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Abstract

In this article, robust versions of some of the frequently used diagnos-
tics are considered to identify outliers instead of the diagnostics based
on the least square method. These diagnostics are Cook’s distance, the
Welsch-Kuh distance and the Hadi measure. A simulation study is per-
formed to compare the performance of the classical diagnostics with the
proposed diagnostics based on robust M estimation to identify outliers.
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1. Introduction

The usual multiple regression models can be defined as

(1) y = Xβ + ε

where X is an (n × p) full rank matrix of known constants, y an (n × 1) vector of
observable responses, β a (p× 1) vector of unknown parameters and ε an (n× 1) vector
of random errors with E(ε) = 0 and V(ε) = σ2In where σ2 is an unknown parameter
and In is the identify matrix of order n. The ordinary least square (OLS) estimator of
β is

(2) β̂
OLS

= (XT
X)−1

X
T
y

and the vector of fitted values is

(3) ŷ = Xβ̂ = Hy
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where

(4) H = X(XT
X)−1

X
T .

The residual vector is denoted by

(5) e = y − ŷ = (In −H)y

and the least square estimate of σ2 is the residual mean square,

(6) σ̂2 =
eTe

n− p
.

The regression coefficients, fitted values, goodness of fit statistics, etc. can be consid-
erably affected by a single data point. Namely, not all data points in a data set have
the same significance in determining estimates, test and other statistics. It is important
that the data analyst should be aware of such kind of points (Ullah and Pasha [16]).
Observations which individually or collectively, unduly influence the fitted regression
equation as compared to other observations are generally called outliers. There are two
kinds of outlier in regression analysis: the X-outliers, classically known as high leverage

points, and the y-outliers. In the literature various diagnostics have been developed to
detect outliers. Since outliers have become part of any serious statistical analysis, there
are numerous articles and books on these diagnostics, for example, Cook [8], Cook and
Weisberg [9], Belsley et al. [4], Welsch and Kuh [17], Andrews and Pregibon [1], Hoaglin
and Welsch [11], Atkinson [2] and Chatterjee and Hadi [6]. Some of the major outlier
diagnostics are Cook’s Distance, the Welsch-Kuh Distance (DFFITS), Modified Cook’s
Distance, the Andrew and Pregibon (APi) measure and the Hadi Measure (H2

i ). How-
ever, Cook’s distance is one of the most often used outlier diagnostics in classical linear
models.

Robust regression is an important tool for analyzing data contaminated with outliers.
It can be used to detect outliers and provides resistant results in the presence of outliers.
In this way, robust methods, which are not easily affected by outliers are put forward to
remedy the effects of outliers on least square estimates. There are many robust methods
in the literature. The M estimator, introduced by Huber [12], is one of them. Although
the M estimator is not robust with respect to leverage points, it is extensively used in
analyzing data for which the contamination is mainly in the y direction (Chen [7]).

Huber’s M estimator minimizes a sum of less rapidly increasing functions of the resid-
uals instead of minimizing a sum of the squares:

(7) Q(β) =

n
∑

i=1

ρ
(ei
σ

)

,

where ei = yi − xT
i β. For the OLS estimate, ρ is the quadratic function. If σ is known,

by taking derivatives with respect to β, β̂r is also a solution of the system of p equations:

(8)
n
∑

i=1

ψ
(ei
σ

)

xij = 0, j = 1, . . . , p,

where ψ = ρ′ is the derivative of ρ with respect to β. The Newton method could be used
to estimate the parameter. When convergence is not achieved due to large residuals,
the Levenberg-Marquardt is utilized. When robust regression is viewed as iteratively
reweighted least squares, the weight from the final iteration may be used to identify
cases for further study; the cases with smaller weights receiving the most attention.
Also, the residuals from a robust fit can be inspected for anomalies in much the same
way as residuals from a least squares fit (Beckman and Cook [3]; Chen [8]; Riazoshams
et al. [15]).
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2. Outliers diagnostics

There are several diagnostics used to identify outliers but we have taken three of the
frequently used influence diagnostics which are given below.

