COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES ‡ Fu-Gui Shi*† and Run-Xiang Li* Received 25:02:2009: Accepted 06:05:2009 ### Abstract The aim of this paper is to introduce a new notion of L-fuzzy compactness in L-fuzzy topological spaces, which is a generalization of Lowen's fuzzy compactness in L-topological spaces. The union of two L-fuzzy compact L-sets is L-fuzzy compact. The intersection of an L-fuzzy compact L-set G and an L-set H with $\mathfrak{T}^*(H) = T$ is L-fuzzy compact. The L-fuzzy continuous image of an L-fuzzy compact L-set is L-fuzzy compact. The Tychonoff Theorem for L-fuzzy compactness is true. **Keywords:** L-fuzzy topology, α -fuzzy compactness, L-fuzzy compactness. $2000~AMS~Classification:~~03 \to 72,~54 \to 40.$ # 1. Introduction and preliminaries The concept of compactness is one of the most important concepts in general topology and it has been generalized to L-topological space by many authors (see [3, 6, 10, 12, 13, 17, 18, 20, 23]). In 1997, H. Aygün, M. W. Warner and S. R. T. Kudri first introduced the concept of smooth compactness in L-fuzzy topological spaces [2], which is a generalization of strong compactness in [11, 13, 21]. Subsequently Aygün, Ramadan and S. E. Abbas respectively introduced some weaker and stronger forms of L-fuzzy compactness in [1, 14]. The aim of this paper is to introduce a new notion of L-fuzzy compactness in L-fuzzy topological spaces, which is a generalization of Lowen's compactness in L-topological spaces. Throughout this paper $(L, \bigvee, \bigwedge, \iota)$ is a completely distributive DeMorgan algebra, X a nonempty set and L^X the set of all L-fuzzy sets on X. The smallest element and the largest element in L are denoted respectively by \bot and \top . The smallest element and the largest element in L^X are denoted respectively by \bot and \top . An L-fuzzy set is briefly $^{^{\}ddagger}$ The project is supported by the National Natural Science Foundation of China (10971242) ^{*}School of Mathematics, Beijing Institute of Technology, Beijing, 100081, P. R. China. E-mail: (F.-G. Shi) fuguishi@bit.edu.cn f.g.shi@263.net (R.-X. Li) lirunxiang84@sina.com †Corresponding Author. written as an L-set. We often do not distinguish a crisp subset A from its characteristic function χ_A . The set of nonunit prime elements in L is denoted by P(L). The set of nonzero coprime elements in L is denoted by M(L). The set of nonzero co-prime elements in L^X is denoted by $M(L^X)$. The set of all L-fuzzy points x_λ (i.e., an L-fuzzy set $A \in L^X$ such that $A(x) = \lambda \neq 0$ and A(y) = 0 for $y \neq x$) is denoted by $pt(L^X)$. The binary relation \prec in L is defined as follows: for $a, b \in L$, $a \prec b$ if and only if for every subset $D \subseteq L$, $b \le \sup D$ always implies the existence of $d \in D$ with $a \le d$ [4]. In a completely distributive DeMorgan algebra L, each member b is the sup of $\{a \in L \mid a \prec b\}$. In the sense of [11, 21], $\{a \in L \mid a \prec b\}$ is the greatest minimal family of b, denoted by $\beta(b)$, and $\beta^*(b) = \beta(b) \cap M(L)$. Moreover for $b \in L$, define $\alpha(b) = \{a \in L \mid a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L).$ For $a \in L$ and $A \in L^X$, we define $A_{[a]} = \{x \in X \mid A(x) \geq a\}$. - **1.1. Definition.