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Abstract

In this paper, we suggest and analyze a new method for solving nonlin-
ear complementarity problems (NCP) where the underlying function F
is co-coercive. The theme of this paper is twofold. First, we consider
the logarithmic-quadratic proximal (LQP) method which was intro-
duced by Auslender, Teboulle and Ben-Tiba (A logarithmic-quadratic

proximal method for variational inequalities, Comput. Optim. Appl.
12, 31–40, 1999). Next, we propose a new modified LQP method by us-
ing a new direction with a new step size αk. We show that the method is
globally convergent. Some preliminary computational results are given
to illustrate the efficiency of the proposed method.
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1. Introduction

The nonlinear complementarity problem (NCP) is to determine a vector x ∈ R
n such

that

(1.1) x ≥ 0, F (x) ≥ 0 and xTF (x) = 0,

where F is a nonlinear mapping from R
n into itself. Complementarity problems were

introduced by Lemke [19] and Cottle Dantzig [11] in the early 1960’s. These problems
are being used as a powerful tool to study a wide class of problems with applications
in industry, engineering, optimization, mathematical and physical sciences in a unified
framework. It has been shown that the linear and nonlinear problems in operations can
be formulated as complementarity problems, which can be solved more effectively. There
are several methods for solving complementarity problems, which can be divided into
two categories namely direct and indirect (iterative) methods. Direct methods are those
based on the process of pivoting, which are mainly due to Lemke [19] and Cottle and
Dantzig [11]. The practicality of direct methods is restricted mainly due to the problem
size limitations in computer implementations. Also, these methods cannot be extended
for nonlinear complementarity problems. These facts and reasons have stimulated much
investigation of alternative approaches for solving nonlinear complementarity problems.
In this paper, we are only concerned with the iterative approach to proximal point meth-
ods. These iterative methods have emerged in the last decades as a powerful technique for
solving nonlinear complementarity problems effectively. These methods are user friendly
and can be implemented easily. It is well-known that complementarity problems can
be formulated as a variational inclusion involving the sum of two monotone operators.
This equivalent formulation has played an important part in suggesting and developing
proximal point algorithms for solving complementarity problems. In this paper, we use
this equivalent formulation in conjunction with suitable quadratic function to suggest a
new proximal point method, which uses a new direction with a new suitable step size.
We show that this new proximal point method is globally convergent under suitable con-
ditions. Some preliminary computational results are given to illustrate the efficiency and
implementation of this new method. Comparison with other methods shows that this
new proximal point methods outperform the other methods.

2. Preliminaries

In this section, we summarize some preliminary results which are useful in the following
analysis. First, we give some basic properties of the projection mapping.

2.1. Lemma. Let PRn
+
(·) denote the projection of R

n onto R
n
+. Then, we have the

following inequalities.

(v − PRn
+
(v))T (u− PRn

+
(v)) ≤ 0, ∀ u ∈ R

n
+, ∀ v ∈ R

n;(2.1)

‖PRn
+
(v)− PRn

+
(u)‖ ≤ ‖v − u‖, ∀ u, v ∈ R

n;(2.2)

‖PRn
+
(v)− u‖2 ≤ ‖v − u‖2 − ‖v − PRn

+
(v)‖2, ∀ v ∈ R

n, u ∈ R
n
+. �(2.3)

2.2. Definition. The operator F : Rn
+ → R

n is said to be co-coercive if there exists a
constant c > 0 such that

〈F (x)− F (y), x− y〉 ≥ c‖F (x)− F (y)‖2, ∀ x, y ∈ R
n
+.

The following lemma is similar to [3, Lemma 2]. Hence the proof will be omitted.
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2.3. Lemma. [17, 33] For given xk > 0 and q ∈ R
n, let x be the positive solution of the

following equation:

(2.4) q + x− (1− µ)xk − µX2
kx

−1 = 0.

Then for any y ≥ 0 we have

(2.5) 〈y − x, q〉 ≥ 1+µ

2

(

‖x− y‖2 − ‖xk − y‖2
)

+ 1−µ

2
‖xk − x‖2. �

Throughout this paper we assume that F is co-coercive with modulus c > 0 and that
the solution set of (1.1), denoted by Ω∗, is nonempty.

