SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH THE DERIVATIVE OPERATOR

A. L. Pathak^{*}, S. B. Joshi^{†‡}, Preeti Dwivedi[§] and R. Agarwal^{*}

Received 31:07:2010 : Accepted 24:08:2011

Abstract

In the present paper, we introduce a new subclass of harmonic functions in the unit disc U by using the Derivative operator. Also, we obtain coefficient conditions, convolution conditions, convex combinations, extreme points and some other properties.

Keywords: Harmonic, Univalent functions, Derivative operator. 2000 AMS Classification: 30 C 45, 31 A 05.

1. Introduction

A continuous function f = u + iv is a complex-valued harmonic function in a complex domain C if both u and v are real harmonic in C. In any simply connected domain $D \subset C$, we can write $f = h + \overline{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that |h'(z)| > |g'(z)| in D, see [4].

In 1984, Clunie and Sheil-Small [4] investigated the class S_H and studied some sufficient bounds. Since then, there have been several papers published related to S_H and its subclasses. In fact by introducing new subclasses Sheil-Small [13], Silverman [14], Silverman and Silvia [15], Jahangiri [6] and Ahuja [1] presented a systematic and unified study of harmonic univalent functions. Furthermore we refer to Duren [5], Ponnusamy [9] and references therein for basic results on the subject.

^{*}Department of Mathematics, Brahmanand College, The Mall, Kanpur-208004, (U.P.), India. E-mail: (A.L. Pathak) alpathak@rediffmail.com alpathak.bnd@gmail.com (R. Agarwal) ritesh.840@ rediffmail.com

 $^{^\}dagger Department of Mathematics, Walchand College of Engineering, Sangli-416415, (Maharashtra), India. E-mail: joshisb@hotmail.com$

[‡]Corresponding Author.

[§]Department of Physics, V.S.S.D. College, Kanpur-208002, (U.P.), India. E-mail: priti_vdwivedi@ yahoo.com

Denote by S_H , the class of functions $f = h + \overline{g}$ that are harmonic, univalent and sense-preserving in the unit disk $U = \{z : |z| < 1\}$ with normalization $f(0) = h(0) = f_z(0) - 1 = 0$. Then for $f = h + \overline{g} \in S_H$, we may express the analytic functions h and g as

(1.1)
$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k, \ g(z) = \sum_{k=1}^{\infty} b_k z^k, \ |b_1| < 1.$$

Observe that S_H reduces to S, the class of normalized univalent functions, if the coanalytic part of f is zero. Also, denote by S_H^* the subclass of S_H consisting of functions f that map U onto a starlike domain.

For $f = h + \overline{g}$ given by (1.1), Al-Shaqsi and Darus [3] introduced the operator D_{λ}^{n} as:

(1.2)
$$D^n_{\lambda}f(z) = D^n_{\lambda}h(z) + (-1)^n \overline{D^n_{\lambda}g(z)}, \ n, \lambda \in N_0 = N \cup \{0\}, \ z \in U$$

where
$$D_{\lambda}^{n}h(z) = z + \sum_{k=2}^{\infty} k^{n}C(\lambda,k)a_{k}z^{k}$$
, $D_{\lambda}^{n}g(z) = \sum_{k=1}^{\infty} k^{n}C(\lambda,k)b_{k}z^{k}$ and $C(\lambda,k) = \binom{k+\lambda-1}{\lambda}$.

Recently Rosy *et al.* [10] defined the subclass $G_H(\gamma) \subset S_H$ consisting of harmonic univalent functions f(z) satisfying the condition

$$\operatorname{Re}\left\{(1+e^{i\alpha})\frac{zf'(z)}{f(z)}-e^{i\alpha}\right\} \ge \gamma, \ 0 \le \gamma < 1, \ \alpha \in R.$$

They proved that if $f = h + \overline{g}$ is given by (1.1) and if

(1.3)
$$\sum_{n=1}^{\infty} \left[\frac{(2n-1-\gamma)}{(1-\gamma)} |a_n| + \frac{(2n+1+\gamma)}{(1-\gamma)} |b_n| \right] \le 2, \ 0 \le \gamma < 1,$$

then f is in $G_H(\gamma)$.

This condition is proved to be also necessary by Rosy et al. if h and g are of the form

(1.4)
$$h(z) = z - \sum_{n=2}^{\infty} |a_n| z^n, \ g(z) = \sum_{n=1}^{\infty} |b_n| z^n$$

Motivated by this aforementioned work, now we introduce the class $G_H(n, \lambda, \alpha, \rho)$ as the subclass of functions of the form (1.1) that satisfy the following condition

(1.5) Re
$$\left\{ (1 + \rho e^{ir}) \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} - \rho e^{ir} \right\} > \alpha, \ 0 \le \alpha < 1, \ r \in R, \ \rho \ge 0,$$

where $D_{\lambda}^{n} f(z)$ is defined by (1.2).

