a contradiction. Hence the result follows.

Now, the proof of Theorem 1.1 follows by Lemmas 3.1, 3.2 and 3.3.

References

[1] Alaeiyan, M. and Ghasemi, M. Cubic edge-transitive graphs of order $8 p^{2}$, Bull. Austral. Math. Soc. 77,315-323, 2008.
[2] Conder, M. Trivalent (cubic) symmetric graphs on up to 2048 vertices, 2006. http://www.math.auckland.ac.nz/~conder/~conder/symmcubic2048list.txt.
[3] Conder, M. and Nedela, R. A refined classification of cubic symmetric graphs, Jornal of Algebra 322, 722-740, 2009.
[4] Conder, M and Malnič, A., Marušič, D. and Potočnik, P. A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebr. Comb. 23, 255-294, 2006.
[5] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A. An ATLAS of Finite Groups (Oxford University Press, Oxford, 1985).
[6] Djoković, Ž. D. and Miller, G. L. Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29, 195-230, 1980.
[7] Du, S.F. and Xu, M. Y. A classification of semisymmetric graphs of order $2 p q$, Com. in Algebra 28 (6), 2685-2715, 2000.
[8] Feng, Y. Q. and Kwak, J. H. On regular cubic graphs of order a small number times a prime or a prime square, J. Aust. Math. Soc. 76, 345-356, 2004.
[9] Feng, Y. Q. and Kwak, J. H. Classifying cubic symmetric graphs of order $10 p$ or $10 p^{2}$, Sci. China Ser. A. Math. 49, 300-319, 2006.
[10] Feng, Y. Q. and Kwak, J. H. Cubic symmetric graphs of order twice an odd prime-power, J. Aust. Math. Soc. 81, 153-164, 2006.
[11] Feng, Y. Q. and Kwak, J. H. Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B 97, 627-646, 2007.
[12] Y. Q. Feng, J. H. Kwak and Xu, M. Y. Cubic s-regular graphs of order $2 p^{3}$, J. Graph Theory 52, 341-352, 2006.
[13] Folkman, J. Regular line-symmetric graphs, J. Combin. Theory 3, 215-232, 1967.
[14] Gross, J. L. and Tucker, T. W. Topological Graph Theory (Wiley-Interscience, New York, 1987).
[15] Lu, Z., Wang, C. Q. and Xu, M. Y. On semisymmetric cubic graphs of order $6 p^{2}$, Science in China Ser. A Mathematics 47 (1), 1-17, 2004.
[16] Malnič, A., Marušič, D. and Potočnik, P. Elementary abelian covers of graphs, J. Alg. Combin. 20, 71-97, 2004.
[17] Malnič, A., Marušič, D. and Wang, C. Q. Cubic edge-transitive graphs of order $2 p^{3}$, Discrete Math. 274, 187-198, 2004.
[18] Oh, J. M. A classification of cubic s-regular graphs of order $14 p$, Discrete Math. 309, 27212726, 2009.
[19] Rose, J. S. A Course On Group Theory (Cambridg University Press, Cambridge, 1978).
[20] Tutte, W. T. A family of cubical graphs, Proc. Cambridge Philos. Soc. 43, 459-474, 1947.
[21] Tutte, W. T. Connectivity in graphs (Toronto University Press, Toronto, 1966).
[22] Wang, C. Q. and Chen, T.S. Semisymmetric cubic graphs as regular covers of $K_{3,3}$, Acta Mathematica Sinica 24, 405-416, 2008.
[23] Wang, C. Q. and Hao, Y. Edge-transitive regular Z_{n}-covers of the Heawood graph, Discrete Mathematics 310, 1752-1758, 2010.
[24] Wielandant, H. Finite Permutation Groups (Acadamic Press. New York, 1964).
[25] Zhou, J. X. and Feng, Y. Q. Cubic vertex-transitive graphs of order 2pq, J. Graph Theory, DOI 10.1002/jgt. 20481.

[^0]: *Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran. E-mail: (M. Alaeiyan) alaeiyan@iust.ac.ir (M. Lashani) lashani@iust.ac.ir
 ${ }^{\dagger}$ Corresponding Author