3. The proposed method

In this section, we suggest and analyze the new modified LQP method for solving
nonlinear complementarity problems 1.1. At the k-th iteration, the LQP method finds
the exact solution for the following system of equations:

(3.1) βkF (x) + x− (1− µ)xk − µX2
kx

−1 = 0.

We now present a new LQP method for solving NCP. For given xk > 0 and βk > 0, each
iteration of the proposed method consists of two steps, the first step offers a predictor
x̃k and the second step produces the new iterate xk+1.

Prediction step: Find an approximate solution x̃k of (3.1), called the predictor, such
that

(3.2) 0 ≈ βkF (x̃k) + x̃k − (1− µ)xk − µX2
k(x̃

k)−1 = ξk := βk(F (x̃k)− F (xk)),

and ξk which satisfies

(3.3) ‖ξk‖ ≤ η‖xk − x̃k‖, 0 < η < 1.

Correction step: For 0 < ρ < 1, the new iterate xk+1(αk) is defined by

(3.4) xk+1(αk) = ρxk + (1− ρ)PRn
+

[

xk − αkd(x
k, βk)

]

,

where

(3.5) d(xk, βk) := (xk − x̃k) +
βk

1 + µ
F (x̃k)

and αk is the step length that will be specified later.

3.1. Remark. Note that that the direction d(xk, βk) is different from that used in
[17, 33].

3.2. Remark. (3.3) implies that

(3.6) |(xk − x̃k)T ξk| ≤ η‖xk − x̃k‖2, 0 < η < 1.

3.3. Remark. Equation (3.2) can be written as

(3.7) βkF (xk) + x̃k − (1− µ)xk − µX2
k(x̃

k)−1 = 0,

and the solution of (3.7) can be obtained componentwise by

(3.8) x̃k
j =

(1− µ)xk
j − βkFj(x

k) +
√

[(1− µ)xk
j − βkFj(xk)]2 + 4µ(xk

j )
2

2
.

Moreover for any xk > 0 we have always x̃k > 0.

How to choose values of αk to ensure that xk+1(αk) is closer to the solution set than
xk ? For this purpose, we define

(3.9) Θ(αk) = ‖xk − x∗‖2 − ‖xk+1(αk)− x∗‖2.
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3.4. Theorem. Let x∗ ∈ Ω∗, xk+1(αk) be defined by (3.4). Then we have

Θ(αk) ≥ (1− ρ){2αk(x
k − x̃k)TD(xk, βk)−

2αkµ

1 + µ
‖xk − x̃k‖2 − α2

k‖D(xk, βk)‖
2

+ ‖xk − xk
∗ − αkD(xk, βk)‖

2 + 2αk(x
k
∗ − x∗)T (xk − x̃k)},

where

(3.10) xk
∗ := PRn

+

[

xk − αkd(x
k, βk)

]

and D(xk, βk) := (xk − x̃k) +
1

1 + µ
ξk.

Proof. By setting q = βkF (x̃k) − ξk in (2.4) and y = xk
∗ := PRn

+

[

xk − αkd(x
k, βk)

]

in

(2.5), it follows that

(3.11)

(xk
∗ − x̃k)T

(

1

1 + µ
(ξk − βkF (x̃k))

)

≤
1

2

(

‖xk − xk
∗‖

2 − ‖x̃k − xk
∗‖

2
)

−
1− µ

2(1 + µ)
‖xk − x̃k‖2.

Using the following identity

(3.12) (xk
∗ − x̃k)T (xk − x̃k) =

1

2

(

‖x̃k − xk
∗‖

2 − ‖xk − xk
∗‖

2
)

+
1

2
‖xk − x̃k‖2,

adding (3.11) and (3.12) we then obtain

(xk
∗ − x̃k)T

{

(xk − x̃k) +
1

1 + µ

(

ξk − βkF (x̃k)
)

}

≤
µ

1 + µ
‖xk − x̃k‖2,

which implies

2αk(x
k
∗ − x̃k)T

{

(xk − x̃k)−
βk

1 + µ
F (xk)

}

−
2αkµ

1 + µ
‖xk − x̃k‖2 ≤ 0

and

(3.13) 2αk(x
k
∗ − xk + xk − x̃k)T

{

(xk − x̃k)−
βk

1 + µ
F (xk)

}

−
2αkµ

1 + µ
‖xk − x̃k‖2 ≤ 0.

