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Abstract

Properties of pairs of conjugate connections are stated with a special
view towards the duality of these connections. We express the complex
conjugate connections in terms of the structural and the virtual tensors
from the almost complex geometry. For a pair of almost complex struc-
tures we discuss their mutual recurrence by pointing out that an almost
quaternionic structure is implied. The notion of complex conjugate con-
nections is extended in two directions, one called generalized obtained
by adding a general (1, 2)-tensor field and the other called exponen-

tial since it involves the exponential of the almost complex structure
considered.
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1. Introduction

FixM a smooth, n-dimensional (n = even) manifold for which we denote by C∞ (M)–
the algebra of smooth real functions on M , X (M)–the Lie algebra of vector fields on M ,
T r
s (M)–the C∞ (M)-module of tensor fields of (r, s)-type on M . Usually X,Y, Z, . . . will

be vector fields on M and if T → M is a vector bundle over M , then Γ(T ) denotes the
C∞(M)-module of sections of T ; e.g. Γ(TM) = X(M).

Let C(M) be the set of linear connections on M . Since the difference of two linear
connections is a tensor field of (1, 2)-type, it follows that C(M) is a C∞(M)-affine module
associated to the C∞(M)-linear module T 1

2 (M).

Fix now J an almost complex structure on M , i.e. an endomorphism of the tangent
bundle such that J2 = −IX(M); then the associated linear connections are:
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1.1. Definition. ∇ ∈ C(M) is a J-connection if J is covariant constant with respect to
∇, namely ∇J = 0.

Let CJ (M) be the set of these connections. In order to find this set, let us consider
after [5, p. 105] the maps:

(1.1) ψJ : C(M) → C(M), χJ : T 1
2 (M) → T 1

2 (M)

given by:

(1.2) ψJ (∇) :=
1

2
(∇− J ◦ ∇ ◦ J) , χJ (τ ) :=

1

2
(τ − J ◦ τ ◦ J).

So:

(1.3)







ψJ (∇)XY = 1
2

[

∇XY − J(∇XJY )
]

χJ(X,Y ) = 1
2 [τ (X,Y )− J(τ (X, JY ))] .

Then, ψJ is a C∞(M)-projector on C(M) associated to the C∞(M)-linear projector χJ :

(1.4) ψ2
J = ψJ , χ2

J = χJ , ψJ (∇+ τ ) = ψJ (∇) + χJ (τ ).

It follows that ∇J = 0 means ψJ (∇) = ∇, which gives that CJ(M) = ImψJ . This
determines completely CJ (M). Fix ∇0 arbitrary in C(M) and ∇ in CJ (M). So, ∇ =
ψJ (∇

′) with ∇′ = ∇0 + τ . In conclusion, ∇ = ψJ (∇0)+χJ(τ ); in other words, CJ (M) is
the affine submodule of C(M) passing through the J-connection ψJ (∇0) and having the
direction given by the linear submodule ImχJ of T 1

2 (M).

Since the projector ψJ is our main tool in finding CJ (M), a careful study of it is
necessary. Let us remark a decomposition (of arithmetic mean type) of it [5, p. 106]:

(1.5) ψJ (∇) =
1

2

(

∇+ CJ(∇)
)

with the conjugation map CJ : C(M) → C(M):

(1.6) CJ (∇)X = −J ◦ ∇X ◦ J.

Then the complex conjugate connection CJ (∇) measures how far the connection ∇ is from
being a J-connection and as it is pointed out in [5, p. 105], CJ is the affine symmetry of
the affine module C(M) with respect to the affine submodule CJ (M), made parallel with
the linear submodule kerχJ .

The present paper is devoted to a careful study of this connection CJ(∇), since all
the above computations put in evidence its role in the geometry of J ; see also the first
section of [1] for the meaning of this connection in special complex manifolds. So, the
aim of our study is to obtain several properties of it in both the general case and in
Riemannian geometry. The second section is devoted to this scope and after a general
result connecting ∇ and CJ (∇), we treat two items:

i) The behavior of the complex conjugate connection to a linear change of almost
complex structures,

ii) The use of two tensor fields previously considered in the almost complex geom-
etry.

With respect to i), we arrive at two particular remarkable cases concerning the recurrence
of the given almost complex structures, while for ii), we derive some useful new identities.
Also, for the case i), the skew-symmetry of the given almost complex structures yields an
almost quaternionic structure. Let us point out that a similar study for almost product
geometry is contained in [3].

In the third section we give some generalizations of the results from the first part
by adding an arbitrary tensor field of (1, 2)-type. All generalized complex conjugate
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connections which form a duality with the initial linear connection are determined. The
last section is devoted to the exponential conjugate connection, an object introduced in
correspondence with a similar one from [1].

