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Abstract

The aim of this paper is to introduce a new notion of L-fuzzy compact-
ness in L-fuzzy topological spaces, which is a generalization of Lowen’s
fuzzy compactness in L-topological spaces. The union of two L-fuzzy
compact L-sets is L-fuzzy compact. The intersection of an L-fuzzy
compact L-set G and an L-set H with T7*(H) = T is L-fuzzy compact.
The L-fuzzy continuous image of an L-fuzzy compact L-set is L-fuzzy
compact. The Tychonoff Theorem for L-fuzzy compactness is true.
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1. Introduction and preliminaries

The concept of compactness is one of the most important concepts in general topology
and it has been generalized to L-topological space by many authors (see [3, 6, 10, 12, 13,
17, 18, 20, 23)).

In 1997, H. Aygin, M. W. Warner and S.R.T. Kudri first introduced the concept of
smooth compactness in L-fuzzy topological spaces [2], which is a generalization of strong
compactness in [11, 13, 21]. Subsequently Aygiin, Ramadan and S. E. Abbas respectively
introduced some weaker and stronger forms of L-fuzzy compactness in [1, 14].

The aim of this paper is to introduce a new notion of L-fuzzy compactness in L-fuzzy
topological spaces, which is a generalization of Lowen’s compactness in L-topological
spaces.

Throughout this paper (L, \/, A\, /) is a completely distributive DeMorgan algebra, X
a nonempty set and LX the set of all L-fuzzy sets on X. The smallest element and the
largest element in L are denoted respectively by L and T. The smallest element and the
largest element in LX are denoted respectively by L and T. An L-fuzzy set is briefly
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written as an L-set. We often do not distinguish a crisp subset A from its characteristic
function X 4.

The set of nonunit prime elements in L is denoted by P(L). The set of nonzero co-
prime elements in L is denoted by M (L). The set of nonzero co-prime elements in LY is
denoted by M(L¥). The set of all L-fuzzy points z (i.e., an L-fuzzy set A € L~ such
that A(z) = A # 0 and A(y) = 0 for y # z) is denoted by pt(L™).

The binary relation < in L is defined as follows: for a,b € L, a < b if and only if for
every subset D C L, b < sup D always implies the existence of d € D with a < d [4]. In a
completely distributive DeMorgan algebra L, each member b is the sup of {a € L | a < b}.
In the sense of [11, 21], {a € L | a < b} is the greatest minimal family of b, denoted by
B(b), and B*(b) = B(b) N M(L). Moreover for b € L, define a(b) = {a € L | a’ < b'} and
a”(b) = a(b) N P(L).

Fora € L and A € L¥, we define Ay, = {z € X | A(z) > a}.

1.1. Definition. [8, 9, 15, 19] An L-fuzzy topology on a set X is a map T : LX — L
such that
M) IO =TL)=T;
(2) VU,V € LX, T(UAV) > T(U) ANT(V);
(3) YU; € L%, 5 €1, T(V;e,Uj) 2 Njes TWU;).
T(U) can be interpreted as the degree to which U is an open set.
T*(U) = T(U’) will be called the degree of closedness of U. The pair (X,T) is called
an L-fuzzy topological space.
A mapping f: (X,T) — (Y,U) is said to be L-fuzzy continuous if T(f; (B)) > U(B)
holds for all B € LY, where f is defined by fi (B)(x) = B(f(x)) [15].
1.2. Theorem. [22] Let (X,T) and (Y,U) be L-fuzzy topological spaces. Then f :
(X,7) = (Y, U) is L-fuzzy continuous if and only if Va € M(L), f: (X, T(4))) = (Y, Upa))
is L-continuous, where T, = {A € L | T(A) > a}. O
1.3. Definition. [5]
(1) Let T be an L-fuzzy topology on X and B : L* — L a function with B < 7.
Then B is called a base of T if B satisfies the following condition:
VAeL®, Vo ept(LY), Q. (A) < \/ B(B),
z3qB<A

where Qo, (A)= \V T(B)
zygB<A
(2) Let ¢ : L* — L be a function. Then ¢ is called a subbase of T if and only if
¢(m) : L* — L is a base, where
6O =\ A 6B,
MacaBr=AXEA
and (M) stands for “finite intersection”.

1.4. Definition. [5] Let {(X},T;)} cs be a collection of L-fuzzy topological spaces, and

P;: ] X; — X the projection. The L-fuzzy topology whose subbase is defined by
jeJ

M X,
vaeLe o=\ \/ 70,
JET P (U)=A
is called the product L-fuzzy topology of {T; : j € J}, denoted by [] Tj, and ([] Xy, [1 Tj)
j€T j€s = jes
is called the product space of {(X;,T;)}jec.
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1.5. Theorem. [5] A map B : L™ — L is a base of T if and only if

T =\  ABB. 0

VacaBa=AAEA

In [2] the notion of smooth compactness, which is a generalization of strong compact-
ness in [11, 13, 21], was introduced in L-fuzzy topological spaces. The following definition
gives an equivalent formulation, which will be called L-fuzzy strong compactness in the
sequel.