Since x∗ ∈ Ω∗ ⊂ R
n
+ and xk

∗ = PRn
+

[

xk − αkd(x
k, βk)

]

, it follows from (2.3) that

(3.14) ‖xk
∗ − x∗‖2 ≤ ‖xk − αkd(x

k, βk)− x∗‖2 − ‖xk − αkd(x
k, βk)− xk

∗‖
2.

From (3.4), we get

‖xk+1(αk)− x∗‖2 = ‖ρ(xk − x∗) + (1− ρ)(xk
∗ − x∗)‖2

= ρ2‖xk − x∗‖2 + (1− ρ)2‖xk
∗ − x∗‖2

+ 2ρ(1− ρ)(xk − x∗)T (xk
∗ − x∗).

Using the following identity

2(a+ b)T b = ‖a+ b‖2 − ‖a‖2 + ‖b‖2

for a = xk − xk
∗, b = xk

∗ − x∗ and (3.14), we obtain

‖xk+1(αk)− x∗‖2 = ρ2‖xk − x∗‖2 + (1− ρ)2‖xk
∗ − x∗‖2 + ρ(1− ρ){‖xk − x∗‖2

− ‖xk − xk
∗‖

2 + ‖xk
∗ − x∗‖2}

= ρ‖xk − x∗‖2 + (1− ρ)‖xk
∗ − x∗‖2 − ρ(1− ρ)‖xk − xk

∗‖
2

≤ ρ‖xk − x∗‖2 + (1− ρ)‖xk − αkd(x
k, βk)− x∗‖2

− (1− ρ)‖xk − αkd(x
k, βk)− xk

∗‖
2 − ρ(1− ρ)‖xk − xk

∗‖
2.(3.15)
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Using the definition of Θ(αk) and (3.15), we get

Θ(αk) ≥ (1− ρ2)‖xk − xk
∗‖

2 + 2αk(1− ρ)(xk
∗ − xk)T d(xk, βk)

+ 2αk(1− ρ)(xk − x∗)Td(xk, βk)

≥ (1− ρ)
{

‖xk − xk
∗‖

2 + 2αk(x
k
∗ − xk)Td(xk, βk)

+ 2αk(x
k − x∗)T d(xk, βk)

}

.
(3.16)

From the definition of d(xk, βk) (see 3.5), we have

Θ(αk) ≥ (1− ρ)
{

‖xk − xk
∗‖

2 + 2αk(x
k
∗ − xk)T

(

xk − x̃k +
βk

1 + µ
F (x̃k)

)

+ 2αk(x
k − x∗)T

(

xk − x̃k +
βk

1 + µ
F (x̃k)

)}

= (1− ρ)
{2αkβk

1 + µ
(xk − x∗)TF (x̃k) + ‖xk − xk

∗‖
2

−
2αkβk

1 + µ
(xk − xk

∗)
TF (x̃k) + 2αk(x

k
∗ − x∗)T (xk − x̃k)

}

= (1− ρ)
{2αkβk

1 + µ
(xk − x∗)TF (x̃k) + ‖xk − xk

∗ − αkD(xk, βk)‖
2

+ 2αk(x
k − xk

∗)
TD(xk, βk)− α2

k‖D(xk, βk)‖
2

−
2αkβk

1 + µ
(xk − xk

∗)
TF (x̃k) + 2αk(x

k
∗ − x∗)T (xk − x̃k)

}

= (1− ρ)
{2αkβk

1 + µ
(xk − x∗)TF (x̃k) + ‖xk − xk

∗ − αkD(xk, βk)‖
2

− α2
k‖D(xk, βk)‖

2 + 2αk(x
k − xk

∗)
T
(

xk − x̃k −
βk

1 + µ
F (xk)

)

+ 2αk(x
k
∗ − x∗)T (xk − x̃k)

}

.

(3.17)

Since x̃k ∈ R
n
++ and x∗ is a solution of NCP, using the co-coercivity of F we obtain

(x̃k − x∗)TF (x∗) = (x̃k)TF (x∗) ≥ 0 ⇒ (x̃k − x∗)TF (x̃k) ≥ 0

and consequently

(3.18) (xk − x∗)TF (x̃k) ≥ (xk − x̃k)TF (x̃k).