Let $\overline{G}_H(n, \lambda, \alpha, \rho)$ denote that the subclasses of $G_H(n, \lambda, \alpha, \rho)$ which consists of harmonic functions $f_n = h + \overline{g}_n$ such that h and g_n are of the form

(1.6)
$$h(z) = z - \sum_{k=2}^{\infty} |a_k| z^k, \ g_n(z) = (-1)^n \sum_{k=1}^{\infty} |b_k| z^k.$$

It is clear that the class $G_H(n, \lambda, \alpha, \rho)$ includes a variety of well-known subclasses of S_H , such as,

(i) $G_H(0,0,\alpha,0) \equiv S_H^*(\alpha)$, Jahangiri [6],

(ii) $G_H(0, 1, \alpha, 0) \equiv HK(\alpha)$, Jahangiri [6],

(iii) $\overline{G}_H(n,0,\alpha,0) \equiv M\overline{H}(n,0,\alpha)$, Jahangiri *et al.* [7],

- (iv) $\overline{G}_H(0,\lambda,\alpha,0) \equiv M_{\overline{H}}(0,\lambda,\alpha)$, Murugusundaramoorthy and Vijya [8],
- (v) $\overline{G}_H(n,\lambda,\alpha,0) \equiv M_{\overline{H}}(n,\lambda,\alpha)$, Al-Shaqsi and Darus [2],
- (vi) $\overline{G}_H(0, 1, \gamma, 1) \equiv \overline{G}_H(\gamma)$, Rosy *et al.* [10].

In this paper, we will give sufficient condition for functions $f = h + \overline{g}$, where h and g are given by (1.1), to be in the class $G_H(n, \lambda, \alpha, \rho)$ and it is shown that this coefficient condition is also necessary for functions in the class $\overline{G}_H(n, \lambda, \alpha, \rho)$. Also, we obtain distortion theorems and characterize the extreme points and convolution conditions for functions in $\overline{G}_H(n, \lambda, \alpha, \rho)$.

Closure theorems and an application of neighborhoods are also obtained.

2. Coefficient bound

We begin with a sufficient coefficient condition for functions in $G_H(n, \lambda, \alpha, \rho)$.

2.1. Theorem. Let $f = h + \overline{g}$ be given by (2.1). If

(2.1)
$$\sum_{k=1}^{\infty} \left[\left\{ k(1+\rho) - (\alpha+\rho) \right\} |a_k| + \left\{ k(1+\rho) + (\alpha+\rho) \right\} |b_k| \right] \\ \times k^n C(\lambda,k) \le 2(1-\alpha),$$

where $a_1 = 1$, $n, \lambda \in N_0, C(\lambda, k) = \binom{k+\lambda-1}{\lambda}$, $\rho \geq 0$ and $0 \leq \alpha < 1$, then f is sense-preserving, harmonic univalent in U and $f \in G_H(n, \lambda, \alpha, \rho)$.

Proof. If $z_1 \neq z_2$, then

(2.2)

$$\begin{aligned} \left| \frac{f(z_1) - f(z_2)}{h(z_1) - h(z_2)} \right| &\geq 1 - \left| \frac{g(z_1) - g(z_2)}{h(z_1) - h(z_2)} \right| \\ &= 1 - \left| \frac{\sum_{k=1}^{\infty} b_k (z_1^k - z_2^k)}{(z_1 - z_2) + \sum_{k=2}^{\infty} a_k (z_1^k - z_2^k)} \right| \\ &> 1 - \frac{\sum_{k=1}^{\infty} k |b_k|}{1 - \sum_{k=2}^{\infty} k |a_k|} \\ &\geq 1 - \frac{\sum_{k=1}^{\infty} \frac{[k(1 + \rho) + (\alpha + \rho)]k^n C(\lambda, k)|b_k|}{1 - \alpha}}{1 - \sum_{k=2}^{\infty} \frac{[k(1 + \rho) - (\alpha + \rho)]k^n C(\lambda, k)|a_k|}{1 - \alpha}}{1 - \alpha} \\ &\geq 0, \end{aligned}$$

which proves univalence. Note that f is sense-preserving in U. This is because

$$|h'(z)| \ge 1 - \sum_{k=2}^{\infty} k|a_k||z|^{k-1}$$

$$> 1 - \sum_{k=2}^{\infty} \frac{\{k(1+\rho) - (\alpha+\rho)\}k^n C(\lambda,k)|a_k|}{1-\alpha}$$

$$(2.3) \ge \sum_{k=1}^{\infty} \frac{\{k(1+\rho) + (\alpha+\rho)\}k^n C(\lambda,k)|b_k|}{1-\alpha}$$

$$> \sum_{k=1}^{\infty} \frac{\{k(1+\rho) + (\alpha+\rho)\}k^n C(\lambda,k)|b_k||z|^{k-1}}{1-\alpha}$$

$$\ge \sum_{k=1}^{\infty} k|b_k||z|^{k-1} \ge |g'(z)|.$$

Using the fact that ${\rm Re}w>\alpha$ if and only if $|1-\alpha+w|\geq |1+\alpha-w|$ it suffices to show that

