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Abstract

In this paper, a new Data Envelopment Analysis (DEA) model, which is
restricted using correlation coefficients (the CCRCOR), was compared
with the cross-efficiency evaluation model (the CEM) and some other
models. We used two hypothetical data sets, which were generated by
E. Thanassoulis (A comparison of regression analysis and data envel-
opment analysis as alternative methods for performance assessments,
J. Operational Research Society 44, 1129-1144, 1993) (with one input)
and K.F. Lam (In the determination of weight sets to compute cross-
efficiency ratios in DEA, J. Operational Research Society 61, 134-143,
2010) (with two inputs). Until now, these data sets have been used
by various researchers. The writers did not consider whether or not
these data sets were appropriate to the analysis. So, we recommend
the CCRCOR model in our paper. The CCRCOR model allows one to
add weight restrictions to the CCR model, which are obtained using
correlations between input and output variables.
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1. Introduction

Data Envelopment Analysis (DEA) was developed by Charnes et al. [4]. It calculates
the efficiency rates as follows:

Efficiency = weighted sum of output / weighted sum of input.

Due to the nature of the classical DEA models, they allow the flexibility of weight
for decision-making units (DMUs) under evaluation. Thus, the DMUs work to maximize
their own efficiency scores. Thus, the weights of input and output variables are deter-
mined. So, some important variables in the optimal solution by the classical DEA can
be assigned zero weight values.

However, some unimportant variables in the analysis can take weight values close
to one (1). This is one of the disadvantages highlighted in the DEA literature. The
determination of the weights without the need for a prior knowledge is an advantage of
DEA. Due to the flexibility of weight, the weight factor needs checking against the risk
of assigning unrealistic weights in some cases [13]. In the classical DEA, very different
weights for the inputs and outputs of the DMU under assessment may be assigned [5].
To avoid large differences in terms of the weight values among all DMUs, the Assurance
Region (AR) concept was introduced by Thompson et al. [17]. Thus, weight restrictions
are often used to destroy the flexibility of weight in DEA. It requires a pre-knowledge of
the application by area experts to create these weight restrictions in the AR. But, the
cross-efficiency evaluation method (CEM) is a model without the need of prior knowledge.
It was first introduced by Sexton et al. [14]. Another disadvantage is the problem of
ranking in the classical DEA, that is not obtaining a ranking from the efficiency scores of
the DMUs. A DMU under evaluation in DEA maximizes its own efficiency score, but it
does not take into consideration the other DMUs. So, the DMU’s weights are assigned in
the classical DEA. But sometimes, it can lead to misleading results. The cross-efficiency
score of the assessed DMU is calculated based on the average cross efficiencies obtained
by using all weights to overcome these problems. DEA provides self-assessment of each
unit, but the CEM provides peer evaluation for the DMU under evaluation. The DMUs
in the DEA are divided into two classes as the efficient and inefficient.

Lam [9] comments that one of the deficiencies in DEA may be finding multiple solu-
tions as linear solutions of the efficient DMUs. Thus, the set of weights obtained is only
one of many optimal weight sets [9]. When a set of weights is used in cross-evaluation, it
comes up as a question why this cluster is preferred rather than others. Another short-
coming of DEA is that it may give some useless or excessively different weight values for
the DMUs under evaluation. Also, zero input and output weights are seen frequently
in DEA. Lam [9] developed a new method of implementing mixed-integer linear pro-
gramming. The purpose of the model is to use cross-evaluation to select the appropriate
weight sets. One advantage of the proposed method is that each weight set obtained can
reflect the relative strengths of the efficient DMU under evaluation [9]. The method tries
to protect the results of the original classification and to avoid zero weights.

So far, the idea of taking into account weight restrictions imposed by the correlations
between input and output variables has not been into account in the DEA literature.
From this point of view, we began this study. Hypothetical data sets (see Thanassoulis
[16] and Lam [9]) were used in our study. There were meaningless correlations with low
levels between the input and output variables in these data sets. But, this situation
was not taken into account by the authors. Thanassoulis [16] used this data set in
regression analysis. However, this data set does not meet the basic condition of linear
regression analysis. According to this condition, variables must be related with each
other. Therefore, the CCRCOR model is superior to the other DEA models in this
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respect. The CCRCOR model gives weights to the level of relations between input
and output variables. Furthermore, the initial correlation matrix is calculated. So, the
suitability of this data for DEA will be decided at the beginning of the analysis. Thus, the
inclusion of uncorrelated variables in the analysis is prevented. Also, the CCRCOR model
eliminates unrealistic solutions caused by the flexibility of the weight in the classical DEA
models.