1.6. Definition. [2] Let (X,T) be an L-fuzzy topological space and G € LX. The
L-fuzzy subset G is said to be L-fuzzy strongly compact if and only if Vp € P(L) and

V{F}icr C L satisfying T(F;) £ p (Vi € I), and G'(z) A (\E/I FZ)(:C) £p Vz € X),

there is a finite subset Iy of I such that G'(z) A ( V Fz) (z) £p (Vz € X).

i€lo
1.7. Definition. [18] Let a € L\{T} and G € L*. A subfamily U in L¥ is said to be
(1) An a-shading of G if for any z € X, it follows that G'(z) v \ A(z) £ a.
Acu

(2) A strong a-shading of G if A\ (G'(:c) vV A(:c)) £ a.

zeX AcU

1.8. Definition. [18] Let a € L\{L} and G € L*. A subfamily P in L¥ is called
(1) An a-remote family of G if for any = € X, it follows that G(X)A A B(z) % a.
Be?

(2) A strong a-remote family of G if \/ (G(:c) A B(:c)) % a.
zeX Be?

1.9. Definition. [18] Let a € L\{L} and G € L¥. A subfamily U in L* is called

(1) A Ba-cover of G if for any « € X, it follows that a € B(G’(x) \VARY, A(x))
Acu
(2) A strong Ba-cover of G if for any x € X, it follows that

aeﬂ( A (G’(:c)\/ V A(:c))).

zeX AcU

1.10. Definition. [18] Let a € L\{L} and G € L*. A subfamily U in L~ is called a

Qa-cover of G if for any z € X with G(z) £ o/, it follows that \/ A(z) > a.
Acu

It is obvious that U is a Qq4-cover of G if and only if a < A (G’(x) \VARY, A(x))
zeX AclU

2. Compactness in L-fuzzy topological spaces

In order to generalize the notion of compactness to L-fuzzy topological spaces, first
let us research compactness in general topology.

Let (X, 7T) be a topological space and G C X. Then G is said to be compact if each
open cover U of G has a finite subfamily V which is an open cover of GG. By the following
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fact:

A (G'(:c)\/ \/ A(:c)) =1« VzeX G'@)Vv\ Ax)=1

zeX AeU AeU

< Vz € X, G'(z) # 1 implies \/ A(z)=1
Acu

< Vz € X, G(z) =1 implies \/ A(z)=1
Acu

= VzeX, Ga)< \/ Al

Acu

we know that GG is compact if and only if
/\ (G/(:c) \% \/ A(:c)) = 1 implies \/ /\ (G'(x) \% \/ A(x)> =1.
zeX AeU vea(l) zeX AeV

Based on the above fact, a new definition of fuzzy compactness was presented in L-
topological spaces when L is a complete DeMorgan algebra in [18]. In fact, it is a
generalization of Lowen’s fuzzy compactness [12]. Now we generalize it further to L-
fuzzy topological spaces.

2.1. Definition. Let (X,T) be an L-fuzzy topological space. Then G € L% is said to
be L-fuzzy compact if for every family U C L, it follows that

/\ T(F) A </\ <G’(x)v \ F(x))) <V A <G’(x)v \V F(x)).

Feu reX Feu Vvea(w) zeX Fev

Let (X,T) be an L-topological space. Define Xg : L* — L by

1, AeT,
X("(A):{o AgT

Obviously, (X,Xq) is a special type of L-fuzzy topological space. We can easily prove
the following theorem.

2.2. Theorem. Let (X,T) be an L-topological space and G € L*. Then G is L-fuzzy
compact in (X, Xg) if and only if G is fuzzy compact in (X, 7). |

From Definition 2.1 we easily obtain the following theorem by simply using the quasi-
complement ’.

2.3. Theorem. Let (X,T) be an L-fuzzy topological space. Then G € L is L-fuzzy
compact if and only if for every family P C LX it follows that

\/ (tr*(F))’v( \VACEESVAN F(x))) > AV (G(x)/\ A F(x)). O

FeP zeEX FeP Ieea(P) TeX FeX

By Definition 2.1 and Theorem 2.3 we immediately obtain some characterizations of
L-fuzzy compactness as follows.

