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Abstract

The aim of this paper is to introduce a new notion of L-fuzzy compact-
ness in L-fuzzy topological spaces, which is a generalization of Lowen’s
fuzzy compactness in L-topological spaces. The union of two L-fuzzy
compact L-sets is L-fuzzy compact. The intersection of an L-fuzzy
compact L-set G and an L-set H with T

∗(H) = ⊤ is L-fuzzy compact.
The L-fuzzy continuous image of an L-fuzzy compact L-set is L-fuzzy
compact. The Tychonoff Theorem for L-fuzzy compactness is true.
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1. Introduction and preliminaries

The concept of compactness is one of the most important concepts in general topology
and it has been generalized to L-topological space by many authors (see [3, 6, 10, 12, 13,
17, 18, 20, 23]).

In 1997, H. Aygün, M.W. Warner and S.R.T. Kudri first introduced the concept of
smooth compactness in L-fuzzy topological spaces [2], which is a generalization of strong
compactness in [11, 13, 21]. Subsequently Aygün, Ramadan and S. E. Abbas respectively
introduced some weaker and stronger forms of L-fuzzy compactness in [1, 14].

The aim of this paper is to introduce a new notion of L-fuzzy compactness in L-fuzzy
topological spaces, which is a generalization of Lowen’s compactness in L-topological
spaces.

Throughout this paper (L,
∨

,
∧

, ′ ) is a completely distributive DeMorgan algebra, X
a nonempty set and LX the set of all L-fuzzy sets on X. The smallest element and the
largest element in L are denoted respectively by ⊥ and ⊤. The smallest element and the
largest element in LX are denoted respectively by ⊥ and ⊤. An L-fuzzy set is briefly
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written as an L-set. We often do not distinguish a crisp subset A from its characteristic
function χ

A.

The set of nonunit prime elements in L is denoted by P (L). The set of nonzero co-
prime elements in L is denoted by M(L). The set of nonzero co-prime elements in LX is
denoted by M(LX). The set of all L-fuzzy points xλ (i.e., an L-fuzzy set A ∈ LX such
that A(x) = λ 6= 0 and A(y) = 0 for y 6= x) is denoted by pt(LX).

The binary relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b if and only if for
every subset D ⊆ L, b ≤ supD always implies the existence of d ∈ D with a ≤ d [4]. In a
completely distributive DeMorgan algebra L, each member b is the sup of {a ∈ L | a ≺ b}.
In the sense of [11, 21], {a ∈ L | a ≺ b} is the greatest minimal family of b, denoted by
β(b), and β∗(b) = β(b) ∩M(L). Moreover for b ∈ L, define α(b) = {a ∈ L | a′ ≺ b′} and
α∗(b) = α(b) ∩ P (L).

For a ∈ L and A ∈ LX , we define A[a] = {x ∈ X | A(x) ≥ a}.

1.1. Definition. [8, 9, 15, 19] An L-fuzzy topology on a set X is a map T : LX → L

such that

(1) T(⊤) = T(⊥) = ⊤;
(2) ∀U, V ∈ LX , T(U ∧ V ) ≥ T(U) ∧ T(V );
(3) ∀Uj ∈ LX , j ∈ J, T(

∨

j∈J
Uj) ≥

∧

j∈J
T(Uj).

T(U) can be interpreted as the degree to which U is an open set.

T
∗(U) = T(U ′) will be called the degree of closedness of U . The pair (X,T) is called

an L-fuzzy topological space.

A mapping f : (X,T) → (Y,U) is said to be L-fuzzy continuous if T(f←L (B)) ≥ U(B)
holds for all B ∈ LY , where f←L is defined by f←L (B)(x) = B(f(x)) [15].

1.2. Theorem. [22] Let (X,T) and (Y,U) be L-fuzzy topological spaces. Then f :
(X,T) → (Y,U) is L-fuzzy continuous if and only if ∀ a ∈ M(L), f : (X,T[a])) → (Y,U[a])

is L-continuous, where T[a] = {A ∈ LX | T(A) ≥ a}. �

1.3. Definition. [5]

(1) Let T be an L-fuzzy topology on X and B : LX → L a function with B ≤ T.
Then B is called a base of T if B satisfies the following condition:

∀A ∈ L
X
, ∀ xλ ∈ pt(LX), Qxλ

(A) ≤
∨

xλqB≤A

B(B),

where Qxλ
(A) =

∨

xλqB≤A

T(B)

(2) Let φ : LX → L be a function. Then φ is called a subbase of T if and only if

φ(⊓) : LX → L is a base, where

φ
(⊓)(A) =

∨

⊓λ∈ΛBλ=A

∧

λ∈Λ

φ(Bλ),

and (⊓) stands for “finite intersection”.