The paper is arranged as follows: Section 1 is the introduction section on the subject
of cross efficiency in the literature. We suggest a new model, which is referred to as
the CCRCOR model, in Section 2. The models used for comparison in this study are
mentioned briefly in the third section. In Section 4, efficiency scores are obtained by
applying the methods of the CCRCOR, the CEM, the true efficiency and the super
efficiency. Then the methods are compared with other methods, by using the Spearman
and the Pearson correlation tests. The results are given in Section 5.

2. A new restricted DEA model (CCRCOR) using correlation
coeflicients

The input and output variables are related to each other in the production process. In
this study, the relationship was reflected in the rate of correlation between the variables.
Thus, the weights of the model were found. The weights, which assign the maximum
efficiency score of the DMU under evaluation, are chosen randomly in the classical DEA
models. In this case, a lot of important inputs and outputs are not considered in deter-
mining the efficiency score of the DMU under consideration or, are taken into account for
very small amounts. This situation leads to unreasonable results. Many studies in the
literature have been done to solve the problem of weighting. Weight balancing studies
and the weighted methods may be considered in this context to avoid inconsistent results.
For example, in an evaluation study for the efficiencies of universities, weighting research
assistants and professors at the same rate of will cause inaccurate results.

The classical DEA evaluates DMUs without taking into account the relative impor-
tance of inputs and outputs to each other. In this study, a new model (the CCRCOR
model), which adds to the model correlations between input and output variables, is
recommended. The weights of the input and output variables, which are very impor-
tant, should be included at this level in production. The mentioned shortcomings can be
overcome by taking into account combinations of the weights. The efficiency scores are
calculated at a given level of correlation between the input and output variables in the
CCRCOR model. If the current relationship is taken into account in assigning the weights
of the variables when calculating the efficiency score with the suggested approach, the
weights of the variable are balanced. Other writers working on the balancing of weights
give importance only to different weights of 0 and 1. In our opinion, if a balanced concept
is based on the degree of importance of a variable in the production process, this variable
should be placed with a weight at that level in production. If the weights are created
according to this principle, the weights will be “balanced”.

The CCRCOR model is an objective model. So, its superiority over subjective meth-
ods of the CCRCOR model are as follows: Preference information is not needed. The
CCRCOR model is objective, so, the results do not change according to different ana-
lysts. The relations between the input and output variables in the CCRCOR model are
taken into account from the beginning. So, the CCRCOR model results are quite real-
istic. Thus, the weights with the CCRCOR model are more homogeneously distributed.
Further, the CCRCOR model prevents the determination of the DMU under evaluation
as efficient when it is actually inefficient.
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The CCRCOR model is formulated as follows:

(2.1) maxf = Zury'rk

r=1

m
s.t. E ViZik = 1
i=1

S wyey = wizi; <0 (G=1,...,n)
r=1 i=1

Ci,it1Vit1 —0; <0 (i=1,...,m—1)
Pirur—v; <0 (i=1,...,m),(r=1,...,s)
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In the CCRCOR model, the meaning of the symbols is as follows:

e 0: the efficiency score for the DMUy,
u: the output weights,

v: the input weights,

x: inputs,

y: outputs.

Moreover,

e ¢; it1 is the correlation coefficient between the it and (i+ 1)th input variables.
e p; . is the correlation coefficient between the ™" input and the " output vari-

ables.
® b, .41 is the correlation coefficient between the r*® and (r+ 1)th output variables.