2.4. Theorem. Let (X,T) be an L-fuzzy topological space and G € L¥. Then the
following conditions are equivalent to each other.
(1) G is L-fuzzy compact.
(2) For any a € M(L), each strong a-remote family P of G with N\ T*(F) £ a’ has
Fe?
a finite subfamily 3 which is an (a strong) a-remote family of G.
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(3) For anya € M(L), and any strong a-remote family P of G with N\ T*(F) £ d/,
FeP
there exists a finite subfamily 3 of P and b € §*(a) such that H is a (strong)
b-remote family of G.

(4) For any a € P(L), each strong a-shading U of G with A\ T(F) £ a has a finite
Feu
subfamily V which is an (a strong) a-shading of G.

(5) For any a € P(L) and any strong a-shading W of G with /\ T(F) & a, there
Feu

exists a finite subfamily V of U and b € a*(a) such that 'V is a (strong) b-shading
of G.

(6) For any a € M(L) and any b € B"(a), each Qq-cover U of G with T(F) > a
(VF €U) has a finite subfamily V which is a Qp-cover of G.

(7) For any a € M(L) and any b € B (a), each Qq-cover U of G with T(F) > a
(VF €U) has a finite subfamily V which is a (strong) By-cover of G. a

2.5. Theorem. Let (X,T) be an L-fuzzy topological space and G € L¥. If B(c Ad) =
Blc)Np(d) (Ve,d € L), then the following conditions are equivalent to each other.
(1) G is L-fuzzy compact.

(2) For any a € M(L), each strong Ba-cover U of G with a € ﬂ( A ‘T(F)) has a
Feu
finite subfamily V which is a (strong) Ba-cover of G.

(3) For any a € M(L) and any strong Bq-cover U of G with a € ﬂ( N ‘T(F)), there
Feu

exists a finite subfamily V of U and b € M (L) with a € B*(b) such that V is a
(strong) By-cover of G.

The following theorem gives the relation between L-fuzzy strong compactness and
L-fuzzy compactness. It can be obtained from Theorem 2.4.

2.6. Theorem. L-fuzzy strong compactness implies L-fuzzy compactess. O
2.7. Remark. In general, L-fuzzy compactness need not imply L-fuzzy strong compact-
ness. This can be seen for L-topologies [11].

3. Properties of L-fuzzy compactness

In order to research properties of L-fuzzy compactness, we first introduce the following
definition.

3.1. Definition. Let (X,T) be an L-topological space, a € M (L) and G € L. Then G
is said to be a-fuzzy compact if and only if Vb € 8(a), each Qq.-open cover U of G has a
finite subfamily V which is a Qp-open cover of G.

By [16, Theorem 4.3] and Definition 3.1 we can obtain the following result.

3.2. Theorem. Let (X,T) be an L-topological space. Then G € L is fuzzy compact if
and only if Va € M(L), G is a-fuzzy compact. a

3.3. Theorem. Let (X,T) be an L-fuzzy topological space and G € L*. Then G is
L-fuzzy compact in (X, T) if and only if Va € M(L), G is a-fuzzy compact in (X, T(a)).

Proof. (Necessity) Since G is L-fuzzy compact in (X, T), by Definition 2.1 we know that
for every family U C L%, it follows that

/\ T(F) A </\ <G’(x)v \/ F(x))) <V A (G’(x)\/ \/ F(x)).

Feu zeX Feu vea(l) z€X Fev
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Hence Va € M(L) and YU C T,), we have that

a< N (G’(x)v \V F(x)) =a< \/ A (G’(x)v \Vi F(x)).

zeX Felu ve2(U) z€X Fev

Thus Vb € fB(a), there exists V € 2 such that b < A (G'(m) vV F(gr:))7 ie.,

zeX Fev
Va e M(L), Vb€ B(a), each Qq-cover U of G in (X, ‘J'[a]) has a finite subfamily V which
is a Qp-cover of G. Therefore, Va € M(L), G is a-fuzzy compact in (X, T4).
(Sufficency) Suppose that Va € M(L), G is a-fuzzy compact in (X, T[,). Let U C L™

and a < A T(F)A (xé\X (G'(:c) Y F\e/u F(:c))) Then U C T and a < A (G’(m) v

Feu zeX
V F(:c)) Thus Vb € B(a), there exists V € 2" such that b < A (G'(:c) vV F(:c))
Feu zeX Fev
Hencea < \/ A (G'(:c) vV F(:c)) Therefore G is L-fuzzy compact in (X,T). O

vea(W) z€X Fev

Analogous to Shi’s proof in [18], we can obtain the following lemma.

3.4. Lemma. Let (X,T) be an L-topological space, a € M(L) and G € L*. If G is
a-fuzzy compact, then G A\ H is a-fuzzy compact for each H € T'. O

3.5. Theorem. Let (X,7T) be an L-fuzzy topological space and G € LX. If G is L-fuzzy
compact, then for each H € L™ with T*(H) = T, G A H is L-fuzzy compact.