1.4. Definition. [5] Let {(Xj ,Tj)}j∈J be a collection of L-fuzzy topological spaces, and
Pi :

∏

j∈J

Xj → Xi the projection. The L-fuzzy topology whose subbase is defined by

∀A ∈ L

∏

j∈J

Xj

, φ(A) =
∨

j∈J

∨

P←
j

(U)=A

Tj(U),

is called the product L-fuzzy topology of {Tj : j ∈ J}, denoted by
∏

j∈J

Tj , and (
∏

j∈J

Xj ,
∏

j∈J

Tj)

is called the product space of {(Xj ,Tj)}j∈J .
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1.5. Theorem. [5] A map B : LX → L is a base of T if and only if

T(A) =
∨

∨λ∈ΛBλ=A

∧

λ∈Λ

B(Bλ). �

In [2] the notion of smooth compactness, which is a generalization of strong compact-
ness in [11, 13, 21], was introduced in L-fuzzy topological spaces. The following definition
gives an equivalent formulation, which will be called L-fuzzy strong compactness in the
sequel.

1.6. Definition. [2] Let (X,T) be an L-fuzzy topological space and G ∈ LX . The
L-fuzzy subset G is said to be L-fuzzy strongly compact if and only if ∀ p ∈ P (L) and

∀ {Fi}i∈I ⊆ LX satisfying T(Fi) � p (∀ i ∈ I), and G′(x) ∧
(

∨

i∈I

Fi

)

(x) � p (∀ x ∈ X),

there is a finite subset I0 of I such that G′(x) ∧
(

∨

i∈I0

Fi

)

(x) � p (∀ x ∈ X).

1.7. Definition. [18] Let a ∈ L\{⊤} and G ∈ LX . A subfamily U in LX is said to be

(1) An a-shading of G if for any x ∈ X, it follows that G′(x) ∨
∨

A∈U

A(x) � a.

(2) A strong a-shading of G if
∧

x∈X

(

G′(x) ∨
∨

A∈U

A(x)
)

� a.

1.8. Definition. [18] Let a ∈ L\{⊥} and G ∈ LX . A subfamily P in LX is called

(1) An a-remote family of G if for any x ∈ X, it follows that G(X)∧
∧

B∈P

B(x) � a.

(2) A strong a-remote family of G if
∨

x∈X

(

G(x) ∧
∧

B∈P

B(x)
)

� a.

1.9. Definition. [18] Let a ∈ L\{⊥} and G ∈ LX . A subfamily U in LX is called

(1) A βa-cover of G if for any x ∈ X, it follows that a ∈ β
(

G′(x) ∨
∨

A∈U

A(x)
)

.

(2) A strong βa-cover of G if for any x ∈ X, it follows that

a ∈ β
(

∧

x∈X

(

G′(x) ∨
∨

A∈U

A(x)
))

.

1.10. Definition. [18] Let a ∈ L\{⊥} and G ∈ LX . A subfamily U in LX is called a
Qa-cover of G if for any x ∈ X with G(x) � a′, it follows that

∨

A∈U

A(x) ≥ a.

It is obvious that U is a Qa-cover of G if and only if a ≤
∧

x∈X

(

G′(x) ∨
∨

A∈U

A(x)

)

.

2. Compactness in L-fuzzy topological spaces

In order to generalize the notion of compactness to L-fuzzy topological spaces, first
let us research compactness in general topology.

Let (X,T) be a topological space and G ⊆ X. Then G is said to be compact if each
open cover U of G has a finite subfamily V which is an open cover of G. By the following



770 F. -G. Shi, R. -X. Li

fact:
∧

x∈X

(

G
′(x) ∨

∨

A∈U

A(x)

)

= 1 ⇐⇒ ∀x ∈ X, G
′(x) ∨

∨

A∈U

A(x) = 1

⇐⇒ ∀x ∈ X, G
′(x) 6= 1 implies

∨

A∈U

A(x) = 1

⇐⇒ ∀x ∈ X, G(x) = 1 implies
∨

A∈U

A(x) = 1

⇐⇒ ∀x ∈ X, G(x) ≤
∨

A∈U

A(x)

we know that G is compact if and only if

∧

x∈X

(

G
′(x) ∨

∨

A∈U

A(x)

)

= 1 implies
∨

V∈2(U)

∧

x∈X

(

G
′(x) ∨

∨

A∈V

A(x)

)

= 1.