3. Comparison of various models with the CCRCOR model

3.1. The CCR model. The CCR model was first suggested by Charnes et al. [4] in
1978. The input oriented CCR model is formulated as follows:

(3.1) max0 = Zurym

r=1

m
st. E ViZik = 1
i=1

Zuryrj 7Zvixij <0 (j=1,...,n)
=1 i=1
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V1,02, ..., Um >0

3.2. The CEM model. The CEM was proposed by Sexton et al. [14]. The purpose of
the CEM is to rank the DMUs so as to select a DMU which has the best performance. The
basic idea of this method is the use of a binary assessment rather than a self-evaluation
in DEA.
The CEM’s implementation phases are as follows:
(1) For each DMUy, (k = 1,2,...,n), a set of multipliers wiy, w3y, ..., Wk, K1k,
ks« - -5 [hap, 1S Obtained.
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(2) Forany DMU;,, (j =1,2,...,n), the cross-efficiency can be calculated as follows
using the selected weights for DM U}, in the model (3.1).
32) E Dy A B S
. ki — <—m . x v T oAy &y ey Tl
T wh i
In the formulation (3.2), Ej; calculates the cross efficiency of DMU; using the
weights of DMUy,.
(3) As shown in Table 1, for each DMU, each of the columns of the cross-efficiency
matrix is averaged to measure the mean cross-efficiency. Thus, for DMUj, the
cross-efficiency score is calculated as follows:

_ 1 <&
(3.3) E;= E;Eh.

Table 1. The generalized cross-efficiency matrix [22]

Evaluating DMUy, The evaluated DMU;
1 2 3 een
1 Eunw Ei2 Eiz -+ Ein
2 Ex1 Eax FEas - Eap
3 Es1  Esx Ess -+ Esg
n FEni Epna FEns -+ Enn
mean E, E» E; --- E,

The diagonal elements in Table 1 are the efficiency values which are calculated with the
classical DEA (3.1).

The CEM method allows the elimination of a wrong classification for efficient DMUs.
The CEM has three advantages [22]: First, it provides a ranking of the DMUs [14].
Second, the application area experts eliminate unrealistic weighting plans without the
need for weight restrictions [2]. Third, the CEM can discriminate effectively between
good and poor performance of the units [3]. Despite all these advantages, there are some
disadvantages of the CEM. The most significant problem with the CEM is obtaining
alternative optimal solutions for the weights. In this case, different cross-efficiency scores
on the selected weight set are obtained [12]. It is recommended to use the second objec-
tives in selecting the weights from the alternative solutions in the literature. The second
purposes have been used widely in recent years. The basic idea of researchers who use
this approach is to calculate an optimal set of weights for each DMU by installing some
conditions on cross-efficiency. Benevolent and aggressive formulations are widely used
on this issue [14, 7]. While the benevolent formulation maintains the efficiency score of
the unit under evaluation, it will select the weights which will increase the cross efficien-
cies of the other DMUs. But while the aggressive formulation maintains the efficiency
score of the unit under evaluation, it will select the weights which can reduce the cross
efficiencies of the other DMUs [12]. Wu et al. [20] thought to maximize the sum of the
ranking numbers for the DMUs except for the DMU under evaluation. They discuss the
second objective functions which are defined with the principle of priority ranking. Wu
et al. [20] put forward that tracing the best ranking is more important than maximizing
the individual score. The purpose of Ramon et al. [12] is to avoid zero weights and large
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differences among the weights of the input and outputs. For this purpose, Ramon et al.
[12] applied the CEM method without the resides as the expansion of Ramon et al. [11].
Wang and Chin’s model [18] is called the neutral DEA model. The weights are deter-
mined without considering the impact on the other DMUs of each DMU in this model.
In other words, the authors tried to reduce the number of zero weights in the outputs and
to maximize the relative contribution of outputs with the min/max formulation in the
CEM. Anderson et al. [2] emphasize that CEM should eliminate unrealistic weighting
plans.

Due to alternative solutions obtained from the CEM, it can produce different cross
efficiency scores. So, there is a lot of research in the literature about this issue. For
example, the symmetric weight assignment technique (SWAT') is proposed as a second
objective introduced into the CEM by Jahanshahloo et al. [8]. The SWAT provides the

choice of weights in a symmetrical manner.

The average cross-efficiency is used widely in the literature. However, there are some
disadvantages to the use of the average cross-efficiency as the final cross efficiency to
evaluate and to rank the DMUs [22]: The average cross-efficiency measurement is not a
Pareto solution. So, it is not good enough.