Applying (3.18) to the first term in the right side of (3.17) and using 0 < ρ < 1, we
obtain

(3.19)

Θ(αk) ≥ (1− ρ)
{2αkβk

1 + µ
(xk − x̃k)TF (x̃k) + ‖xk − xk

∗ − αkD(xk, βk)‖
2

− α2
k‖D(xk, βk)‖

2 + 2αk(x
k − xk

∗)
T
(

xk − x̃k −
βk

1 + µ
F (xk)

)

+ 2αk(x
k
∗ − x∗)T (xk − x̃k)

}

.

Adding (3.13) (multiplied by 1 − ρ) to (3.19) and using the definition of D(xk, βk), we
obtain

(3.20)
Θ(αk) ≥ (1− ρ)

{

2αk(x
k − x̃k)TD(xk, βk)−

2αkµ

1 + µ
‖xk − x̃k‖2 − α2

k‖D(xk, βk)‖
2

+ ‖xk − xk
∗ − αkD(xk, βk)‖

2 + 2αk(x
k
∗ − x∗)T (xk − x̃k)

}

,

and the theorem is proved. �
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3.5. Lemma. Let x∗ ∈ Ω∗ be a solution point. For any xk > 0 we have

(3.21) (xk − x∗)T (xk − x̃k) ≥
1

1 + µ

(

1−
βk

4c

)

‖xk − x̃k‖2.

Proof. Since x∗ is a solution, it follows from (1.1) that

(3.22)
βk

1 + µ
F (x∗)T (x̃k − x∗) ≥ 0.

By setting q = βkF (x̃k) − ξk in (2.4) and y = x∗ in (2.5), it follows from (3.11)–(3.13)
that

(3.23) ((xk − x∗)− (xk − x̃k))T
{

(xk − x̃k)−
βk

1 + µ
F (xk)

}

+
µ

1 + µ
‖xk − x̃k‖2 ≥ 0.

Adding (3.22) and (3.23), we get
{

(xk−x̃k)−
βk

1 + µ
(F (xk)−F (x∗))

}T

{(xk−x∗)−(xk−x̃k)}+
µ

1 + µ
‖xk−x̃k‖2 ≥ 0

and consequently

(3.24)

{

(xk − x∗) +
βk

1 + µ
(F (xk)− F (x∗))

}T

(xk − x̃k)

≥
1

1 + µ
‖xk − x̃k‖2 +

βk

1 + µ
(xk − x∗)T (F (xk)− F (x∗)).

Using the co-coercivity of F and by a simple manipulation, it follows from (3.24) that

(xk − x∗)T (xk − x̃k) ≥
1

1 + µ
{‖xk − x̃k‖2 + βkc‖F (xk)− F (x∗)‖2

− βk(F (xk)− F (x∗))T (xk − x̃k)}

≥
1

1 + µ
{‖xk − x̃k‖2 + ‖

√

βkc(F (xk)− F (x∗))

−
1

2

√

βk

c
(xk − x̃k)‖2 −

βk

4c
‖xk − x̃k‖2}

≥
1

1 + µ

(

1−
βk

4c

)

‖xk − x̃k‖2. �

Now we consider the last two terms on the right-hand side of (3.20). We have

‖xk − xk
∗ − αkD(xk, βk)‖

2 + 2αk(x
k
∗ − x∗)T (xk − x̃k)

= ‖xk − xk
∗ − αkD(xk, βk)‖

2 − 2αk(x
k − xk

∗ − αkD(xk, βk))
T (xk − x̃k)

− 2α2
kD(xk, βk)

T
(xk − x̃k) + 2αk(x

k − x∗)T (xk − x̃k)

≥ 2αk(x
k − x∗)T (xk − x̃k)− 2α2

kD(xk, βk)
T
(xk − x̃k)− α2

k‖x
k − x̃k‖2

≥

(

2αk

1 + µ
(1−

βk

4c
)− α2

k

)

‖xk − x̃k‖2 − 2α2
kD(xk, βk)

T
(xk − x̃k),

where the last inequality follows from (3.21). Then from (3.20), we obtain

(3.25)

Θ(αk) ≥ (1− ρ)

{

2αk(x
k − x̃k)TD(xk, βk)− α2

k

(

‖D(xk, βk)‖
2

+ 2D(xk, βk)
T
(xk − x̃k)

)

+

(

2αk

1 + µ

(

1− µ−
βk

4c

)

− α2
k

)

‖xk − x̃k‖2
}

.
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4. Convergence analysis

In this section, we prove some useful results which will be used in the consequent
analysis, and then investigate the strategy of how to chose the new step size αk. For this
purpose we define,

Φ(αk) := 2αk(x
k−x̃k)TD(xk, βk)−α2

k

(

‖D(xk, βk)‖
2 + 2D(xk, βk)

T
(xk − x̃k)

)

.