2.1. Cook’s distance (Di). The Cook distance Di (Cook [8]), measures the distance

between the estimates of the regression coefficients with the i-th observation β̂ and with-

out the i-th observation β̂
−i for the metric 1

pσ̂2 (X
TX). So, Di is defined as below

(9) Di =
(β̂ − β̂

−i)
T (XTX)(β̂ − β̂

−i)

σ̂2p
.

Cook suggests that Di be compared to a central F distribution with p and n−p degrees of
freedom. This gives however exaggeratedly high cutoff values. Practically a cutoff value
of 4

n−p
seems more reasonable. Cook’s distance can be expressed as follows in terms of

the studentized residual and the classical leverage indicator

(10) Di =
r2i
k

hii

1− hii

,

where ri is ith internally studentized residual and hii the ith diagonal element of the
hat matrix given in (4). High Di requires large values of both (r2i ) and hii. Thus, for
instance, the Cook distance cannot detect high leverage points standing on the hyper-
plane. Furthermore, like other classical diagnostic measures, it becomes unreliable in the
case of multiple data. It is considered that an observation is an influential observation
when Di exceeds the cut-off point of 4

n−p
(Cook [8]; Rawlings et al. [14]).

2.2. The Welsch-Kuh distance (DFFITS). The impact of the i-th observation on
the i-th predicted value can be measured by scaling the change in prediction at xi when
the i-th observation is omitted, that is,

DFFITSi =
|ŷi − ŷi,−i|
σ̂−i

√
hii

=

∣

∣

∣
x′

i(β̂ − β̂
−i)

∣

∣

∣

σ̂−i

√
hii

(11)

= |r∗i |
√

hii

1− hii

,(12)

where r∗i is the ith externally studentized residual and the hii are the i-th diagonal
elements of the matrix given in (4). Belsley et al. [4] recommend using 2

√

p

n
as a cut-off

point for DFFITS (Chatterjee and Hadi [6]).

2.3. Hadi measure (H2
i ). Hadi’s measure, which is a measure to detect overall po-

tential influence, can be defined as

(13) H2

i =
p

1− hii

d2i
1− d2i

+
hii

1− hii

, i = 1, . . . , n,

where d2i =
e2
i

eT e
is the square of the ith normalized residual and hii is the i-th di-

agonal element of H defined in (4). Hadi’s measure is based on the simple fact that
potentially influential observations are outliers as either X-outliers, y-outliers, or both.

Hadi [10] recommends using “mean(H2
i ) + c

√

Var(H2

i )” as a cut-off point for Hadi’s
measure, where c is an appropriately chosen constant such as 2 or 3. Alternatively,
Hadi [10] recommends to use “median(H2

i ) + cMAD(H2

i )” as a cut off point where
MAD(H2

i ) = median {|Hi −median(Hi)|} /0.674 (Nurunnabi and Nasser [13]).
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Cut-off points should be used with caution. Diagnostic methods are not designed to
be formal tests of a hypothesis. They are designed to detect observations which affects
regression results more than other observations in a data set. Thus, the values of a given
diagnostics should be compared to each other. This can best be done using graphical
displays such as a stem-and-leave display, index plot, or P-R plot (Hadi [10]).

3. Suggested method

As is well known, a large number of diagnostics have been proposed to detect outliers.
The diagnostics which are based on the ordinary least squares estimates are not efficient
and cannot detect correctly swamping and masking effects. In this paper, robust versions
of diagnostics have been proposed to identify the outliers. So, the robust version of Cook’s
Distance, DFFITS and Hadi’s measure is used to detect outliers in the data. We propose

the use of the Huber-M estimator of β instead of β̂, which is the least square estimator,
and the robust scale estimate of σ2 instead of σ̂2 which is the least square estimator in
(6) to obtain a robust Cook’s Distance. The robust version of Cook’s Distance can be
expressed as

(14) RDi =
(β̂r − β̂r,−i)

T (XTX)(β̂r − β̂r,−i)

σ̂2
r p

,

where β̂r is the robust estimation of β and σ̂r the robust scale estimation of σ. In the
same way, a robust DFFITS is obtained by

(15) RDFFITSi =

∣

∣

∣
xT

i (β̂r − β̂r,−i)
∣

∣

∣

σ̂r,−i

√
hii

.