When the average of all cross-efficiencies is calculated, the relationships between
weights will be lost [6]. Various authors have given up calculating the average of the
cross-efficiency scores, in order to determine the final cross-efficiency scores. Instead,
they used the principle of the priority ranking [20], namely the Nash equilibrium point
[21], the Shapley value [19] and the Shannon entropy method [22]. The average cross
efficiency assumption was abolished by Wu et al. [19].

The cross-efficiency is combined with game theory by Wu et al. [21]. Each candidate is
considered as a player, who is trying to maximize his/her own efficiency in this approach.
All of efficiencies are averaged to maximize the efficiency of each of the DMUs. Thus,
the game cross-efficiency scores obtained constitute a Nash equilibrium point.

Liang et al. [10] focus on the alternative second purposes which are proposed as
an alternative in the CEM. Wang and Chin [18] gave an application of new alternative
models proposed by them. Wang and Chin [18] argued that they found more realistic
results than those of the alternative models of Liang et al. [10].

3.3. The super efficiency model. The classical DEA assigns efficiency scores of 1 to
the efficient units. On the other hand, for the inefficient units, it assigns efficiency scores
of less than 1. Thus, the classical DEA can determine only the efficient units. But, DEA
does not allow one to find the degree of efficiencies of the DMUs and to rank them.

Andersen and Petersen’s Super Efficiency Method (AP) is the first ranking method,
which was applied to compare and rank the efficient DMUs [1]. For this purpose, the
evaluated DMU is excluded from the reference set. On the basis of ranking in the AP
model, a DMU which has the highest efficiency score will be in the first order; but
another DMU which has the lowest efficiency score, will be in the last order. In this way,
according to the values of the super-efficiency score, all DMUs are sorted in descending
order. Thus, the efficient DMUs are ranked.

An inefficient DMU in the CCR model is inefficient in the AP model. If the DMU
under evaluation is inefficient, the inefficiency score of the DMU will have to be the same
in both models. The AP model is formulated as follows:
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s
(3.4) maXZurym
r=1
s.t. Zuryrj - Zviwi]’ <0 (] = 17"'7”)7 J 7& k
r=1 i=1

m
E ViZik = 1
=1

Ur,V; 2, r=1...,81=1,...,m

3.4. True efficiency ratio. The true efficiency ratio is calculated as the ratio of the
sum of the weighted outputs to the sum of the weighted inputs [9]. This ratio, which was
used by Thanassoulis [16], Lam [9], etc., will be examined in detail with applications in
the next section.

4. Applications

4.1. Example. In this study, we applied the suggested CCRCOR model and other
methods to the data set (Table 2) which was used by Sherman [15], Thanassoulis [16]
and Lam [9], etc. The efficiencies of 15 hypothetical hospitals were evaluated by the data
set. The set of data is composed from 3 outputs (severe patients (SP), regular patients
(RP), the number of teaching units (TU)) and an input (total cost). The equality (4.1),
which is established for the set of data in Sherman [15], has been used in the studies by
many authors (Thanassoulis[16] and Lam [9], etc.):

(4.1)  Total Cost = 0.5TU + 133.68RP + 174.74SP

Table 2. 15 hospitals with a single input and three outputs
(Sherman [15] and Thanassoulis [16])

Hospital | TU (u1) | RP (u2) SP (us) Cost (v1)
Output 1 | Output 2 | Output 3 | Input 1 (3$)
1 50 3 2 775.5
2 50 2 3 816.6
3 100 2 3 841.6
4 100 3 2 800.5
5 50 3 3 950.3
6 100 2 5 1191.05
7 50 10 2 1711.3
8 100 3 2 884.75
9 50 2 3 841.6
10 100 10 2 2036.3
11 50 5 3 1362.6
12 100 3 3 1070
13 50 4 5 1491.1
14 50 3 2 898.7
15 100 3 3 1070
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When the set of data in Table 2 is analyzed, the correlation coefficients between many
inputs and outputs are at unexpectedly low levels as seen in Table 3. Significant rela-
tionships between inputs and outputs in a production cluster are expected. The set of
data in Table 2, which was used by Sherman [15], Thanassoulis [16] and Lam [9], should
have been initially analyzed in this respect. Therefore, considering that the results are
obtained with this unsuitable data set, the CCRCOR results (Table 4) are quite good.