Note that Φ(αk) is a quadratic function of αk and it reaches its maximum at

(4.1) α∗

k =
(xk − x̃k)TD(xk, βk)

‖D(xk, βk)‖2 + 2D(xk, βk)
T (xk − x̃k)

and

(4.2) Φ(α∗

k) =
((xk − x̃k)TD(xk, βk))

2

‖D(xk, βk)‖2 + 2D(xk, βk)
T (xk − x̃k)

= α∗

k(x
k − x̃k)TD(xk, βk).

In the next theorem we show that α∗

k and Φ(α∗

k) are lower bounded away from zero,
whenever xk 6= x̃k. This is one of the keys to proving the global convergence results.

4.1. Theorem. For given xk ∈ R
n
++ and βk > 0, let x̃k and ξk satisfy the condition

(3.3). Then we have the following:

(4.3) α∗

k ≥
1

4

and

(4.4) Φ(α∗

k) ≥
1

4

(

1− η

1 + µ

)

‖xk − x̃k‖2.

Proof. It follows from (3.6) and 0 < µ < 1 that

(xk − x̃k)TD(xk, βk) = ‖xk − x̃k‖2 +
1

1 + µ
(xk − x̃k)T ξk

≥
1

1 + µ
‖xk − x̃k‖2 +

1

1 + µ
(xk − x̃k)T ξk

≥

(

1− η

1 + µ

)

‖xk − x̃k‖2.(4.5)

From 0 < µ < 1, 0 < η < 1 and (3.3), we have

(xk − x̃k)TD(xk, βk) = ‖xk − x̃k‖2 +
1

1 + µ
(xk − x̃k)T ξk

=
1

2
‖xk − x̃k‖2 +

1

1 + µ
(xk − x̃k)T ξk

+
1

2
‖xk − x̃k‖2

≥
1

2
‖xk − x̃k‖2 +

1

1 + µ
(xk − x̃k)T ξk

+
1

2(1 + µ)2
‖ξk‖2

=
1

2
‖D(xk, βk)‖

2

and thus

α∗

k =
(xk − x̃k)TD(xk, βk)

‖D(xk, βk)‖2 + 2D(xk, βk)
T (xk − x̃k)

≥
1

4
.

Using (4.2), (4.3) and (4.5) directly we obtain (4.4). �
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Let βk satisfy

0 < βl ≤
∞

inf
k=0

βk ≤
∞

sup
k=0

βk ≤ βu < 4c(1− µ).

We take the new step size as

α∗∗

k = min

{

(1− µ− βk

4c
)

1 + µ
, α∗

k

}

.

For fast convergence, we take a relaxation factor γ ∈ [1, 2) and set the step-size αk in
(3.4) as αk = γα∗∗

k .

If αk = γ
(1−µ−

βk
4c

)

1+µ
, it follows from (3.25) that

(4.6) Θ(αk) ≥ γ(2− γ)(1− ρ)
(1− µ− βu

4c
)2

(1 + µ)2
‖xk − x̃k‖2.

If αk = γα∗

k, it follows from (3.25) and Theorem 4.1 that

Θ(αk) ≥ γα∗

k(1− ρ){2(xk − x̃k)TD(xk, βk)(4.7)

− γα∗

k

(

‖D(xk, βk)‖
2 + 2D(xk, βk)

T
(xk − x̃k)

)

}

≥ γ(2− γ)(1− ρ)α∗

k(x
k − x̃k)TD(xk, βk)

≥ γ(2− γ)(1− ρ)
(1− η)

4(1 + µ)
‖xk − x̃k‖2.(4.8)

Then from Theorem 3.4, (4.6) and (4.7), there is a constant

τ := γ(2− γ)(1− ρ)min

{

(1− µ− βu

4c
)2

(1 + µ)2
,
(1− η)

4(1 + µ)

}

> 0

such that

(4.9) ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − τ‖xk − x̃k‖2 ∀x∗ ∈ Ω∗.