(2.4)
$$|(1 - \alpha) + (1 + \rho e^{ir}) \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} - \rho e^{ir}| \\ - |(1 + \alpha) - (1 + \rho e^{ir}) \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} + \rho e^{ir}| \ge 0.$$

Substituting the value of $D_{\lambda}^{n} f(z)$ in (2.4) yields, by (2.1),

$$\begin{aligned} |(1 - \alpha - \rho e^{ir})D_{\lambda}^{n}f(z) + (1 + \rho e^{ir})D_{\lambda}^{n+1}f(z)| \\ &- |-(1 + \alpha + \rho e^{ir})D_{\lambda}^{n}f(z) + (1 + \rho e^{ir})D_{\lambda}^{n+1}f(z)| \\ &= |(2 - \alpha)z + \sum_{k=2}^{\infty} \{k(1 + \rho e^{ir}) + (1 - \alpha - \rho e^{ir})\}k^{n}C(\lambda,k) \\ &\times a_{k}z^{k} - (-1)^{n}\sum_{k=1}^{\infty} \{k(1 + \rho e^{ir}) - (1 - \alpha - \rho e^{ir})\}k^{n}C(\lambda,k)b_{k}z^{k}| \\ &- |-\alpha z + \sum_{k=2}^{\infty} \{k(1 + \rho e^{ir}) - (1 + \alpha + \rho e^{ir})\}k^{n}C(\lambda,k)a_{k}z^{k} \\ &- (-1)^{n}\sum_{k=1}^{\infty} \{k(1 + \rho e^{ir}) + (1 + \alpha + \rho e^{ir})\}k^{n}C(\lambda,k)b_{k}z^{k} \\ &\geq 2(1 - \alpha)|z| \bigg[1 - \sum_{k=2}^{\infty} \frac{\{k(1 + \rho) - (\alpha + \rho)\}k^{n}C(\lambda,k)|a_{k}||z|^{k}}{1 - \alpha} \bigg] \\ &\geq 2(1 - \alpha)\bigg[1 - \sum_{k=2}^{\infty} \frac{\{k(1 + \rho) - (\alpha + \rho)\}k^{n}C(\lambda,k)|b_{k}||z|^{k}}{1 - \alpha} \bigg] \\ &\geq 2(1 - \alpha)\bigg[1 - \sum_{k=2}^{\infty} \frac{\{k(1 + \rho) - (\alpha + \rho)\}k^{n}C(\lambda,k)|a_{k}|}{1 - \alpha}\bigg]. \end{aligned}$$

$$(2.5)$$

This last expressions is non-negative by (2.1), and so the proof is complete.

The harmonic function

(2.6)
$$f(z) = z + \sum_{k=2}^{\infty} \frac{(1-\alpha)}{\{k(1+\rho) - (\alpha+\rho)\}k^n C(\lambda,k)} x_k z^k + \sum_{k=1}^{\infty} \frac{(1-\alpha)}{\{k(1+\rho) + (\alpha+\rho)\}k^n C(\lambda,k)} \overline{y_k z^k}$$

where $n, \lambda \in N_0$, $o \leq \rho \leq 1$ and $\sum_{k=2}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = 1$ shows that the coefficient bound given by (2.1) is sharp. The functions of the form (2.6) are in $G_H(n, \lambda, \alpha, \rho)$ because

(2.7)
$$\sum_{k=1}^{\infty} \left[\frac{k(1+\rho) - (\alpha+\rho)}{1-\alpha} |a_k| + \frac{k(1+\rho) + (\alpha+\rho)}{1-\alpha} |b_k| \right] k^n C(\lambda, k) = 1 + \sum_{k=2}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = 2.$$

In the following theorem, it is shown that the condition (2.1) is also necessary for functions $f_n = h + \overline{g}_n$, where h and, g_n are of the form (1.6).

2.2. Theorem. Let $f_n = h + \overline{g}_n$ be given by (1.6). Then $f_n \in \overline{G}_H(n, \lambda, \alpha, \rho)$ if and only if

(2.8)
$$\sum_{k=1}^{\infty} [\{k(1+\rho) - (\alpha+\rho)\}|a_k| + \{k(1+\rho) + (\alpha+\rho)\}|b_k|]k^n C(\lambda,k) \le 2(1-\alpha)$$

where $a_1 = 1, \ n, \lambda \in N_0, \ C(\lambda, k) = \binom{k+\lambda-1}{\lambda}, \rho \ge 0, 0 \le \alpha < 1.$