Meaningless relationships between inputs and outputs can be seen in Table 2, even
with the naked eye without creating the correlation matrix. Relationships between vari-
ables in a production process should not be contradictory. In the CCRCOR model we
make the assumption that there should be a significant correlation between inputs and
outputs in a production relationship. Nevertheless, the results can be considered quite
good. Instead of the set of data used here, our suggestion is to use real production data
sets or data sets which are produced by simulation with correlations above a certain level
between inputs and outputs. So, we think that working with such data types can allow
more meaningful assessments.

Table 3. The correlation matrix between a single input and three outputs
for 15 hospitals in Example 4.1

Cost TU RP SP

Correlation Cost 1.000 .030 .886 .093
TU .030 1.000 -.056 -.009
RP .886 -.056 1.000 -.338
SP .093 -.009 -.338 1.000

Sig. (1-tailed) Cost .458 .000 .370
TU 458 421 487
RP .000 421 .109
SP .370 487 .109

According to the correlation matrix in Table 3, the relationship between the RP and
the Cost (0.886) is significant. But the relationships between the other variables are not
significant in Table 3. If the model can be explained with only one variable, it is mean-
ingless adding other variables into the model (the equality (4.1)). In regression analysis,
there should be a significant linear correlation between the dependent and independent
variables. In the theory of linear regression, variables which have got insignificant corre-
lations should not be included in the model. So, the data set cannot trusted. Although
this is a hypothetical data set, it must fit roughly with production theory and regres-
sion theory. The relations between the input and output variables of the data set are
meaningless. So, there are low and reverse correlations between the input and output
variables. In order to compare the CCRCOR model with other methods, the analysis
was continued because we were obliged to work with this data set. In Table 4, the first
seven hospitals are found efficient in the evaluation by the true efficiency ratio and the
CCR model. According to the CCRCOR model results, only the fourth DMU is efficient.

In Example 4.1, the true efficiency ratio and the CCR model had the Pearson corre-
lation (Spearman’s rho) equal to 0.682 (0.722) and 0.613 (0.617), respectively; while the
CCRCOR model obtained a good performance with the Pearson correlation and Spear-
man’s rho equal to 0.778 and 0.796, respectively (see Table 4). According to the Super
Efficiency model, Pearson correlation and Spearman’s rho are equal to 0.613 and 0.553,
respectively. In Table 5, while the number of zero weights which are obtained by the CCR
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model is 11; the number of zero weights which are obtained by the CCRCOR model is
4. Thus, the number of zero weights using the CCRCOR model is greatly reduced.

Table 4. The assessments with a single input for 15 hospitals in Example 4.1

Hospital |CCRCE Trueeffc CCR Supereffc CCRCOR
1 0.82389 (4)*|1(4) 1(4) 1.00002 (6) 0.53217 (7)
2 0.81143 (6) |1 (4) 1(4) 1.00400 (4)  |0.51717 (8)
3 0.89121(2) |1(4) 1(4) 1.10585 (3) 0.96394 (2)
4 0.96735 (1) |1 (4) 1(4) 1.10525(7)  |1(1)
5 0.80335(7) |1(4) 1(4) 1.00099 (5) 0.44559 (11)
6 0.83881(3) |1(4) 1(4) 1.14969 (2) 0.69918 (6)
7 0.78576 (11) |1 (4) 1(4) 1.18991 (1)  |0.24578 (15)
8 0.82103 (5) |0.90480 (12) |0.90478 (13) |0.90478 (13) [0.90478 (3)
9 0.78733 (10)|0.97027 (8) 0.97030 (9) 0.97030 (9) 0.50181 (9)
10 0.70337 (15) | 0.85266 (15) |0.92334 (10) |0.92334 (10) [0.39700 (12)
11 0.70833 (14) |0.89360 (13) |0.89516 (14) |0.89516 (14) [0.31242 (13)
12 0.79528 (9) |0.91145 (10.5)|0.91144 (11.5)|0.91144 (11.5) |0.75818 (4.5)
13 0.74668 (12)|0.96132 (9) 0.97253 (8) 0.97253 (8) 0.29916 (14)
14 0.71102 (13)|0.86294 (14) |0.86291 (15) |0.86291 (15) [0.45921 (10)
15 0.79528 (8) |0.91146 (10.5)|0.91144 (11.5)|0.91144 (11.5) |0.75818 (4.5)
Pearson 1 0.682 0.613 0.613 0.778
correlation** (p=0.003) (p=0.008) (p=0.008) (p=0.000)
Spearman’s |1 0.722 0.617 0.553 0.796
rho (p=0.001) (p=0.007) (p=0.016) (p=0.000)

*Efficiency ranking of 15 hospitals
**Pearson correlation and Spearman’s rho with CCRCE

The true efficiency ratio seen in Table 4 is calculated with the following formulation:

?True efficiency ratio = estimated cost (for Equality (4.1)) / actual cost”.