** [8, 9, 15, 19] An L-fuzzy topology on a set X is a map $\mathcal{T}: L^X \to L$ such that - $\begin{array}{ll} (1) \ \ \Im(\underline{\top}) = \Im(\underline{\bot}) = \top; \\ (2) \ \ \forall U, V \in L^X, \ \Im(U \wedge V) \geq \Im(U) \wedge \Im(V); \\ (3) \ \ \forall U_j \in L^X, \ j \in J, \ \Im(\bigvee_{j \in J} U_j) \geq \bigwedge_{j \in J} \Im(U_j). \end{array}$ - $\mathfrak{I}(U)$ can be interpreted as the degree to which U is an open set. - $\mathfrak{T}^*(U) = \mathfrak{T}(U')$ will be called the degree of closedness of U. The pair (X,\mathfrak{T}) is called an L-fuzzy topological space. A mapping $f:(X,\mathfrak{I})\to (Y,\mathfrak{U})$ is said to be L-fuzzy continuous if $\mathfrak{I}(f_L^{\leftarrow}(B))\geq \mathfrak{U}(B)$ holds for all $B \in L^Y$, where f_L^{\leftarrow} is defined by $f_L^{\leftarrow}(B)(x) = B(f(x))$ [15]. **1.2. Theorem.** [22] Let (X, \mathfrak{T}) and (Y, \mathfrak{U}) be L-fuzzy topological spaces. Then f: $(X, \mathfrak{T}) \to (Y, \mathfrak{U})$ is L-fuzzy continuous if and only if $\forall a \in M(L), f : (X, \mathfrak{T}_{[a]})) \to (Y, \mathfrak{U}_{[a]})$ is L-continuous, where $\mathfrak{T}_{[a]} = \{A \in L^X \mid \mathfrak{T}(A) \geq a\}.$ ### **1.3. Definition.** [5] (1) Let \mathcal{T} be an L-fuzzy topology on X and $\mathcal{B}: L^X \to L$ a function with $\mathcal{B} \leq \mathcal{T}$. Then \mathcal{B} is called a *base* of \mathcal{T} if \mathcal{B} satisfies the following condition: $$\forall A \in L^X, \ \forall x_{\lambda} \in \operatorname{pt}(L^X), \ Q_{x_{\lambda}}(A) \leq \bigvee_{x_{\lambda}qB \leq A} \mathcal{B}(B),$$ where $$Q_{x_{\lambda}}(A) = \bigvee_{x_{\lambda}qB \leq A} \Im(B)$$ (2) Let $\phi: L^X \to L$ be a function. Then ϕ is called a *subbase* of $\mathfrak T$ if and only if $\phi^{(\sqcap)}: L^X \to L$ is a base, where $$\phi^{(\sqcap)}(A) = \bigvee_{\bigcap_{\lambda \in \Lambda} B_{\lambda} = A} \bigwedge_{\lambda \in \Lambda} \phi(B_{\lambda}),$$ and (\sqcap) stands for "finite intersection". **1.4. Definition.** [5] Let $\{(X_j, \Upsilon_j)\}_{j \in J}$ be a collection of L-fuzzy topological spaces, and $P_i: \prod_{i\in J} X_i \to X_i$ the projection. The L-fuzzy topology whose subbase is defined by $$\forall\,A\in L^{\prod\limits_{j\in J}X_j}, \phi(A)=\bigvee\limits_{j\in J}\bigvee\limits_{P_j^{\leftarrow}(U)=A}\Im_j(U),$$ is called the product L-fuzzy topology of $\{\mathfrak{T}_j: j\in J\}$, denoted by $\prod_{j\in J}\mathfrak{T}_j$, and $(\prod_{j\in J}X_j,\prod_{j\in J}\mathfrak{T}_j)$ is called the *product space* of $\{(X_i, \mathcal{T}_i)\}_{i \in J}$. **1.5. Theorem.** [5] A map $\mathcal{B}: L^X \to L$ is a base of \mathcal{T} if and only if $$\mathfrak{I}(A) = \bigvee_{\bigvee_{\lambda \in \Lambda} B_{\lambda} = A} \bigwedge_{\lambda \in \Lambda} \mathfrak{B}(B_{\lambda}).$$ In [2] the notion of smooth compactness, which is a generalization of strong compactness in [11, 13, 21], was introduced in L-fuzzy topological spaces. The following definition gives an equivalent formulation, which will be called L-fuzzy strong compactness in the sequel. - **1.6. Definition.** [2] Let (X, \mathcal{T}) be an L-fuzzy topological space and $G \in L^X$. The L-fuzzy subset G is said to be L-fuzzy strongly compact if and only if $\forall p \in P(L)$ and $\forall \{F_i\}_{i\in I} \subseteq L^X$ satisfying $\mathcal{T}(F_i) \nleq p \ (\forall i \in I)$, and $G'(x) \land \left(\bigvee_{i\in I} F_i\right)(x) \nleq p \ (\forall x \in X)$, - there is a finite subset I_0 of I such that $G'(x) \wedge \Big(\bigvee_{i \in I_0} F_i\Big)(x) \nleq p \ (\forall x \in X).$ - **1.7. Definition.