Proof. Since $\overline{G}_H(n, \lambda, \alpha, \rho) \subset G_H(n, \lambda, \alpha, \rho)$ we only need to prove the "only if" part of Theorem 2.2. To this end, for functions f_n of the form (1.6), we notice that the condition (1.5) is equivalent to

$$\operatorname{Re}\left\{(1+\rho e^{ir})\frac{D_{\lambda}^{n+1}f(z)}{D_{\lambda}^{n}f(z)}-(\rho e^{ir}+\alpha)\right\}\geq 0$$

$$\operatorname{Re}\frac{\{(1+\rho e^{ir})D_{\lambda}^{n+1}f(z)-(\rho e^{ir}+\alpha)D_{\lambda}^{n}f(z)\}}{D_{\lambda}^{n}f(z)}\geq 0$$

 \Rightarrow

 \implies

$$\operatorname{Re}\left\{\frac{(1+\rho e^{ir})\left(z-\sum_{k=2}^{\infty}k^{n+1}C(\lambda,k)|a_k|z^k+(-1)^{2n+1}\sum_{k=1}^{\infty}k^{n+1}|b_k|C(\lambda,k)\overline{z}^k\right)}{z-\sum_{k=2}^{\infty}k^nC(\lambda,k)|a_k|z^k+(-1)^{2n}\sum_{k=1}^{\infty}k^nC(\lambda,k)|b_k|\overline{z}^k}-\frac{(\rho e^{ir}+\alpha)(z-\sum_{k=2}^{\infty}k^nC(\lambda,k)|a_k|z^k+(-1)^{2n}\sum_{k=1}^{\infty}k^n|b_k|C(\lambda,k)\overline{z}^k)}{z-\sum_{k=2}^{\infty}k^nC(\lambda,k)|a_k|z^k+(-1)^{2n}\sum_{k=1}^{\infty}k^nC(\lambda,k)|b_k|\overline{z}^k}\right\}\geq 0$$

$$\operatorname{Re}\left\{\frac{(1-\alpha)z - \sum_{k=2}^{\infty} k^{n}[k(1+\rho e^{ir}) - (\rho e^{ir} + \alpha)]C(\lambda, k)|a_{k}|z^{k}}{z - \sum_{k=2}^{\infty} k^{n}C(\lambda, k)|a_{k}|z^{k} + (-1)^{2n}\sum_{k=1}^{\infty} k^{n}C(\lambda, k)|b_{k}|\overline{z}^{k}} + \frac{(-1)^{2n+1}\sum_{k=1}^{\infty} k^{n}[k(1+\rho e^{ir}) + (\rho e^{ir} + \alpha)]C(\lambda, k)|b_{k}|\overline{z}^{k}}{z - \sum_{k=2}^{\infty} k^{n}C(\lambda, k)|a_{k}|z^{k} + (-1)^{2n}\sum_{k=1}^{\infty} k^{n}C(\lambda, k)|b_{k}|\overline{z}^{k}}\right\} \ge 0$$

 \Longrightarrow

(2.9)
$$\operatorname{Re}\left\{\frac{(1-\alpha)-\sum_{k=2}^{\infty}k^{n}[k(1+\rho e^{ir})-(\rho e^{ir}+\alpha)]C(\lambda,k)|a_{k}|z^{k-1}}{1-\sum_{k=2}^{\infty}k^{n}C(\lambda,k)|a_{k}|z^{k-1}+\frac{\overline{z}}{z}(-1)^{2n}\sum_{k=1}^{\infty}k^{n}C(\lambda,k)|b_{k}|\overline{z}^{k-1}} -\frac{\frac{\overline{z}}{z}(-1)^{2n}\sum_{k=1}^{\infty}k^{n}[k(1+\rho e^{ir})+(\rho e^{ir}+\alpha)]C(\lambda,k)|b_{k}|\overline{z}^{k-1}}{1-\sum_{k=2}^{\infty}k^{n}C(\lambda,k)|a_{k}|z^{k-1}+\frac{\overline{z}}{z}(-1)^{2n}\sum_{k=1}^{\infty}k^{n}C(\lambda,k)|b_{k}|\overline{z}^{k-1}}\right\} \geq 0$$

The above condition (2.9) must hold for all values of z on the positive real axes, where, $0 \le |z| = \gamma < 1$, we must have

$$\operatorname{Re}\left\{\frac{(1-\alpha)-\sum_{k=2}^{\infty}k^{n}(k-\alpha)C(\lambda,k)|a_{k}|\gamma^{k-1}}{1-\sum_{k=2}^{\infty}k^{n}C(\lambda,k)|a_{k}|\gamma^{k-1}+(-1)^{2n}\sum_{k=1}^{\infty}k^{n}C(\lambda,k)|b_{k}|\gamma^{k-1}} - \frac{(-1)^{2n}\sum_{k=1}^{\infty}k^{n}(k+\alpha)C(\lambda,k)|b_{k}|\gamma^{k-1}-\rho e^{ir}\sum_{k=2}^{\infty}k^{n}(k-1)C(\lambda,k)|a_{k}|\gamma^{k-1}}{1-\sum_{k=2}^{\infty}k^{n}C(\lambda,k)|a_{k}|\gamma^{k-1}+(-1)^{2n}\sum_{k=1}^{\infty}k^{n}C(\lambda,k)|b_{k}|\gamma^{k-1}} - \frac{(-1)^{2n}\rho e^{ir}\sum_{k=1}^{\infty}k^{n}(k+1)C(\lambda,k)|b_{k}|\gamma^{k-1}}{1-\sum_{k=2}^{\infty}k^{n}C(\lambda,k)|a_{k}|\gamma^{k-1}+(-1)^{2n}\sum_{k=1}^{\infty}k^{n}C(\lambda,k)|b_{k}|\gamma^{k-1}}\right\} \ge 0.$$