Table 5. The weights obtained with the CCRCOR model and the CCR

model for a single input

CCRCOR Weights
Hospital TU (u1) RP (u2) SP (u3) Cost (v1)
Output 1 Output 2 Output 3 Input 1

1 0.010001 0.001455 0.013866 0.001289
2 0.009498 0.001382 0.013168 0.001225
3 0.009256 0 0.012776 0.001188
4 0.009700 0 0.013400 0.001200
5 0.008161 0.001188 0.011315 0.001052
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Table 5. Continued

CCRCOR Weights
Hospital TU (u1) RP (u2) SP (us) Cost (v1)
Output 1 Output 2 Output 3 Input 1
6 0.006540 0 0.009028 0.000840
7 0.004532 0.000660 0.006283 0.000584
8 0.008766 0.001276 0.012153 0.001130
9 0.009216 0.001341 0.012776 0.001188
10 0.003809 0.000554 0.005281 0.000491
11 0.005692 0.000828 0.007891 0.000734
12 0.007280 0 0.010049 0.000935
13 0.005202 0.000757 0.007211 0.000671
14 0.008630 0.001256 0.011965 0.001113
15 0.007249 0.001055 0.010049 0.000935
CCR Weights
Hospital TU (u1) RP (u2) SP (us) Cost (v1)
Output 1 Output 2 Output 3 Input 1

1 0.000645 0.172386 0.225302 0.001289
2 0.000609 0.163707 0.214038 0.001225
3 0.008535 0 0.048836 0.001188
4 0.001000 0 0 0.001200
5 0.000516 0.140692 0.184047 0.001052
6 0 0 0.200000 0.000840
7 0.001974 0.090131 0 0.000584
8 0.009048 0 0 0.001130
9 0.000591 0.158844 0.207680 0.001188
10 0.001659 0.075746 0 0.000491
11 0 0.09887 0.133602 0.000734
12 0.000467 0.124928 0.163309 0.000935
13 0 0.089665 0.122773 0.000671
14 0.000556 0.148755 0.194416 0.001113
15 0.000467 0.124928 0.163309 0.000935

4.2. Example. The original data set given in Table 2 has only one input.
usually used to evaluate multiple inputs and outputs. So, the cost, which is an input
of the original data set, is classified into two elements using Equation (4.2) defined by

Lam([9]:
(4.2)

Total Cost = 25Cost1 + 50Cost2

DEA is
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The original total cost of each hospital remains the same after this classification. Equation
(4.3) is obtained from Equation (4.1) and Equation (4.2):

(4.3)  25Costl 4+ 50Cost2 = 0.5TU + 133.68RP + 174.74SP

The set of data given in Table 6 was obtained in this way by Lam [9]. The set of data
with 15 DMUs consists from two inputs (Cost 1, Cost 2) and three outputs (TU, RP and
SP). DMUs 1,2,3,4,5,6,7,8,10,12, 13 were found efficient by the CCR model. By the
True Efficiency, the first 7 hospitals were efficient. DMUs 3,4, 8,12 were efficient with
the CCRCOR model.