** [18] Let $a \in L \setminus \{\top\}$ and $G \in L^X$. A subfamily \mathcal{U} in L^X is said to be - (1) An a-shading of G if for any $x \in X$, it follows that $G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x) \nleq a$. - (2) A strong a-shading of G if $\bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{A \in \mathcal{A}} A(x) \right) \nleq a$. - **1.8. Definition.** [18] Let $a \in L \setminus \{\bot\}$ and $G \in L^X$. A subfamily \mathcal{P} in L^X is called - (1) An a-remote family of G if for any $x \in X$, it follows that $G(X) \land \bigwedge_{B \in \mathcal{P}} B(x) \ngeq a$. - (2) A strong a-remote family of G if $\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{P}} B(x) \right) \ngeq a$. - **1.9. Definition.** [18] Let $a \in L \setminus \{\bot\}$ and $G \in L^X$. A subfamily \mathcal{U} in L^X is called - (1) A β_a -cover of G if for any $x \in X$, it follows that $a \in \beta \Big(G'(x) \vee \bigvee_{A \in \mathcal{A}} A(x) \Big)$. - (2) A strong β_a -cover of G if for any $x \in X$, it follows that $$a \in \beta \Big(\bigwedge_{x \in X} \Big(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \Big) \Big).$$ **1.10. Definition.** [18] Let $a \in L \setminus \{\bot\}$ and $G \in L^X$. A subfamily \mathcal{U} in L^X is called a Q_a -cover of G if for any $x \in X$ with $G(x) \nleq a'$, it follows that $\bigvee_{A \in \mathcal{U}} A(x) \geq a$. It is obvious that \mathcal{U} is a Q_a -cover of G if and only if $a \leq \bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x) \right)$. ## 2. Compactness in L-fuzzy topological spaces In order to generalize the notion of compactness to L-fuzzy topological spaces, first let us research compactness in general topology. Let (X, \mathcal{T}) be a topological space and $G \subseteq X$. Then G is said to be compact if each open cover \mathcal{U} of G has a finite subfamily \mathcal{V} which is an open cover of G. By the following fact: $$\bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x) \right) = 1 \iff \forall \, x \in X, \ G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x) = 1$$ $$\iff \forall \, x \in X, \ G'(x) \neq 1 \text{ implies } \bigvee_{A \in \mathcal{U}} A(x) = 1$$ $$\iff \forall \, x \in X, \ G(x) = 1 \text{ implies } \bigvee_{A \in \mathcal{U}} A(x) = 1$$ $$\iff \forall \, x \in X, \ G(x) \leq \bigvee_{A \in \mathcal{U}} A(x)$$ we know that G is compact if and only if $$\bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x) \right) = 1 \text{ implies } \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{A \in \mathcal{V}} A(x) \right) = 1.$$ Based on the above fact, a new definition of fuzzy compactness was presented in L-topological spaces when L is a complete DeMorgan algebra in [18]. In fact, it is a generalization of Lowen's fuzzy compactness [12]. Now we generalize it further to L-fuzzy topological spaces. **2.1. Definition.** Let (X, \mathfrak{T}) be an L-fuzzy topological space. Then $G \in L^X$ is said to be L-fuzzy compact if for every family $\mathfrak{U} \subseteq L^X$, it follows that $$\bigwedge_{F \in \mathfrak{U}} \Im(F) \wedge \left(\bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{F \in \mathfrak{U}} F(x) \right) \right) \leq \bigvee_{\mathfrak{V} \in 2^{(\mathfrak{U})}} \bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{F \in \mathfrak{V}} F(x) \right).