The following result can be proved by arguments similar to those in [17, 33]. Hence the
proof will be omitted.

4.2. Theorem. [5, 17, 33] If inf∞k=0 βk = βl > 0, then the sequence {xk} generated by

the proposed method converges to some x∞ which is a solution of NCP.

The detailed algorithm is as follows.

Step 0. Let β0 = 1, η(:= 0.9) < 1, 0 < ρ < 1, µ = 0.1, γ = 1.9, ǫ = 10−7, k = 0 and
x0 > 0.

Step 1. If ‖min(x, F (x))‖∞ ≤ ǫ, then stop. Otherwise, go to Step 2.

Step 2. (Prediction step)

s := (1− µ)xk − βkF (xk), x̃k
i :=

(

si +
√

(si)2 + 4µ(xk
i )

2
)

/2,

ξk := βk

(

F (x̃k)− F (xk)
)

, r := ‖ξk‖/‖xk − x̃k‖.

while (r > η)

βk := βk ∗ 0.8/r,

s := (1− µ)xk − βkF (xk), x̃k
i :=

(

si +
√

(si)2 + 4µ(xk
i )

2
)

/2,

ξk := βk

(

F (x̃k)− F (xk)
)

, r := ‖ξk‖/‖xk − x̃k‖.

end while
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Step 3. (correction step)

D
(

xk, βk

)

:=
(

xk − x̃k
)

+
1

1 + µ
ξk, d

(

xk, βk

)

:=
(

xk − x̃k
)

+
βk

1 + µ
F
(

x̃k
)

,

α∗

k =
(xk − x̃k)TD(xk, βk)

‖D(xk, βk)‖2 + 2D(xk, βk)
T (xk − x̃k)

, αk = γmin

{

(

1− µ− βk

4c

)

(1 + µ)
, α∗

k

}

,

xk+1 = ρxk + (1− ρ)PRn
+

[

xk − αkd(x
k, βk)

]

,

Step 4.

βk+1 =

{

βk∗0.7
r

, if r ≤ 0.3;

βk, otherwise.

Step 5.

k := k + 1; go to Step 1.

5. Preliminary computational results

In this section, we consider two examples to illustrate the efficiency and performance
of the proposed algorithm.

5.1. Numerical experiments I. We consider the nonlinear complementarity prob-
lems:

(5.1) x ≥ 0, F (x) ≥ 0, xTF (x) = 0,

where

F (x) = D(x) +Mx+ q,

so D(x) and Mx+ q are the nonlinear part and linear part of F (x) respectively.

We form the linear part in the test problems similarly as in Harker and Pang [16]. The
matrix M = ATA+B, where A is an n×n matrix whose entries are randomly generated
in the interval (−5,+5) and a skew-symmetric matrix B is generated in the same way.
The vector q is generated from a uniform distribution in the interval (−500, 500) or
in (−500, 0). In D(x), the nonlinear part of F (x), the components are chosen to be
Dj(x) = dj ∗ arctan(xj), where dj is a random variable in (0, 1). A similar type of
problems was tested in [20] and [31].

In all the tests we take the logarithmic proximal parameter µ = 0.01, ρ = 0.01 and
c = 0.9. All iterations start with x0 = (1, . . . , 1)T and β0 = 1, and are stopped whenever

‖min(xk, F (xk))‖∞ ≤ 10−7.

All the code was written in Matlab, and we compare the proposed method with that
in [33]. The number k of iterations, the number l of evaluations of the mapping F and
the computation time for the problem (5.1) with different dimensions are given in the
following tables.
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Table 1. Numerical results for problem (5.1) with q ∈ (−500, 500)

The proposed method The method in [33]

n k l CPU(Sec.) k l CPU(Sec.)

200 297 651 0.34 395 822 0.42

300 329 707 1.28 435 902 1.61

400 334 724 1.61 446 929 1.99

500 366 797 3.31 487 1012 4.29

700 364 751 5.71 466 968 7.27

1000 338 746 9.57 454 943 11.79

Table 2. Numerical results for problem (5.1) with q ∈ (−500, 0)

The proposed method The method in [33]

n k l CPU(Sec.) k l CPU(Sec.)