Table 6. The inputs and outputs of 15 hospitals with two inputs in Example 4.2 (Lam
[9], page 139 (for the first 15 DMUs))

Hospital | TU (u1) RP (u2) SP (u3) Cost 1 (v1) | Cost 2 (v2)
Output 1 Output 2 Output 3 Input 1 Input 2

1 50 3 2 11 10.01
2 50 2 3 22 5.332
3 100 2 3 16 8.832
4 100 3 2 15 8.51
5 50 3 3 27 5.506
6 100 2 5 31 8.321
7 50 10 2 28 20.226
8 100 3 2 23 6.195
9 50 2 3 19 7.332
10 100 10 2 30 25.726
11 50 5 3 21 16.752
12 100 3 3 13 14.9
13 50 4 5 24 17.822
14 50 3 2 16 9.974
15 100 3 3 25 8.9

Table 7. The correlation matrix between two inputs and three outputs for
the 15 hospitals in Example 4.2

Cost 1 Cost 2 TU RP SP

Correlation Cost 1 1.000 278 .071 462 .344
Cost 2 | .278 1.000 .001 .866 -.061
TU .071 .001 1.000 | -.056 -.009
RP 462 .866 -.056 1.000 | -.338

Sp .344 -.061 -.009 -.338 1.000
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Table 7 (continued)

Cost 1 Cost 2 TU RP SP
Sig. (1-tailed) | Cost 1 .158 401 | .041 | .105
Cost 2 | .158 499 | .000 | .415
TU 401 1499 421 A87
RP .041 .000 421 .109
SP 105 415 487 .109

According to Table 7, while the relations between Cost 1 and Cost 2 with RP are mean-
ingful, the relations between other variables are meaningless. The correlations between
the inputs (Cost 1, Cost 2) and only the RP are significant for the data sets in Example
4.2. In this case, it is meaningless to include other variables in the model.

Table 8. The assessments for 15 hospitals with two inputs in Example 4.2

Hospital CCRCE Trueeffc CCR Supereffc CCRCOR
1 0.86716 (4)* | 1 (4) 1(6) 1.05632 (8) | 0.79243 (7)
2 0.78701 (8) |1(4) 1(6) 1.00369 (11) | 0.71984 (8)
3 0.95809 (1) | 1(4) 1(6) 1.14963 (7) | 1(2.5)
4 0.95626 (2) | 1(4) 1(6) 1.21556 (5) | 1(2.5)
5 0.75579 (11) | 1 (4) 1(6) 1.25612 (3) | 0.67927 (11)
6 0.84688 (5) | 1(4) 1(6) 1.17977 (6) | 0.87941 (5)
7 0.73608 (13) | 1 (4) 1(6) 1.24278 (4) | 0.55803 (15)
8 0.81996 (6) | 0.90480 (12) 1(6) 1.37369 (1) | 1(2.5)
9 0.78325(9) | 0.97027 (8) 0.97737 (12) | 0.97737 (12) | 0.68688 (10)
10 0.73998 (12) | 0.85266 (15) 1(6) 1.02353 (9) | 0.58939 (13)
11 0.71063 (15) | 0.89360 (13) | 0.90179 (14) | 0.90179 (14) | 0.57246 (14)
12 0.91301 (3) |0.91145 (10.5) | 1(6) 1.30769 (2) | 1(2.5)
13 0.76139 (10) | 0.96132 (9) 1(6) 1.03779 (10) | 0.69476 (9)
14 0.71575 (14) | 0.86294 (14) | 0.86293 (15) | 0.86293 (15) | 0.62806 (12)
15 0.80372 (7) | 0.91145 (10.5) | 0.92573 (13) | 0.92573 (13) | 0.84861 (6)
Pearson 1 0.426 0.472 0.480 0.896
correlation** (p=0.057) (p=0.038) (p=0.035) (p=0.000)
Spearman’s | 1 0.475 0.500 0.475 0.933
rho (p=0.037) (p=0.029) (p=0.037) (p=0.000)

Efficiency ranking of 15 hospital

**Pearson correlation and Spearman’s rho with CCRCE

In Table 8, the maximum correlation is between the CCRCOR and CCRCE models.
There the Pearson’s correlation (Spearman’s rho) is equal to 0.896 (0.933) between the
CCRCOR and the CCRCE models. In this case, the CCRCOR model is the closest to
the CCRCE model in efficiency ranking. Thus, the CCRCOR model is suggested as an
alternative to the CCRCE model.
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Table 9. The weights obtained from the CCRCOR and the CCR with two