2. Properties of the complex conjugate connection

In what follows, for simplicity, we will denote by the superscript J the complex con-
jugate connection of ∇:

(2.1) ∇(J) := CJ(∇) = ∇− J ◦ ∇J

and then:

(2.2) ∇
(J)
X Y = ∇XY − J

(

∇XJY − J(∇XY )
)

= −J
(

∇XJY
)

.

The first properties of the complex conjugate connection are stated in the next proposi-
tion:

2.1. Proposition. Let J be an almost complex structure, ∇ a linear connection and

∇(J) the complex conjugate connection of ∇. Then:

(1) ∇(J)J = −∇J; it follows that ∇ ∈ CJ (M) if and only if ∇(J) ∈ CJ(M);

(2) ∇ and ∇(J) are in duality: (∇(J))(J) = ∇;

(3) T
∇(J) = T∇ − J

(

d∇J
)

, where d∇ is the exterior covariant derivative induced by

∇, namely
(

d∇J
)

(X,Y ) :=
(

∇XJ
)

Y −
(

∇Y J
)

X; it follows that for ∇ ∈ CJ (M),

the connections ∇ and ∇(J) have the same torsion;

(4) R
∇(J) (X,Y, Z) = −J

(

R∇(X,Y, JZ)
)

; it follows that ∇ is flat if and only if ∇(J)

is so;

(5) Assume that (M, g, J) is an almost Hermitian manifold i.e. g(JX, JY ) = g(X,Y );

then
(

∇
(J)
X g

)

(JY, JZ) = (∇Xg)(Y,Z). It follows that ∇ is a g-metric connection

if and only if ∇(J) is so.

Proof. 1. Other relations we shall use are:

(2.3) ∇
(J)
X JY = J

(

∇XY
)

, J
(

∇
(J)
X Y

)

= ∇XJY

and then:

(2.4)
(

∇XJ
)

Y = ∇XJY − J
(

∇XY
)

= J
(

∇
(J)
X Y

)

−∇
(J)
X JY = −

(

∇
(J)
X J

)

Y.

2. Although a direct proof can be provided by the formula (1.6), we prefer to give a
proof here, in order to use (2.1):

(

∇(J)
)(J)

= ∇(J) − J ◦ ∇(J)J = ∇− J ◦ ∇J − J ◦ (−∇J) = ∇.

3. A direct computation gives:

T
∇(J) (X,Y ) = ∇

(J)
X Y −∇

(J)
Y X − [X,Y ]

= −J
(

∇XJY
)

+ J
(

∇Y JX
)

− [X,Y ]

= −J
(

∇XJY −∇Y JX
)

+ T∇(X,Y )−∇XY +∇YX

= T∇(X,Y )− J
((

∇XJ
)

Y −
(

∇Y J
)

X
)

.(2.5)



122 A.M. Blaga, M. Crasmareanu

4.

R
∇(J) (X,Y, Z) = ∇

(J)
X ∇

(J)
Y Z −∇

(J)
Y ∇

(J)
X Z −∇

(J)
[X,Y ]Z

= −∇
(J)
X J

(

∇Y JZ
)

+∇
(J)
Y J

(

∇XJZ
)

+ J
(

∇[X,Y ]JZ
)

= −J
(

∇X∇Y JZ
)

+ J
(

∇Y ∇XJZ
)

+ J
(

∇[X,Y ]JZ
)

= −J
(

R∇(X,Y, JZ)
)

.(2.6)

5.
(

∇
(J)
X g

)

(V,W ) = X(g(V,W ))− g
(

∇
(J)
X V,W

)

− g
(

V,∇
(J)
X W

)

= X(g(V,W ))− g
(

− J
(

∇XJV
)

,W
)

− g
(

V,−J
(

∇XJW
))

for any X, V and W ∈ X(M). With V := JY and W := JZ we get:
(

∇
(J)
X g

)

(JY, JZ) = X(g(JY, JZ)) − g
(

J
(

∇XY
)

, JZ
)

− g
(

JY, J
(

∇XZ
))

= X(g(Y,Z))− g
(

∇XY,Z
)

− g
(

Y,∇XZ
)

=
(

∇Xg
)

(Y,Z).(2.7)

The above substitutions hold for Y = −JV and Z = −JW . �

There are some direct consequences of these formulae:

i) If the pair (∇, J) is special i.e.
(

∇XJ
)

Y =
(

∇Y J
)

X (according to [1] or [10,

p. 1003]), then d∇J = 0 and again, the connections ∇ and ∇(J) have the same
torsion. If (M,J,∇) is nearly Kähler, which means

(

∇XJ
)

Y +
(

∇Y J
)

X = 0

(see [10, p. 1003]), then J
(

d∇J
)

= ∇−∇(J).

ii) If ∇ is the Levi-Civita connection of g, then ∇(J) is also metric with respect to
g.

iii) If ∇ is the Levi-Civita connection of g and in addition, ∇ ∈ CJ (M), then

∇(J) = ∇ is the unique symmetric g-metric connection.