$$ Let (X, \mathcal{T}) be an L-topological space. Define $\chi_{\mathcal{T}}: L^X \to L$ by $$\chi_{\mathfrak{T}}(A) = \begin{cases} 1, & A \in \mathfrak{T}, \\ 0, & A \notin \mathfrak{T}. \end{cases}$$ Obviously, $(X, \mathcal{X}_{\mathcal{I}})$ is a special type of L-fuzzy topological space. We can easily prove the following theorem. **2.2. Theorem.** Let (X, \mathfrak{T}) be an L-topological space and $G \in L^X$. Then G is L-fuzzy compact in $(X, \mathfrak{X}_{\mathfrak{T}})$ if and only if G is fuzzy compact in (X, \mathfrak{T}) . From Definition 2.1 we easily obtain the following theorem by simply using the quasi-complement $^{\prime}.$ **2.3. Theorem.** Let (X, \mathcal{T}) be an L-fuzzy topological space. Then $G \in L^X$ is L-fuzzy compact if and only if for every family $\mathcal{T} \subseteq L^X$ it follows that $$\bigvee_{F\in\mathcal{P}} \left(\operatorname{T}^*(F)\right)' \vee \bigg(\bigvee_{x\in X} (G(x) \wedge \bigwedge_{F\in\mathcal{P}} F(x))\bigg) \geq \bigwedge_{\mathcal{H}\in 2^{(\mathcal{P})}} \bigvee_{x\in X} \bigg(G(x) \wedge \bigwedge_{F\in\mathcal{H}} F(x)\bigg). \quad \Box$$ By Definition 2.1 and Theorem 2.3 we immediately obtain some characterizations of L-fuzzy compactness as follows. - **2.4. Theorem.** Let (X, \mathbb{T}) be an L-fuzzy topological space and $G \in L^X$. Then the following conditions are equivalent to each other. - (1) G is L-fuzzy compact. - (2) For any $a \in M(L)$, each strong a-remote family \mathcal{P} of G with $\bigwedge_{F \in \mathcal{P}} \mathcal{T}^*(F) \nleq a'$ has a finite subfamily \mathcal{H} which is an (a strong) a-remote family of G. - (3) For any $a \in M(L)$, and any strong a-remote family \mathbb{P} of G with $\bigwedge_{F \in \mathcal{P}} \mathfrak{T}^*(F) \nleq a'$, there exists a finite subfamily \mathfrak{H} of \mathbb{P} and $b \in \beta^*(a)$ such that \mathfrak{H} is a (strong) b-remote family of G. - (4) For any $a \in P(L)$, each strong a-shading \mathbb{U} of G with $\bigwedge_{F \in \mathbb{U}} \mathfrak{T}(F) \nleq a$ has a finite subfamily \mathbb{V} which is an (a strong) a-shading of G. - (5) For any $a \in P(L)$ and any strong a-shading \mathbb{U} of G with $\bigwedge_{F \in \mathbb{U}} \mathfrak{I}(F) \nleq a$, there exists a finite subfamily \mathbb{V} of \mathbb{U} and $b \in \alpha^*(a)$ such that \mathbb{V} is a (strong) b-shading of G. - (6) For any $a \in M(L)$ and any $b \in \beta^*(a)$, each Q_a -cover \mathcal{U} of G with $\mathcal{T}(F) \geq a$ $(\forall F \in \mathcal{U})$ has a finite subfamily \mathcal{V} which is a Q_b -cover of G. - (7) For any $a \in M(L)$ and any $b \in \beta^*(a)$, each Q_a -cover \mathcal{U} of G with $\mathcal{T}(F) \geq a$ $(\forall F \in \mathcal{U})$ has a finite subfamily \mathcal{V} which is a (strong) β_b -cover of G. - **2.5. Theorem.** Let (X, \mathfrak{I}) be an L-fuzzy topological space and $G \in L^X$. If $\beta(c \wedge d) = \beta(c) \cap \beta(d)$ $(\forall c, d \in L)$, then the following conditions are equivalent to each other. - (1) G is L-fuzzy compact. - (2) For any $a \in M(L)$, each strong β_a -cover \mathbb{U} of G with $a \in \beta(\bigwedge_{F \in \mathbb{U}} \mathfrak{T}(F))$ has a finite subfamily \mathbb{V} which is a (strong) β_a -cover of G. - (3) For any $a \in M(L)$ and any strong β_a -cover \mathbb{U} of G with $a \in \beta\left(\bigwedge_{F \in \mathbb{U}} \mathbb{T}(F)\right)$, there exists a finite subfamily \mathbb{V} of \mathbb{U} and $b \in M(L)$ with $a \in \beta^*(b)$ such that \mathbb{V} is a (strong) β_b -cover of G. The following theorem gives the relation between L-fuzzy strong compactness and L-fuzzy compactness. It can be obtained from Theorem 2.4. - **2.6. Theorem.