 \implies

Since $\operatorname{Re}(-e^{ir}) \ge -|e^{ir}| = -1$, the above inequality reduce to

(2.10)
$$\frac{(1-\alpha) - \sum_{k=2}^{\infty} k^n \{ (k(1+\rho) - (\rho+\alpha)) \} C(\lambda,k) |a_k| \gamma^{k-1}}{1 - \sum_{k=2}^{\infty} k^n C(\lambda,k) |a_k| \gamma^{k-1} + \sum_{k=1}^{\infty} k^n C(\lambda,k) |b_k| \gamma^{k-1}} - \frac{\sum_{k=1}^{\infty} k^n \{ (k(1+\rho) + (\rho+\alpha)) \} C(\lambda,k) |b_k| \gamma^{k-1}}{1 - \sum_{k=2}^{\infty} k^n C(\lambda,k) |a_k| \gamma^{k-1} + \sum_{k=1}^{\infty} k^n C(\lambda,k) |b_k| \gamma^{k-1}} \ge 0.$$

If the condition (2.8) does not hold, then the numerator in (2.10) is negative for γ sufficiently close to 1. Hence there exists a $z_0 = \gamma_0$ in (0,1) for which the quotient in (2.10) is negative. This contradicts the condition for $f_n \in \overline{G}_H(n, \lambda, \alpha, \rho)$ and so the proof is complete.

3. Distortion bounds

In this section, we will obtain distortion bounds for functions in $\overline{G}_H(n, \lambda, \alpha, \rho)$.

3.1. Theorem. Let $f_n \in \overline{G}_H(n, \lambda, \alpha, \rho)$. Then for $|z| = \gamma < 1$, we have

$$|f_n(z)| \le (1+|b_1|)\gamma + \frac{(1-\alpha)}{2^n [2(1+\rho) - (\rho+\alpha)](\lambda+1)} \left[1 - \frac{1+2\rho+\alpha}{1-\alpha}|b_1|\right]\gamma^2.$$
$$|f_n(z)| \ge (1-|b_1|)\gamma - \frac{(1-\alpha)}{2^n [2(1+\rho) - (\rho+\alpha)](\lambda+1)} \left[1 - \frac{1+2\rho+\alpha}{1-\alpha}|b_1|\right]\gamma^2.$$

Proof. We only prove the left-hand inequality. The proof for the right-hand inequality is similar and is thus omitted. Let $f_n \in \overline{G}_H(n, \lambda, \alpha, \rho)$. Taking the absolute value of f_n , we obtain

$$\leq (1+|b_{1}|)\gamma + \frac{1-\alpha}{(2(1+\rho)-(\rho+\alpha))2^{n}(\lambda+1)} \\ \times \sum_{k=2}^{\infty} \left[\frac{(k(1+\rho)-(\rho+\alpha))k^{n}C(\lambda,k)}{1-\alpha} |a_{k}| \right. \\ \left. + \frac{(k(1+\rho)+(\rho+\alpha))k^{n}C(\lambda,k)}{1-\alpha} |b_{k}| \right] \gamma^{2} \\ \leq (1+|b_{1}|)\gamma \\ \left. + \frac{1-\alpha}{(2(1+\rho)-(\rho+\alpha))2^{n}(\lambda+1)} \left[1 - \frac{((1+\rho)+(\rho+\alpha))}{1-\alpha} |b_{1}| \right] \gamma^{2} \\ \leq (1+|b_{1}|)\gamma \\ \left. + \frac{1-\alpha}{(2(1+\rho)-(\rho+\alpha))2^{n}(\lambda+1)} \left[1 - \frac{1+2\rho+\alpha}{1-\alpha} |b_{1}| \right] \gamma^{2}.$$

The functions

$$f(z) = z + |b_1|\overline{z} + \frac{1}{2^n(\lambda+1)} \left[\frac{1-\alpha}{2(1+\rho) - (\rho+\alpha)} - \frac{1+2\rho+\alpha}{2(1+\rho) - (\rho+\alpha)} |b_1| \right] \overline{z}^2,$$

$$f(z) = (1-|b_1|)z - \frac{1}{2^n(\lambda+1)} \left[\frac{1-\alpha}{2(1+\rho) - (\rho+\alpha)} - \frac{1+2\rho+\alpha}{2(1+\rho) - (\rho+\alpha)} |b_1| \right] z^2$$

for $|b_1| \leq \frac{1-\alpha}{1+2\rho+\alpha}$ show that the bounds given in Theorem 3.1 are sharp.