Proof. Va € M(L), since G is L-fuzzy compact in (X, T), by Theorem 3.3, G is a-fuzzy

compact in (X, T(q)). By T"(H) = T, we know that H' € T|,). Further, by Lemma 3.4,

G A H is a-fuzzy compact in (X, T[4)). Then by Theorem 3.3, G A H is L-fuzzy compact

in (X,7). d
Analogous to Shi’s proof in [18], we can obtain the following Lemma 3.6.

3.6. Lemma. Let (X,T) be an L-topological space, G, H € L™ and a € M(L). If G and
H are a-fuzzy compact, then so is GV H. a

3.7. Theorem. Let (X,T) be an L-fuzzy topological space and H,G € L*. If G and H
are L-fuzzy compact, then so is GV H.

Proof. Since G and H are L-fuzzy compact in (X,7T), by Theorem 3.3, Va € M (L), we
know that G and H are a-fuzzy compact in (X, T},)). By Lemma 3.6, G V H is a-fuzzy
compact in (X, T,)). So GV H is L-fuzzy compact in (X, T). O

Analogous to Shi’s proof in [18], we can obtain the following Lemma 3.8.

3.8. Lemma. Let (X,7), (Y,U) be two L-topological spaces and a € M(L). If G is
a-fuzzy compact in (X,7T) and f : (X,T) — (Y,U) is an L-continuous mapping, then
f (G) is a-fuzzy compact in (Y,U). a
3.9. Theorem. Let (X,7), (Y,U) be two L-fuzzy topological spaces, and f : (X,T) —
(Y,U) an L-fuzzy continuous mapping. If G € L™ is L-fuzzy compact in (X, T), then so
is f17(G) in (Y,U).

Proof. Since G is L-fuzzy compact in (X,7), by Theorem 3.3, Va € M(L), G is a-
fuzzy compact in (X, T}4)). By Theorem 1.2, f: (X, Tjq)) = (Y, Upe)) is an L-continuous
mapping. Hence f7’(G) is a-fuzzy compact in (Y,Uy). Therefore f’(G) is L-fuzzy
compact in (Y, U). O

Analogous to Shi’s proof in [18], we can obtain the following Lemma 3.10.
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3.10. Lemma. Let (X,T) be the product of a family of L-topological spaces {(X:, T:)}ic,
and a € M(L). Then (X,7T) is a-fuzzy compact if and only if for each i € J, (X;,7T;) is
a-fuzzy compact. |

From Theorem 2.6 we easily obtain the following Lemma 3.11.

3.11. Lemma. Let (X,T1) and (X,T2) be two L-topological spaces and a € M(L). If
T1 C T2 and (X, T2) is a-fuzzy compact, then (X,T1) is a-fuzzy compact as well. a

3.12. Theorem. Let (X,T) be the product of a family of L-fuzzy topological spaces
{(X:,7:) Yicq. Then (X,7T) is L-fuzzy compact if and only if for each i € J, (X;,7T;) is
L-fuzzy compact.

Proof. VA € Lllics Xi et
o=\ V T@andBB)=\/ A ¢4),

i€J P (U)=A NA=B AcA

where (M) stands for “finite intersection”. Then ¢ is a subbase of (X,7T) and B : L* — L
is a base of (X, 7).
For each A € LX, by Theorem 1.5 we have T(C) = \/ A B(B). NowVa € M(L),
V D=C BeD
if T(C) > a, then Vr € (a), there exists D such that \/ D =C and VB € D, r < B(B).

By B(B)= V A ¢(A), we know that there exists A such that MA = Band VA € A,
NA=B AcA

r < ¢(A). Furthermore by ¢(A) = V V  7:(U), there exists i € J and U € L¥
i€J P (U)=A

such that » < T;(U). By P~ (U) = A and B = NA, we have that C = \/{B: B € D} €
H (Ti)[r-]« Therefore T[a] g H (T@)[T].
icJ ieJ

For each i € J, by the L-fuzzy compactness of (X;,T;), Theorem 3.2 and Lemma 3.10
we know that Va € M(L), Vr € B(a), (IL, Xi,11;(T:)) is r-compact. Hence by
Lemma 3.11, (X, T4)) is r-compact. Now, Vb € B(a), take r € B(a) such that b € B(r).
Since each Qq4-cover U of X must be a Q.-cover U of X, by the r-compactness of (X, T,1),
U has a finite subfamily V which is a Qp-cover of X. This shows that Va € M (L), (X, T(4))
is a-fuzzy compact. Thus by Theorem 3.2, (X, T) is L-fuzzy compact. O
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