In order to obtain robust version of Hadi’s measure, robust normalized residuals, which
are calculated after a robust fit, are used instead of normalized residuals in (13). Our
robust version of Hadi’s measure can also be expressed as follows:

(16) RH2

i =
p

1− hii

d2ri
1− d2ri

+
hii

1− hii

, i = 1, . . . , n,

where d2ri =
e2ri
eT
r er

and eri is the i-th robust residual.

For the comparison of the classical diagnostics with the robust diagnostics, the cut-
off points for the robust diagnostics are taken as the cut-off points proposed for Hadi’s
measure as mentioned in Section 2.

4. Numerical example

In this section, a set of real data which is referred to as the Scottish Hill Races data

is used to see how well the diagnostic statistics with robust estimator perform for the
regression model. This data has been used many times and here it is taken to compare
against. The data set was collected from 35 Scottish Hill races in 1984. The data presents
the relationship between the record times (in seconds) as the response variable and the
distance raced (in miles) and climb (in feet) as predictors. The model associated with
the data is:

(17) Time = β0 + β1Distance + β2Climb + ε.

The corresponding index plots of the diagnostic measures that are based on the OLS and
Huber- M estimator are given in Figure 1.
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Figure 1. Index plots of diagnostic measures that are based on the OLS and
robust estimates

(a) Cook’s Distance based on OLS (b) Cook’s Distance based on M estimator

(c) DFFITS based on OLS (d) DFFITS based on M estimator

(c) DFFITS based on OLS (d) DFFITS based on M estimator

Examination of the index plots shows that Di , DFFITSi, H
2
i and RH2

i could correctly
identify observations 7, 11 and 18 as outliers, however, RDi and RDFFITSi could cor-
rectly identify observations 7 and 33 as outliers. In addition, RDi and RDFFITSi also
identify observations 31 and 35 as outliers. In addition, a pair-wise comparison of di-
agnostics could be made. Accordingly, the former version of Cook’s distance failed to
detect the observations 31, 33 and 35 as outliers. However, Cook’s distance with plugged-
in robust estimates can do so, but the observation 18 is no longer detected as an outlier.
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In terms of the two DFFITS statistics, the new statistic detected the observations 7,
31, 33 and 35 as outliers, but the former version of this statistic missed out the last 3
observations. The two versions of Hadi’s measure lead to the same conclusion on outlier
detection. For this data, Hadi [10] also identified observations 7, 18 and 33 as outliers
and observation 11 as of high leverage.

The Procedure ROBUSTREG in SAS Version 9 provides code to fit robust regression
and displays outliers and leverage points in robust regression estimates. Hence, the
Scottish Hill Races data is analyzed by the procedure ROBUSTREG to detect outliers
and leverage points in robust estimates for the data. As seen from Table 1, the results
of the procedure substantially improve the results of the proposed robust diagnostics in
Figure 1.

Table 1. The results of the procedure ROBUSTREG

The ROBUSTREG Procedure

Diagnostics

Robust Standardized

Mahalanobis MCD Robust

Obs Distance Distance Leverage Residual Outlier

7 3.6501 7.4596 ∗ 12.0848 ∗
11 4.7416 13.8685 ∗ 0.2658

17 1.3621 4.8308 ∗ -0.1455

18 0.9543 1.3231 13.5073 ∗
31 1.7783 3.6923 ∗ -0.2669

33 2.2051 6.5284 ∗ 5.2469 ∗
35 2.3499 7.4945 ∗ 0.5633

Diagnostics Summary

Observation Type Proportion Cutoff

Outlier 0.0857 3.0000

Leverage 0.1714 2.7162

Table 1 shows that observations 7, 18 and 33 are outliers and that observation 11 has
high leverage. This result confirms the results of the proposed diagnostics.

5. Simulation study

In this section, a simulation study is conducted to compare regression diagnostics with
robust versions of them to reveal outliers. In the simulation study, data having 15 and 45
observations and 3 independent variables such as x1, x2, x3 are generated from a uniform
distribution. The residuals are generated from a normal distribution with mean 0 and
variance σ2 = 1 and σ2 = 10, respectively. These variables are added to a regression
model and in this model, we take the values of the coefficients as (5, 3,

√
6) (Çetin [5]).