The following covering result follows from the left-hand inequality in Theorem 3.1.

3.2. Corollary. If the function $f_n = h + \overline{g}_n$, where h and g given by (1.4) are in $\overline{G}_H(n,\lambda,\alpha,\rho)$, then

(3.1)
$$\begin{cases} w: |w| < \frac{(2^n(\lambda+1)(\rho+2) - 1 - (2^n(\lambda+1) - 1)\alpha)}{2^n(\lambda+1)(2(1+\rho) - (\rho+\alpha))} \\ - \frac{2^n(\lambda+1)(\rho+2) - (2\rho+1) - (2^n(\lambda+1) + 1)\alpha|b_1|}{2^n(\lambda+1)(2(1+\rho) - (\rho+\alpha))} \end{cases} \subset f_n(U) \square$$

4. Convolution, convex combinations and extreme points

In this section, we show the class $\overline{G}_H(n, \lambda, \alpha, \rho)$ is invariant under convolution and convex combination.

For harmonic functions

$$f_n(z) = z - \sum_{k=2}^{\infty} a_k z^k + (-1)^n \sum_{k=1}^{\infty} b_k \overline{z}^k$$

and

$$F_n(z) = z - \sum_{k=2}^{\infty} A_k z^k + (-1)^n \sum_{k=1}^{\infty} B_k \overline{z}^k,$$

the convolution of f_n and F_n is given by

(4.1)
$$(f_n * F_n)(z) = f_n(z) * F_n(z) = z - \sum_{k=2}^{\infty} a_k A_k z^k + (-1)^n \sum_{k=1}^{\infty} b_k B_k \overline{z}^k.$$

4.1. Theorem. For $0 \leq \beta \leq \alpha < 1$, let $f_n \in \overline{G}_H(n, \lambda, \alpha, \rho)$ and $F_n \in \overline{G}_H(n, \lambda, \beta, \rho)$. Then $f_n * F_n \in \overline{G}_H(n, \lambda, \alpha, \rho) \subset \overline{G}_H(n, \lambda, \beta, \rho)$.

Proof. We wish to show that the coefficient of $f_n * F_n$ satisfies the required condition given in Theorem 2.2. For $F_n \in \overline{G}_H(n,\lambda,\beta,\rho)$, we note that $|A_k| \leq 1$ and $|B_k| \leq 1$. Now, for the convolution function $f_n * F_n$, we obtain

$$\sum_{k=2}^{\infty} \frac{\{k(1+\rho) - (\beta+\rho)\}k^{n}C(\lambda,k)}{1-\beta} |a_{k}||A_{k}| + \sum_{k=1}^{\infty} \frac{\{k(1+\rho) + (\beta+\rho)\}k^{n}C(\lambda,k)}{1-\beta} |b_{k}||B_{k}| \leq \sum_{k=2}^{\infty} \frac{\{k(1+\rho) - (\beta+\rho)\}k^{n}C(\lambda,k)}{1-\beta} |a_{k}| + \sum_{k=1}^{\infty} \frac{\{k(1+\rho) + (\beta+\rho)\}k^{n}C(\lambda,k)}{1-\beta} |b_{k}| \leq \sum_{k=2}^{\infty} \frac{\{k(1+\rho) - (\alpha+\rho)\}k^{n}C(\lambda,k)}{1-\alpha} |a_{k}| + \sum_{k=1}^{\infty} \frac{\{k(1+\rho) + (\alpha+\rho)\}k^{n}C(\lambda,k)}{1-\alpha} |b_{k}|$$

Since $0 \leq \beta \leq \alpha < 1$ and $f_n \in \overline{G}_H(n,\lambda,\alpha,\rho)$, then $f_n * F_n \in \overline{G}_H(n,\lambda,\alpha,\rho) \subset \overline{G}_H(n,\lambda,\beta,\rho)$.

We now examine convex combinations of $\overline{G}_H(n, \lambda, \alpha, \rho)$.

Let the functions $f_{n_j}(z)$ be defined, for j = 1, 2, ..., m, by

(4.2)
$$f_{n_j}(z) = z - \sum_{k=2}^{\infty} |a_{k,j}| z^k + (-1)^n \sum_{k=1}^{\infty} |b_{k,j}| \overline{z}^k$$

4.2. Theorem. Let the functions $f_{n_j}(z)$ defined by (4.2) be in the class $\overline{G}_H(n, \lambda, \alpha, \rho)$ for every j = 1, 2, ..., m. Then the functions $t_j(z)$ defined by

(4.3)
$$t_j(z) = \sum_{j=1}^m c_j f_{n_j}(z), \ 0 \le c_j \le 1,$$

 $\leq 1.$

are also in the class $\overline{G}_H(n,\lambda,\alpha,\rho)$, where $\sum_{j=1}^m c_j = 1$.