Based on the above fact, a new definition of fuzzy compactness was presented in L-
topological spaces when L is a complete DeMorgan algebra in [18]. In fact, it is a
generalization of Lowen’s fuzzy compactness [12]. Now we generalize it further to L-
fuzzy topological spaces.

2.1. Definition. Let (X,T) be an L-fuzzy topological space. Then G ∈ LX is said to
be L-fuzzy compact if for every family U ⊆ LX , it follows that

∧

F∈U

T(F ) ∧

(

∧

x∈X

(

G
′(x) ∨

∨

F∈U

F (x)

))

≤
∨

V∈2(U)

∧

x∈X

(

G
′(x) ∨

∨

F∈V

F (x)

)

.

Let (X,T) be an L-topological space. Define χ
T : LX → L by

χ
T(A) =

{

1, A ∈ T,

0, A 6∈ T.

Obviously, (X,χT) is a special type of L-fuzzy topological space. We can easily prove
the following theorem.

2.2. Theorem. Let (X,T) be an L-topological space and G ∈ LX . Then G is L-fuzzy
compact in (X,χT) if and only if G is fuzzy compact in (X,T). �

From Definition 2.1 we easily obtain the following theorem by simply using the quasi-
complement ′.

2.3. Theorem. Let (X,T) be an L-fuzzy topological space. Then G ∈ LX is L-fuzzy
compact if and only if for every family P ⊆ LX it follows that

∨

F∈P

(

T
∗(F )

)′
∨

(

∨

x∈X

(G(x)∧
∧

F∈P

F (x))

)

≥
∧

H∈2(P)

∨

x∈X

(

G(x)∧
∧

F∈H

F (x)

)

. �

By Definition 2.1 and Theorem 2.3 we immediately obtain some characterizations of
L-fuzzy compactness as follows.

2.4. Theorem. Let (X,T) be an L-fuzzy topological space and G ∈ LX . Then the
following conditions are equivalent to each other.

(1) G is L-fuzzy compact.
(2) For any a ∈ M(L), each strong a-remote family P of G with

∧

F∈P

T
∗(F ) � a′ has

a finite subfamily H which is an (a strong) a-remote family of G.
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(3) For any a ∈ M(L), and any strong a-remote family P of G with
∧

F∈P

T
∗(F ) � a′,

there exists a finite subfamily H of P and b ∈ β∗(a) such that H is a (strong)
b-remote family of G.

(4) For any a ∈ P (L), each strong a-shading U of G with
∧

F∈U

T(F ) � a has a finite

subfamily V which is an (a strong) a-shading of G.
(5) For any a ∈ P (L) and any strong a-shading U of G with

∧

F∈U

T(F ) � a, there

exists a finite subfamily V of U and b ∈ α∗(a) such that V is a (strong) b-shading
of G.

(6) For any a ∈ M(L) and any b ∈ β∗(a), each Qa-cover U of G with T(F ) ≥ a

(∀F ∈ U) has a finite subfamily V which is a Qb-cover of G.
(7) For any a ∈ M(L) and any b ∈ β∗(a), each Qa-cover U of G with T(F ) ≥ a

(∀F ∈ U) has a finite subfamily V which is a (strong) βb-cover of G. �

2.5. Theorem. Let (X,T) be an L-fuzzy topological space and G ∈ LX . If β(c ∧ d) =
β(c) ∩ β(d) (∀ c, d ∈ L), then the following conditions are equivalent to each other.

(1) G is L-fuzzy compact.

(2) For any a ∈ M(L), each strong βa-cover U of G with a ∈ β
(

∧

F∈U

T(F )
)

has a

finite subfamily V which is a (strong) βa-cover of G.

(3) For any a ∈ M(L) and any strong βa-cover U of G with a ∈ β
(

∧

F∈U

T(F )
)

, there

exists a finite subfamily V of U and b ∈ M(L) with a ∈ β∗(b) such that V is a
(strong) βb-cover of G.

The following theorem gives the relation between L-fuzzy strong compactness and
L-fuzzy compactness. It can be obtained from Theorem 2.4.