In order to see the effects of outliers on the results of the analysis, diagnostics based on
OLS and the robust M estimator are examined in the case of one outlier and two outliers
for e. Outliers are generated in two different ways:

Case A: A value in proportion to the variance is added to the largest value of the
dependent variable.
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Case B: The last observation of the dependent variable has been turned into an outlier
by taking too large a value.

The diagnostics based on the OLS and M estimator are applied to the sets A and
B of data. 500 repetitions have been made and the results are shown in Tables 2 and
3. The values in these tables show the percentage of correctly detected outliers for the
diagnostics.

Table 2. Simulation results for Case A, n = 15 and n = 45

σ2 = 1 σ2 = 10

n = 15 One Outlier Two Outliers One Outlier Two Outliers

Di 100% 99% 100% 100%

DFFITSi 100% 100% 100% 100%

H2

i 99% 60% 98% 78%

RDi 92% 87% 42% 100%

RDFFITSi 100% 97% 70% 100%

RH2

i 100% 100% 100% 100%

n = 45 One Outlier Two Outliers One Outlier Two Outliers

Di 100% 100% 100% 100%

DFFITSi 100% 100% 100% 100%

H2

i 100% 100% 100% 100%

RDi 99% 97% 100% 97%

RDFFITSi 85% 58% 86% 61%

RH2

i 100% 100% 100% 100%

As seen from Table 2, in the case of σ2 = 1, one outlier and n = 15 and 45, diagnostics
based on the OLS and M estimator give similar results. In addition, in the case of σ2 = 1,
two outliers, n = 15, all diagnostics except H2

i can correctly identify outliers, however
in the case of σ2 = 1 and σ2 = 10, two outliers and n = 45, all diagnostics except
RDFFITSi can correctly identify outliers. In the case σ2 = 10, two outliers, n = 15 and
one outlier, n = 45, diagnostics are successful in correctly detecting outliers. However,
in the case of σ2 = 10, one outlier and n = 15, RDi could correctly identify 42% of the
outliers.

Table 3. Simulation results for Case B, n = 15 and n = 45

σ2 = 1 σ2 = 10

n=15 One Outlier Two Outliers One Outlier Two Outliers

Di 100% 100% 100% 100%

DFFITSi 100% 100% 100% 100%

H2
i 100% 52% 100% 61%

RDi 100% 98% 100% 99%

RDFFITSi 100% 99% 100% 100%

RH2

i 100% 100% 100% 100%
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Table 3. Continued

σ2 = 1 σ2 = 10

n=45 One Outlier Two Outliers One Outlier Two Outliers

Di 100% 100% 100% 100%

DFFITSi 100% 100% 100% 100%

H2

i 100% 50% 100% 50%

RDi 93% 97% 93% 96%

RDFFITSi 46% 55% 43% 50%

RH2

i 100% 100% 100% 100%

As seen from Table 3, in the case σ2 = 1 and σ2 = 10, one outlier and n = 15, all
diagnostics exactly identify outliers. However, in the case of σ2 = 1 and σ2 = 10, two
outliers and n = 15, all diagnostics except H2

i can correctly identify outliers. In the
case of n = 45, RDFFITSi fails to identify outliers. In addition, in the case σ2 = 1 and
σ2 = 10, two outliers and n = 45, H2

i fails to identify outliers.

6. Conclusion

In this paper, robust versions of Cook’s distance (Di), Welsch-Kuh distance (DFFITS)
and the Hadi measure (H2

i ) are proposed to detect outliers. As seen from results of the
Scottish Hill Races data, the diagnostics based on OLS and M-estimators detect the same
observations as outliers. In addition to these observations, as stated in the study of Hadi
[10], diagnostics based on the M estimator detect other observations as outliers. Robust
versions of the diagnostics support the study of Hadi [10]. Hadi [10], detect all outliers in
the Scottish Hill Races data in two steps, while robust versions of the diagnostics detect
all outliers in the data in one step. Also, the data is analyzed using the ROBUSTREG
procedure in SAS Version 9 and the results of this procedure support the results of the
proposed diagnostics based on robust estimates. The results of the simulation study
agree well with the real data.
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