Proof. According to the definition of t_j , we can write

$$t_j(z) = z - \sum_{k=2}^{\infty} \left(\sum_{j=1}^m c_j |a_{k,j}| \right) z^k + (-1)^n \sum_{k=1}^{\infty} \left(\sum_{j=1}^m c_j |b_{n,j}| \right) \overline{z}^k.$$

Further, since $f_{n_j}(z)$ are in $\overline{G}_H(n,\lambda,\alpha,\rho)$ for every $j=1,2,\ldots,m$, then

$$\sum_{k=1}^{\infty} \left\{ \left[(k(1+\rho) - (\alpha+\rho)) \left(\sum_{j=1}^{m} c_j |a_{k,j}| \right) + (k(1+\rho) + (\alpha+\rho)) \left(\sum_{j=1}^{m} c_j |b_{k,j}| \right) \right] k^n C(\lambda,k) \right\}$$

=
$$\sum_{j=1}^{m} c_j \left(\sum_{k=1}^{\infty} [(k(1+\rho) - (\alpha+\rho)) |a_{n,j}| + (k(1+\rho) + (\alpha+\rho)) |b_{n,j}|] k^n C(\lambda,k) \right)$$

$$\leq \sum_{j=1}^{m} c_j 2(1-\alpha) \leq 2(1-\alpha).$$

Hence Theorem 4.2 follows.

4.3. Corollary. The class $\overline{G}_H(n, \lambda, \alpha, \rho)$ is closed under convex linear combinations.

Proof. Let the functions $f_{n_j}(z)(j = 1, 2..., m)$ defined by (4.2) be in the class $\overline{G}_H(n, \lambda, \alpha, \rho)$. Then the function $\Psi(z)$ defined by

(4.4)
$$\Psi(z) = \mu f_{n_j}(z) + (1-\mu) f_{n_j}(z), \ 0 \le \mu \le 1$$

is in the class $\overline{G}_H(n, \lambda, \alpha, \rho)$. Also, by taking $m = 2, t_1 = \mu$ and $t_2 = 1 - \mu$ in Theorem 4.1.

Next we determine the extreme points of closed convex hulls of $\overline{G}_H(n, \lambda, \alpha, \rho)$, denoted by cloo $\overline{G}_H(n, \lambda, \alpha, \rho)$.

4.4. Theorem. Let f_n be given by (1.6). Then $f_n \in \overline{G}_H(n, \lambda, \alpha, \rho)$ if and only if

$$f_n(z) = \sum_{k=1}^{\infty} (X_k h_k(z) + Y_k g_{n_k}(z)),$$

where

$$h_1(z) = z, \ h_k(z) = z - \left(\frac{1-\alpha}{(k(1+\rho) - (\alpha+\rho))k^n C(\lambda,k)}\right) z^k, \ k = 2, 3...,$$
$$g_{n_k}(z) = z + (-1)^n \left(\frac{1-\alpha}{(k(1+\rho) + (\alpha+\rho))k^n C(\lambda,k)}\right) \overline{z}^k, \ k = 1, 2, 3...$$

and $\sum_{k=1}^{\infty} (X_k + Y_k) = 1$, $X_k \ge 0$, $Y_k \ge 0$. In particular, the extreme points of $\overline{G}_H(n, \lambda, \alpha, \rho)$ are $\{h_k\}$ and $\{g_{n_k}\}$.

Proof. For the function f_n of the form (4.7), we have

$$f_n(z) = \sum_{k=1}^{\infty} (X_k h_k(z) + Y_k g_{n_k}(z))$$

= $\sum_{k=1}^{\infty} (X_k + Y_k) z - \sum_{k=2}^{\infty} \frac{1 - \alpha}{(k(1+\rho) - (\alpha+\rho))k^n C(\lambda, k)} X_k z^k$
+ $(-1)^n \sum_{k=1}^{\infty} \frac{1 - \alpha}{(k(1+\rho) + (\alpha+\rho))k^n C(\lambda, k)} Y_k \overline{z}^k$

Then

(4.5)
$$\sum_{k=2}^{\infty} \frac{(k(1+\rho) - (\alpha+\rho))k^n C(\lambda,k)}{1-\alpha} |a_k| + \sum_{k=1}^{\infty} \frac{(k(1+\rho) + (\alpha+\rho))k^n C(\lambda,k)}{1-\alpha} |b_k| = \sum_{k=2}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k = 1 - X_1 \le 1,$$

and so $f_n \in \operatorname{clco} \overline{G}_H(n, \lambda, \alpha, \rho)$.