** L-fuzzy strong compactness implies L-fuzzy compactess. \Box - **2.7. Remark.** In general, L-fuzzy compactness need not imply L-fuzzy strong compactness. This can be seen for L-topologies [11]. ## 3. Properties of *L*-fuzzy compactness In order to research properties of L-fuzzy compactness, we first introduce the following definition. **3.1. Definition.** Let (X, \mathcal{T}) be an L-topological space, $a \in M(L)$ and $G \in L^X$. Then G is said to be a-fuzzy compact if and only if $\forall b \in \beta(a)$, each Q_a -open cover \mathcal{U} of G has a finite subfamily \mathcal{V} which is a Q_b -open cover of G. By [16, Theorem 4.3] and Definition 3.1 we can obtain the following result. - **3.2. Theorem.** Let (X, \mathcal{T}) be an L-topological space. Then $G \in L^X$ is fuzzy compact if and only if $\forall a \in M(L)$, G is a-fuzzy compact. \Box - **3.3. Theorem.** Let (X, \mathfrak{T}) be an L-fuzzy topological space and $G \in L^X$. Then G is L-fuzzy compact in (X, \mathfrak{T}) if and only if $\forall a \in M(L)$, G is a-fuzzy compact in $(X, \mathfrak{T}_{[a]})$. *Proof.* (Necessity) Since G is L-fuzzy compact in (X, \mathfrak{I}) , by Definition 2.1 we know that for every family $\mathfrak{U} \subseteq L^X$, it follows that $$\bigwedge_{F \in \mathcal{U}} \Im(F) \wedge \left(\bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{F \in \mathcal{U}} F(x) \right) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{F \in \mathcal{V}} F(x) \right).$$ Hence $\forall a \in M(L)$ and $\forall \mathcal{U} \subseteq \mathcal{T}_{[a]}$, we have that $$a \leq \bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{F \in \mathcal{U}} F(x) \right) \implies a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{F \in \mathcal{V}} F(x) \right).$$ Thus $\forall b \in \beta(a)$, there exists $\mathcal{V} \in 2^{(\mathcal{U})}$ such that $b \leq \bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{F \in \mathcal{V}} F(x) \right)$, i.e., $\forall a \in M(L), \forall b \in \beta(a)$, each Q_a -cover \mathcal{U} of G in $(X, \mathcal{T}_{(x)})$ has a finite subfamily \mathcal{V} which $\forall a \in M(L), \forall b \in \beta(a), \text{ each } Q_a\text{-cover } \mathcal{U} \text{ of } G \text{ in } (X, \mathfrak{I}_{[a]}) \text{ has a finite subfamily } \mathcal{V} \text{ which is a } Q_b\text{-cover of } G. \text{ Therefore, } \forall a \in M(L), G \text{ is } a\text{-fuzzy compact in } (X, \mathfrak{I}_{[a]}).$ (Sufficency) Suppose that $$\forall a \in M(L), G$$ is a-fuzzy compact in $(X, \mathfrak{T}_{[a]})$. Let $\mathfrak{U} \subseteq L^X$ and $a \leq \bigwedge_{F \in \mathfrak{U}} \mathfrak{T}(F) \wedge \Big(\bigwedge_{x \in X} \Big(G'(x) \vee \bigvee_{F \in \mathfrak{U}} F(x)\Big)\Big)$. Then $\mathfrak{U} \subseteq \mathfrak{T}_{[a]}$ and $a \leq \bigwedge_{x \in X} \Big(G'(x) \vee \bigvee_{F \in \mathfrak{V}} F(x)\Big)$. Thus $\forall b \in \beta(a)$, there exists $\mathfrak{V} \in 2^{(\mathfrak{U})}$ such that $b \leq \bigwedge_{x \in X} \Big(G'(x) \vee \bigvee_{F \in \mathfrak{V}} F(x)\Big)$. Hence $$a \leq \bigvee_{\mathcal{V} \in 2^{(1)}} \bigwedge_{x \in X} \left(G'(x) \vee \bigvee_{F \in \mathcal{V}} F(x) \right)$$. Therefore G is L -fuzzy compact in (X, \mathfrak{I}) . \square Analogous to Shi's proof in [18], we can obtain the following lemma. - **3.4. Lemma.