More generally, let f ∈ Diff(M) be an automorphism of the G-structure defined by J
i.e. f∗ ◦J = J ◦f∗. If f is an affine transformation for ∇, namely f∗

(

∇XY
)

= ∇f∗Xf∗Y ,

then f is also an affine transformation for ∇(J).

Let us also recall that in Hermitian geometry, various choices of nice connections are
obtained by requiring additional less stringent conditions on the torsion; for example, the
Chern and Bismut connections are discussed in detail in [6]. Two natural generalizations
of the case ∇ ∈ CJ (M) are given in our framework by:

2.2. Proposition. Let ∇ be a symmetric linear connection.

i) Assume that J is ∇-recurrent i.e. ∇J = η⊗ J, where η is a 1-form. Then ∇(J)

is a semi-symmetric connection.

ii) Assume that ∇J = (−η)⊗IX(M). Then ∇(J) is a quarter-symmetric connection.

Proof. Recall that a non-torsionfree linear connection is called:

-semi-symmetric if there exists a 1-form π such that its torsion is, [2]:

T (X,Y ) = π(Y )X − π(X)Y,

-quarter-symmetric if in addition there exists a tensor field F of (1, 1)-type such that, [7]:

T (X,Y ) = π(Y )FX − π(X)FY.

i) We have∇(J) = ∇+η⊗I and from Proposition 2.1 (3) we get T
∇(J) = η⊗I−I⊗η = η∧I .

ii) It follows that ∇(J) = ∇ + η ⊗ J and, as above, we get T
∇(J) = η ⊗ J − J ⊗ η =

η ∧ J . �
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The next subject concerns the behavior of ∇(·) for families of almost complex struc-
tures. Let J1 and J2 be two almost complex structures and consider the pencil of (1, 1)-
tensor fields Jα,β := αJ1 + βJ2, with α and β ∈ R. In order that Jα,β to be an almost
complex structure, there are two necessary conditions:

1) J1 and J2 be skew-commuting structures: J1J2 = −J2J1,
2) (α, β) belongs to the unit circle S1: α2 + β2 = 1.

In fact, 1) above implies that the dimension ofM is 4m and the triple
(

J1, J2, J3 := J1J2
)

is a quaternionic structure on M [8]. Then:

(2.8) ∇

(

Jα,β

)

X Y = α2∇
(J1)
X Y + β2∇

(J2)
X Y − αβ

[

J1(∇XJ2Y ) + J2(∇XJ1Y )
]

and there are two remarkable particular cases:

i) If J1 and J2 are recurrent with respect to ∇ with the same 1-form of recurrence:

∇Ji = η⊗Ji, then the complex conjugate connections coincide ∇(J1) ≡ ∇(J2) =:
∇(J12), and the invariance of ∇(J·):

(2.9) ∇(Jα,β) = ∇(J12);

follows.
ii) Assume that the triple (∇, J1, J2) is a mixed-recurrent structure: ∇Ji = η ⊗ Jj

with i 6= j. Then ∇ is the average of the two complex conjugate connections,

∇ = 1
2

(

∇(J1) +∇(J2)
)

and:

(2.10) ∇(Jα,β) = ∇+
(

α2 − β2
)

η ⊗ J1J2 + 2αβη ⊗ I.

The last subject of this section treats two tensor fields associated with a pair (almost
complex structure, linear connection) in [9]:

1) The structural tensor field:

(2.11) CJ
∇(X,Y ) :=

1

2

[(

∇JXJ
)

Y +
(

∇XJ
)

JY
]

.

2) The virtual tensor field:

(2.12) BJ
∇(X,Y ) :=

1

2

[(

∇JXJ
)

Y −
(

∇XJ
)

JY
]

.

From Proposition 2.1 (1) it follows that both these tensor fields are skew-symmetric
with respect to the complex conjugation of connections:

(2.13) CJ

∇(J) = −CJ
∇, B

J

∇(J) = −BJ
∇.

Also

(2.14) CJ
∇(JX, JY ) = −CJ

∇(X,Y ), BJ
∇(JX, JY ) = BJ

∇(X,Y ).

The importance of these tensor fields for our study is given by the following straightfor-
ward relation:

(2.15) ∇(J) = ∇+CJ
∇ −BJ

∇.

Recall after [4] that two linear connections are called projectively equivalent if there exists
a 1-form τ such that:

(2.16) ∇′ = ∇+ τ ⊗ I + I ⊗ τ.

A straightforward calculation gives that CJ is invariant for projective changes (2.16),
while for BJ we have:

(2.17)
(

BJ
∇′ −BJ

∇

)

(X,Y ) = τ (JY )JX + τ (Y )X.
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Unfortunately, the complex conjugation of connections is not invariant under projective
equivalence since:

(2.18) ∇′(J) = ∇(J) + τ ⊗ I + J ⊗ (−τ ◦ J).