200 581 1242 0.67 781 1618 0.86

300 588 1260 2.25 777 1613 2.89

400 767 1594 3.57 998 2068 4.41

500 835 1759 7.24 1076 2229 9.68

700 701 1499 11.28 923 1909 14.52

1000 814 1716 19.91 1056 2187 25.62

Tables 1 and 2 show that the proposed method is more efficient. The numerical results
indicate that the proposed method can save about 21 ∼ 25 percent of the number of
iterations and about 20 ∼ 23 of the amount of computing of the value of the function F .

5.2. Numerical experiments II. In this subsection, we apply the proposed method
to traffic equilibrium problems and present corresponding numerical results.

Consider a network [N,L] of nodes N and directed links L, which consists of a finite
sequence of connecting links with a certain orientation. Let a, b, etc., denote the links,
and let p, q, etc., denote the paths. We let ω denote an origin/destination (O/D) pair of
nodes of the network and Pω the set of all paths connecting the O/D pair ω. Note that
the path-arc incidence matrix and the path-O/D pair incidence matrix, denoted by A
and B, respectively, are determined by the given network and O/D pairs. To see how to
convert a traffic equilibrium problem into a variational inequality, we take into account
the simple example depicted in Figure 1.

Figure 1. An illustrative example of a directed network and the O/D pairs
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For the given example in Figure 1, the path-arc incidence matrix A and the path-O/D
pair incidence matrix B have the following forms:

Link No. 1 2 3 4 5

A =









0 0 1 0 0
1 0 0 0 1
0 0 0 1 0
0 1 0 0 1









,

O/D pair No. ω1 ω2

B =









1 0
1 0
0 1
0 1









.

Let xp represent the traffic flow on path p and fa the link load on link a. Then the
arc-flow vector f is given by

f = ATx.

Let dω denote the amount of traffic between the O/D pair ω, which must satisfy

dω =
∑

p∈Pω

xp.

Thus, the O/D pair-traffic amount vector d is given by

d = BTx.

Let t(f) = {ta, a ∈ L} be the vector of link travel costs, which is a function of the link
flow. A user traveling on path p incurs a (path) travel cost θp. For a given link travel
cost vector t, the path travel cost vector θ is given by

θ = At(f) and thus θ(x) = At(ATx).

Associated with every O/D pair ω, there is a travel disutility λω(d). Since both the path
costs and the travel disutilities are functions of the flow pattern x, the traffic network
equilibrium problem is to seek the path flow pattern x∗ such that

(5.2) x∗ ≥ 0, (x− x∗)TF (x∗) ≥ 0, ∀ x ≥ 0

where

Fp(x) = θp(x)− λω(d(x)), ∀ω, p ∈ Pω,

and thus

F (x) = At(ATx)−Bλ(BTx).

We apply the proposed method to [23, Example 7.5]), which consists of 25 nodes, 37
links and 6 O/D pairs. The network is depicted in Figure 2.

Figure 2. A directed network with 25 nodes and 37 links
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For this example, there are together 55 paths for the 6 given O/D pairs and hence the
dimension of the variable x is 55. Therefore, the path-arc incidence matrix A is a 55×37
matrix and the path-O/D pair incidence matrix B a 55 × 6 matrix. The user cost of
traversing link a is given in Table 3. The disutility function is given by

(5.3) λω(d) = −mωdω + qω ,

and the coefficients mω and qω in the disutility function of different O/D pairs for this
example are given in Table 4.

The test results for problems (5.2) for different ε are reported in Table 5, where k is
the number of iterations and l the number of evaluations of the mapping F . The stopping
criterion is

‖min{x, F (x)}‖∞
‖min{x0, F (x0)}‖∞

≤ ε.

Table 3. The link traversing cost functions ta(f)