2.6. Theorem. L-fuzzy strong compactness implies L-fuzzy compactess. �

2.7. Remark. In general, L-fuzzy compactness need not imply L-fuzzy strong compact-
ness. This can be seen for L-topologies [11].

3. Properties of L-fuzzy compactness

In order to research properties of L-fuzzy compactness, we first introduce the following
definition.

3.1. Definition. Let (X,T) be an L-topological space, a ∈ M(L) and G ∈ LX . Then G

is said to be a-fuzzy compact if and only if ∀ b ∈ β(a), each Qa-open cover U of G has a
finite subfamily V which is a Qb-open cover of G.

By [16, Theorem 4.3] and Definition 3.1 we can obtain the following result.

3.2. Theorem. Let (X,T) be an L-topological space. Then G ∈ LX is fuzzy compact if
and only if ∀ a ∈ M(L), G is a-fuzzy compact. �

3.3. Theorem. Let (X,T) be an L-fuzzy topological space and G ∈ LX . Then G is
L-fuzzy compact in (X,T) if and only if ∀ a ∈ M(L), G is a-fuzzy compact in (X,T[a]).

Proof. (Necessity) Since G is L-fuzzy compact in (X,T), by Definition 2.1 we know that
for every family U ⊆ LX , it follows that

∧

F∈U

T(F ) ∧

(

∧

x∈X

(

G
′(x) ∨

∨

F∈U

F (x)

)

)

≤
∨

V∈2(U)

∧

x∈X

(

G
′(x) ∨

∨

F∈V

F (x)

)

.
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Hence ∀ a ∈ M(L) and ∀U ⊆ T[a], we have that

a ≤
∧

x∈X

(

G
′(x) ∨

∨

F∈U

F (x)

)

=⇒ a ≤
∨

V∈2(U)

∧

x∈X

(

G
′(x) ∨

∨

F∈V

F (x)

)

.

Thus ∀ b ∈ β(a), there exists V ∈ 2(U) such that b ≤
∧

x∈X

(

G′(x) ∨
∨

F∈V

F (x)
)

, i.e.,

∀ a ∈ M(L), ∀ b ∈ β(a), each Qa-cover U of G in
(

X,T[a]

)

has a finite subfamily V which
is a Qb-cover of G. Therefore, ∀ a ∈ M(L), G is a-fuzzy compact in (X,T[a]).

(Sufficency) Suppose that ∀ a ∈ M(L), G is a-fuzzy compact in (X,T[a]). Let U ⊆ LX

and a ≤
∧

F∈U

T(F ) ∧
(

∧

x∈X

(

G′(x) ∨
∨

F∈U

F (x)
))

. Then U ⊆ T[a] and a ≤
∧

x∈X

(

G′(x) ∨

∨

F∈U

F (x)
)

. Thus ∀ b ∈ β(a), there exists V ∈ 2(U) such that b ≤
∧

x∈X

(

G′(x)∨
∨

F∈V

F (x)
)

.

Hence a ≤
∨

V∈2(U)

∧

x∈X

(

G′(x)∨
∨

F∈V

F (x)
)

. Therefore G is L-fuzzy compact in (X,T). �

Analogous to Shi’s proof in [18], we can obtain the following lemma.

3.4. Lemma. Let (X,T) be an L-topological space, a ∈ M(L) and G ∈ LX . If G is
a-fuzzy compact, then G ∧H is a-fuzzy compact for each H ∈ T

′. �

3.5. Theorem. Let (X,T) be an L-fuzzy topological space and G ∈ LX . If G is L-fuzzy
compact, then for each H ∈ LX with T

∗(H) = ⊤, G ∧H is L-fuzzy compact.

Proof. ∀ a ∈ M(L), since G is L-fuzzy compact in (X,T), by Theorem 3.3, G is a-fuzzy
compact in (X,T[a]). By T

∗(H) = ⊤, we know that H ′ ∈ T[a]. Further, by Lemma 3.4,
G∧H is a-fuzzy compact in (X,T[a]). Then by Theorem 3.3, G∧H is L-fuzzy compact
in (X,T). �

Analogous to Shi’s proof in [18], we can obtain the following Lemma 3.6.

3.6. Lemma. Let (X,T) be an L-topological space, G,H ∈ LX and a ∈ M(L). If G and
H are a-fuzzy compact, then so is G ∨H. �

3.7. Theorem. Let (X,T) be an L-fuzzy topological space and H,G ∈ LX . If G and H

are L-fuzzy compact, then so is G ∨H.