3. Generalized complex conjugate connections

In this section we present a natural generalization of the complex conjugate connection.

3.1. Definition. A generalized complex conjugate connection of ∇ is:

(3.1) ∇(J,C) := ∇(J) +C

with C ∈ T 1
2 (M) arbitrary.

Since the duality ∇ ↔ ∇(J) is one of the main feature of ∇(J), let us search for tensor

fields C such that
(

∇(J,C)
)(J,C)

= ∇. From:

(3.2)
(

∇(J,C)
)(J,C)

X
Y = ∇XY − J(C(X, JY )) + C(X,Y ),

it follows that we are interested in finding solutions C to:

(3.3) J(C(X, JY )) = C(X,Y ).

Let us remark that:

i) C0 = ∇J is a particular solution of (3.3),
ii) if C is a solution, then J ◦ C is again a solution.

So, let us search the duality property for:

(3.4) ∇(J,λ,µ) = ∇(J) + λ∇J + µJ(∇J) = (1− µ)∇(J) + λ∇J

with λ,µ ∈ R.

3.2. Proposition. The duality ∇ ↔ ∇(J,λ,µ) holds only for the pairs (λ, µ) ∈ {(0, 0), (0, 2)}.

Proof. From:
(

∇(J,λ,µ))(J,λ,µ)

X
Y =

[

(1− µ)2 − λ2]∇XY

+ 2λ(1− µ)J
(

∇XY
)

+ 2λ(µ− 1)∇XJY − 2λ2J
(

∇XJY
)

we obtain the system:
{

(1− µ)2 − λ2 = 1,

λ(1− µ) = λ2 = 0,

which has the above solutions.

Let us point out that:
{

∇(J,0,0) = ∇(J),

∇(J,0,2) = −∇(J),

which confirms our result. �

Returning to the general case (3.1), let us present the generalizations of some relations
from Proposition 2.1:

1. ∇(J,C)J = −∇J+C(·, J ·)−J◦C. Then∇ ∈ CJ (M) if and only if∇(J,λ∇J+µJ◦∇J)

∈ CJ (M), with λ and µ arbitrary real numbers;
2. The discussion above;
3. T

∇(J,C) = T∇ − J
(

d∇J
)

+ 2Cskew, where Cskew is the skew-symmetric part of C
i.e. 2Cskew(X,Y ) = C(X,Y )−C(Y,X). So, if C is symmetric and ∇ ∈ CJ (M),

then ∇ and ∇(J,C) have the same torsion;
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4.

R
∇(J,C) (X,Y )Z = −J

(

R∇(X,Y )JZ
)

− C
(

X, J
(

∇Y JZ
))

+ C
(

Y, J
(

∇XJZ
))

−C([X, Y ], Z)− J(∇XJ(C(Y, Z))) + J(∇Y J(C(X,Z)))

+ C(X,C(Y,Z)) −C(Y,C(X,Z)).

3.3. Example. After [10, Theorem 1, p. 1003], the case C = −1
2J(∇J) is involved in

the tt∗-geometry of (M,J).

4. Exponential complex conjugate connections

Following [1] we consider:

4.1. Definition. The exponential conjugate connection of ∇ is:

(4.1) ∇(J,θ) := exp(−θJ) ◦ ∇ ◦ exp(θJ)

where:

(4.2)

{

exp(θJ) = cos θ · I + sin θ · J

exp(−θJ) = cos θ · I − sin θ · J

with θ an arbitrary real number, possible on the 1-dimensional torus S1 = R/Z.

4.2. Remarks. i) Our convention in (4.1) is the reverse of the choice of [1] and this
fact is motivated by the usual conjugation of b ∈ G with respect to the element a of a
group (G, ·) as a−1 · b · a. Also, in [1] the exponential complex conjugate connection is
parametrized by the projective line P 1 = S1/π.

ii) The complex conjugate ∇(J) corresponds to θ = π
2 .

4.3. Proposition.

i) ∇(J,θ) is in duality with ∇ only for θ = k
2π with k an integer.

ii) T
∇(J,θ) = T∇ + exp(−θJ)

(

d∇ exp(θJ)
)

= T∇ − sin θ · exp(−θJ)
(

d∇J
)

.

Proof. i) This is a consequence of:

(

∇(J,θ)
)(J,θ)

= ∇(J,2θ).

ii) A straightforward computation. �

We do not add the relationship between the curvature tensor fields of ∇ and ∇(J,θ)

since it involves very complicated terms.
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[10] Schäfer, L. tt∗-geometry on the tangent bundle of an almost complex manifold, J. Geom.
Phys. 57 (3), 999–1014, 2007.