t1(f) = 5 · 10−5f4
1 + 5f1 + 2f2 + 500 t20(f) = 3 · 10−5f4

20 + 6f20 + f21 + 300

t2(f) = 3 · 10−5f4
2 + 4f2 + 4f1 + 200 t21(f) = 4 · 10−5f4

21 + 4f21 + f22 + 400

t3(f) = 5 · 10−5f4
3 + 3f3 + f4 + 350 t22(f) = 2 · 10−5f4

22 + 6f22 + f23 + 500

t4(f) = 3 · 10−5f4
4 + 6f4 + 3f5 + 400 t23(f) = 3 · 10−5f4

23 + 9f23 + 2f24 + 350

t5(f) = 6 · 10−5f4
5 + 6f5 + 4f6 + 600 t24(f) = 2 · 10−5f4

24 + 8f24 + f25 + 400

t6(f) = 7f6 + 3f7 + 500 t25(f) = 3 · 10−5f4
25 + 9f25 + 3f26 + 450

t7(f) = 8 · 10−5f4
7 + 8f7 + 2f8 + 400 t26(f) = 6 · 10−5f4

26 + 7f26 + 8f27 + 300

t8(f) = 4 · 10−5f4
8 + 5f8 + 2f9 + 650 t27(f) = 3 · 10−5f4

27 + 8f27 + 3f28 + 500

t9(f) = 10−5f4
9 + 6f9 + 2f10 + 700 t28(f) = 3 · 10−5f4

28 + 7f28 + 650

t10(f) = 4f10 + f12 + 800 t29(f) = 3 · 10−5f4
29 + 3f29 + f30 + 450

t11(f) = 7 · 10−5f4
11 + 7f11 + 4f12 + 650 t30(f) = 4 · 10−5f4

30 + 7f30 + 2f31 + 600

t12(f) = 8f12 + 2f13 + 700 t31(f) = 3 · 10−5f4
31 + 8f31 + f32 + 750

t13(f) = 10−5f4
13 + 7f13 + 3f18 + 600 t32(f) = 6 · 10−5f4

32 + 8f32 + 3f33 + 650

t14(f) = 8f14 + 3f15 + 500 t33(f) = 4 · 10−5f4
33 + 9f33 + 2f31 + 750

t15(f) = 3 · 10−5f4
15 + 9f15 + 2f14 + 200 t34(f) = 6 · 10−5f4

34 + 7f34 + 3f30 + 550

t16(f) = 8f16 + 5f12 + 300 t35(f) = 3 · 10−5f4
35 + 8f35 + 3f32 + 600

t17(f) = 3 · 10−5f4
17 + 7f17 + 2f15 + 450 t36(f) = 2 · 10−5f4

36 + 8f36 + 4f31 + 750

t18(f) = 5f18 + f16 + 300 t37(f) = 6 · 10−5f4
37 + 5f37 + f36 + 350

t19(f) = 8f19 + 3f17 + 600

Table 4. The O/D pairs and the parameters in (5.3)

(O,D) Pair ω (1,20) (1,25) (2,20) (3,25) (1,24) (11,25)

mω 1 6 10 5 7 9

qω 1000 800 2000 6000 8000 7000

|Pω| 10 15 9 6 10 5
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Table 5. Numerical results for different values of ε

Different The proposed method The method in [33]

ε k l CPU(Sec.) k l CPU(Sec.)

10−5 198 439 0.016 401 864 0.109

10−6 262 574 0.031 519 1119 0.141

10−7 330 710 0.015 643 1386 0.141

10−8 393 843 0.017 757 1632 0.156

10−9 455 979 0.031 877 1892 0.204

Table 5 shows that the new method is more flexible and efficient in solving traffic equilib-
rium problem. Moreover, it demonstrates computationally that the new method is more
effective than the method presented in [33] in the sense that the new method needs fewer
iteration and a smaller number of evaluations of F , which clearly illustrate its efficiency.

6. Concluding remarks and outlook

We would like to mention that the ideas and techniques of this paper can be extended
to solve the more general complementarity problem of finding a vector x ∈ R

n such that

g(x) ≥ 0, F (x) ≥ 0 and (g(x))TF (x) = 0.

Here g and F are nonlinear from R
n into itself. This problem was introduced by Noor

[24] in 1988. Note that, for g = I this problem is exactly (1.1). It is now well known
that a class of odd-order and nonsymmetric obstacle can be studied via the general
complementarity problems. See, for example, Noor [25, 27] and the reference therein for
applications, numerical methods and other aspects of general complementarity problems.
In spite of their importance, very few methods have been developed for solving these
problems.

It is an interesting problem to extend the idea and technique of this paper to develop
a proximal point method for solving these general complementarity problems and this is
another direction for future research activities.

In passing, we would like to remark that this problem can be formulated as an equiva-
lent variational inclusion problem under suitable conditions. This equivalent formulation
may stimulate further research in this dynamic field. Interested readers are encouraged
to discover new methods and applications of these complementarity problems in different
areas of pure and applied sciences.
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