inputs in Example 4.2

CCRCOR Weights
Hospital TU (u1) RP (u2) SP (u3) Cost 1 (v1) | Cost 2 (v2)
Output 1 Output 2 Output 3 Input 1 Input 2
1 0.00658 0.04120 0.16988 0.05844 0.03568
2 0.00794 0.05354 0.07191 0.02474 0.08548
3 0.00667 0.03296 0.08889 0.04675 0.02854
4 0.00707 0.03491 0.09416 0.04951 0.03023
5 0.00700 0.04703 0.06316 0.02173 0.07508
6 0.00627 0.00692 0.04771 0.01641 0.05904
7 0.00283 0.03284 0.04410 0.01517 0.02844
8 0.00723 0.04874 0.06546 0.02252 0.07782
9 0.00552 0.05238 0.10211 0.03513 0.04536
10 0.00313 0.02767 0 0.01278 0.02396
11 0.00361 0.02258 0.09309 0.03202 0.01955
12 0.00646 0.03191 0.08606 0.04525 0.02763
13 0.00178 0 0.12112 0.04167 0
14 0.00544 0.05163 0.10066 0.03463 0.04471
15 0.00650 0.01425 0.05214 0.01794 0.06198
CCR Weights
Hospital TU (u1) RP (u2) SP (us) Cost 1 (v1) | Cost 2 (v2)
Output 1 Output 2 Output 3 | Input 1 Input 2

1 0.00343 0.19271 0,12524 0.05688 0.03740
2 0.00061 0.16372 0.21401 0.03061 0.06124
3 0.00829 0 0.05692 0.04910 0.02428
4 0.01000 0 0 0.05661 0.01772
5 0.00053 0.14069 0.18388 0.02631 0.05263
6 0.00042 0.11221 0.14671 0.02099 0.04197
7 0.00143 0.08929 0.01786 0.03571 0
8 0.00905 0 0.04758 0.02252 0.07782
9 0 0.15418 0.22301 0.03057 0.05717
10 0.00905 0 0.04758 0.02252 0.07782
11 0 0.09840 0.13660 0.01883 0.03610
12 0.00049 0.09789 0.21902 0.03730 0.03457
13 0 0 0.20000 0.03341 0.01112
14 0.00056 0.14875 0.19443 0.02782 0.05564
15 0.00200 0.11251 0.12925 0.01794 0.06198
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According to Table 9, while the number of zero weights obtained by the CCR model
is 10, the number of zero weights obtained by the CCRCOR is 3. So, the number of
zero weights found by the CCRCOR decreased remarkably. In addition, the value of the
relationship between the CCRCE model and the True efficiency is calculated as 0.475
(see Table 8). The results which are obtained from the CCRCOR model which takes
into account the correlations between input and output variables should be regarded as
satisfactory.

5. Conclusion

We recommend a new model (the CCRCOR) which adds to the CCR model by taking
as weight constraints the relations among the variables given by the correlation coeffi-
cients. In the DEA literature, authors engaged in weight balancing have worked without
taking into account the relationships between input and output variables. In previous
studies, the correlations between the variables were excluded from consideration prior to
the analysis. For this reason, variables which have a meaningless or minimal relation-
ship, or which are related in the opposite direction, have participated in the analysis
unbeknown to the authors. This situation causes unreasonable results. Therefore, in this
paper we have created the CCRCOR model with regulations in the CCR at the level
of relationships between input and output variables. The CCRCOR, which is an objec-
tive model, does not require prior knowledge or value judgments, unlike other weight
restriction methods. The CCRCE model can calculate different efficiency scores because
of alternative solutions. CCRCOR reduces the chance of finding an alternative solution
because it restricts the set of weights according to the cross efficiency evaluation method.
But, as with other methods of weight restriction, sometimes an optimal solution in CCR-
COR may not be available. If the optimal solution does not exist, the weight restrictions
should be relaxed. In addition, the CCRCOR model takes account the relationships be-
tween variables. So, the CCRCOR model eliminates the problem of weight flexibility in
the CCR model. Also, the CCRCOR model produces a smaller number of zero weights
compared to the CCR model.

Though the data sets used in the applications presented in the two examples in the
previous section are not trustworthy, the CCRCOR model gave quite good results. Also,
the similarity in the ranking between the CCRCE model and the CCRCOR model is
striking. If it had been used with a more realistic data set, or an artificial data set
derived from simulation taking into account the relationships between variables, instead
of these data sets frequently used in the literature (Thanassoulis [16] and Lam [9]), the
results could have been even more reliable.
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