Proof. Since G and H are L-fuzzy compact in (X,T), by Theorem 3.3, ∀ a ∈ M(L), we
know that G and H are a-fuzzy compact in (X,T[a]). By Lemma 3.6, G ∨H is a-fuzzy
compact in (X,T[a]). So G ∨H is L-fuzzy compact in (X,T). �

Analogous to Shi’s proof in [18], we can obtain the following Lemma 3.8.

3.8. Lemma. Let (X,T), (Y,U) be two L-topological spaces and a ∈ M(L). If G is
a-fuzzy compact in (X,T) and f : (X,T) → (Y,U) is an L-continuous mapping, then
f→L (G) is a-fuzzy compact in (Y,U). �

3.9. Theorem. Let (X,T), (Y,U) be two L-fuzzy topological spaces, and f : (X,T) →
(Y,U) an L-fuzzy continuous mapping. If G ∈ LX is L-fuzzy compact in (X,T), then so
is f→L (G) in (Y,U).

Proof. Since G is L-fuzzy compact in (X,T), by Theorem 3.3, ∀ a ∈ M(L), G is a-
fuzzy compact in (X,T[a]). By Theorem 1.2, f : (X,T[a]) → (Y,U[a]) is an L-continuous
mapping. Hence f→L (G) is a-fuzzy compact in (Y,U[a]). Therefore f→L (G) is L-fuzzy
compact in (Y,U). �

Analogous to Shi’s proof in [18], we can obtain the following Lemma 3.10.
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3.10. Lemma. Let (X,T) be the product of a family of L-topological spaces {(Xi,Ti)}i∈J ,
and a ∈ M(L). Then (X,T) is a-fuzzy compact if and only if for each i ∈ J, (Xi,Ti) is
a-fuzzy compact. �

From Theorem 2.6 we easily obtain the following Lemma 3.11.

3.11. Lemma. Let (X,T1) and (X,T2) be two L-topological spaces and a ∈ M(L). If
T1 ⊆ T2 and (X,T2) is a-fuzzy compact, then (X,T1) is a-fuzzy compact as well. �

3.12. Theorem. Let (X,T) be the product of a family of L-fuzzy topological spaces
{(Xi,Ti)}i∈J . Then (X,T) is L-fuzzy compact if and only if for each i ∈ J, (Xi,Ti) is
L-fuzzy compact.

Proof. ∀A ∈ L
∏

i∈J Xi , let

φ(A) =
∨

i∈J

∨

P←
i

(U)=A

Ti(U) and B(B) =
∨

⊓A=B

∧

A∈A

φ(A),

where (⊓) stands for “finite intersection”. Then φ is a subbase of (X,T) and B : LX → L

is a base of (X,T).

For each A ∈ LX , by Theorem 1.5 we have T(C) =
∨

∨
D=C

∧

B∈D

B(B). Now ∀ a ∈ M(L),

if T(C) ≥ a, then ∀ r ∈ β(a), there exists D such that
∨

D = C and ∀B ∈ D, r ≺ B(B).
By B(B) =

∨

⊓A=B

∧

A∈A

φ(A), we know that there exists A such that ⊓A = B and ∀A ∈ A,

r ≺ φ(A). Furthermore by φ(A) =
∨

i∈J

∨

P←
i

(U)=A

Ti(U), there exists i ∈ J and U ∈ LX

such that r ≺ Ti(U). By P←i (U) = A and B = ⊓A, we have that C =
∨

{B : B ∈ D} ∈
∏

i∈J

(Ti)[r]. Therefore T[a] ⊆
∏

i∈J

(Ti)[r].

For each i ∈ J , by the L-fuzzy compactness of (Xi,Ti), Theorem 3.2 and Lemma 3.10
we know that ∀ a ∈ M(L), ∀ r ∈ β(a), (

∏

i
Xi,

∏

i
(Ti)[r]) is r-compact. Hence by

Lemma 3.11, (X,T[a]) is r-compact. Now, ∀ b ∈ β(a), take r ∈ β(a) such that b ∈ β(r).
Since each Qa-cover U of X must be a Qr-cover U of X, by the r-compactness of (X,T[a]),
U has a finite subfamily V which is aQb-cover ofX. This shows that ∀ a ∈ M(L), (X,T[a])
is a-fuzzy compact. Thus by Theorem 3.2, (X,T) is L-fuzzy compact. �
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