Conversely, suppose that $f_n \in \operatorname{clco} \overline{G}_H(n,\lambda,\alpha,\rho)$. Setting

(4.6)
$$X_{k} = \frac{(k(1+\rho) - (\alpha+\rho))k^{n}C(\lambda,k)}{1-\alpha} |a_{k}|, \ 0 \le X_{k} \le 1 \ k = 2, 3, \dots,$$
$$Y_{k} = \frac{(k(1+\rho) + (\alpha+\rho))k^{n}C(\lambda,k)}{1-\alpha} |b_{k}|, \ 0 \le Y_{k} \le 1 \ k = 1, 2, 3, \dots,$$

and
$$X_{1} = 1 - \sum_{k=2}^{\infty} X_{k} + \sum_{k=1}^{\infty} Y_{k}$$
 then f_{n} can be written as

$$f_{n}(z) = z - \sum_{k=2}^{\infty} |a_{k}|z^{k} + (-1)^{n} \sum_{k=1}^{\infty} |b_{k}|\overline{z}^{k}$$

$$= z - \sum_{k=2}^{\infty} \frac{(1-\alpha)X_{k}}{(k(1+\rho) - (\alpha+\rho))k^{n}C(\lambda,k)}z^{k}$$

$$+ (-1)^{n} \sum_{k=1}^{\infty} \frac{(1-\alpha)Y_{k}}{(k(1+\rho) + (\alpha+\rho))k^{n}C(\lambda,k)}\overline{z}^{k}$$

$$= z + \sum_{k=2}^{\infty} (h_{k}(z) - z)X_{k} + \sum_{k=1}^{\infty} (g_{n_{k}}(z) - z)Y_{k}$$

$$= \sum_{k=2}^{\infty} h_{k}(z)X_{k} + \sum_{k=1}^{\infty} g_{n_{k}}(z)Y_{k} + z\left(1 - \sum_{k=2}^{\infty} X_{k} - \sum_{k=1}^{\infty} Y_{k}\right)$$
(4.7)
$$= \sum_{k=1}^{\infty} (h_{k}(z)X_{k} + g_{n_{k}}(z)Y_{k}), \text{ as required.}$$

Using Corollary 4.3 we have $\operatorname{clco} \overline{G}_H(n, \lambda, \alpha, \rho) = \overline{G}_H(n, \lambda, \alpha, \rho)$. Then the statement of Theorem 4.4 is true for $f \in \overline{G}_H(n, \lambda, \alpha, \rho)$.

Acknowledgement

The authors are thankful to Prof. K. K. Dixit, Department of Mathematics, Gwalior Engineering College, Gwalior (M.P.), India for giving us his fruitful suggestions and comments.

References

- Ahuja, O.P. Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math. 6 (4), Art. 122, 1–18, 2005.
- [2] Al-Shaqsi, K. and Darus, M. On harmonic functions defined by derivative operator, Journal of Inequalities and Applications, Art. ID 263413, 1–10, 2008.

- [3] Al-Shaqsi, K. and Darus, M. An operator defined by convolution involving the polylogarithms functions, Journal of Math. and Stat. 4 (1), 46–50, 2008.
- [4] Clunie, J. and Sheil-Small, T. Harmonic univalent functions, Ann. Acad. Sci. Fen. Series AI Math. 9 (3), 3–25, 1984.
- [5] Duren, P. Harmonic Mappings in the Plane (Cambridge Univ. Press, Cambridge, UK, 2004).
- [6] Jahangiri, J. M. Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235, 470–477, 1999.
- [7] Jahangiri, J. M., Murugusundaramoorthy, G. and Vijaya, K. Salagean-type harmonic univalent functions, Southwest J. Pure Appl. Math. 2, 77–82, 2002.
- [8] Murugusundaramoorthy, G. and Vijaya, K. On certain classes of harmonic univalent functions involving Ruscheweyh derivatives, Bull. Cal. Math. Soc. 96 (2), 99–108, 2004.
- [9] Ponnusamy, S. and Rasila, A. Planar harmonic mappings, RMS Mathematics Newsletter 17 (2) (2007), 40–57, 2007.
- [10] Rosy, T., Stephen, B. A., Subramanian, K. G. and Jahangiri, J. M. Goodman-Ronning-type harmonic univalent functions, Kyungpook Math. J. 41 (1), 45–54, 2001.
- [11] Ruscheweyh, S. Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81, 521–528, 1981.
- [12] Ruscheweyh, S. Convolutions in Geometric Function Theory (Les Presses de I Universite de Montreal, 1982).
- [13] Sheil-Small, T. Constants for planar harmonic mappings, J. London Math. Soc. 2 (42), 237–248, 1990.
- [14] Silverman, H. Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220, 283–289, 1998.
- [15] Silverman, H. and Silvia, E. M. Subclasses of harmonic univalent functions, New Zealand J. Math. 28, 275–284, 1999.
- [16] Srivastava, H. M. and Owa, S. Current Topics in Analytic Function Theory (World Scientific Publishing Company, Singapore, 1992).