** Let (X, \mathcal{T}) be an L-topological space, $a \in M(L)$ and $G \in L^X$. If G is a-fuzzy compact, then $G \wedge H$ is a-fuzzy compact for each $H \in \mathcal{T}'$. - **3.5. Theorem.** Let (X, \mathcal{T}) be an L-fuzzy topological space and $G \in L^X$. If G is L-fuzzy compact, then for each $H \in L^X$ with $\mathcal{T}^*(H) = \top$, $G \wedge H$ is L-fuzzy compact. *Proof.* $\forall a \in M(L)$, since G is L-fuzzy compact in (X, \mathfrak{I}) , by Theorem 3.3, G is a-fuzzy compact in $(X, \mathfrak{I}_{[a]})$. By $\mathfrak{I}^*(H) = \top$, we know that $H' \in \mathfrak{I}_{[a]}$. Further, by Lemma 3.4, $G \wedge H$ is a-fuzzy compact in $(X, \mathfrak{I}_{[a]})$. Then by Theorem 3.3, $G \wedge H$ is L-fuzzy compact in (X, \mathfrak{I}) . Analogous to Shi's proof in [18], we can obtain the following Lemma 3.6. - **3.6. Lemma.** Let (X, \mathfrak{T}) be an L-topological space, $G, H \in L^X$ and $a \in M(L)$. If G and H are a-fuzzy compact, then so is $G \vee H$. - **3.7. Theorem.** Let (X, \mathcal{T}) be an L-fuzzy topological space and $H, G \in L^X$. If G and H are L-fuzzy compact, then so is $G \vee H$. *Proof.* Since G and H are L-fuzzy compact in (X, \mathcal{T}) , by Theorem 3.3, $\forall a \in M(L)$, we know that G and H are a-fuzzy compact in $(X, \mathcal{T}_{[a]})$. By Lemma 3.6, $G \vee H$ is a-fuzzy compact in $(X, \mathcal{T}_{[a]})$. So $G \vee H$ is L-fuzzy compact in (X, \mathcal{T}) . Analogous to Shi's proof in [18], we can obtain the following Lemma 3.8. - **3.8. Lemma.** Let (X, \mathfrak{T}) , (Y, \mathfrak{U}) be two L-topological spaces and $a \in M(L)$. If G is a-fuzzy compact in (X, \mathfrak{T}) and $f: (X, \mathfrak{T}) \to (Y, \mathfrak{U})$ is an L-continuous mapping, then $f_L^{\rightarrow}(G)$ is a-fuzzy compact in (Y, \mathfrak{U}) . - **3.9. Theorem.** Let (X, \mathfrak{T}) , (Y, \mathfrak{U}) be two L-fuzzy topological spaces, and $f: (X, \mathfrak{T}) \to (Y, \mathfrak{U})$ an L-fuzzy continuous mapping. If $G \in L^X$ is L-fuzzy compact in (X, \mathfrak{T}) , then so is $f_L^{\rightarrow}(G)$ in (Y, \mathfrak{U}) . *Proof.* Since G is L-fuzzy compact in (X, \mathcal{T}) , by Theorem 3.3, $\forall a \in M(L)$, G is a-fuzzy compact in $(X, \mathcal{T}_{[a]})$. By Theorem 1.2, $f:(X, \mathcal{T}_{[a]}) \to (Y, \mathcal{U}_{[a]})$ is an L-continuous mapping. Hence $f_L^{\to}(G)$ is a-fuzzy compact in $(Y, \mathcal{U}_{[a]})$. Therefore $f_L^{\to}(G)$ is L-fuzzy compact in (Y, \mathcal{U}) . Analogous to Shi's proof in [18], we can obtain the following Lemma 3.10. **3.10. Lemma.** Let (X, \mathcal{T}) be the product of a family of L-topological spaces $\{(X_i, \mathcal{T}_i)\}_{i \in J}$, and $a \in M(L)$. Then (X, \mathcal{T}) is a-fuzzy compact if and only if for each $i \in J$, (X_i, \mathcal{T}_i) is a-fuzzy compact. From Theorem 2.6 we easily obtain the following Lemma 3.11. - **3.11. Lemma.** Let (X, \mathcal{T}_1) and (X, \mathcal{T}_2) be two L-topological spaces and $a \in M(L)$. If $\mathfrak{I}_1 \subseteq \mathfrak{I}_2$ and (X,\mathfrak{I}_2) is a-fuzzy compact, then (X,\mathfrak{I}_1) is a-fuzzy compact as well. - **3.12. Theorem.** Let (X, \mathcal{T}) be the product of a family of L-fuzzy topological spaces $\{(X_i, \mathcal{T}_i)\}_{i \in J}$. Then (X, \mathcal{T}) is L-fuzzy compact if and only if for each $i \in J$, (X_i, \mathcal{T}_i) is L-fuzzy compact. Proof. $\forall A \in L^{\prod_{i \in J} X_i}$, let $$\phi(A) = \bigvee_{i \in J} \bigvee_{P_i^{\leftarrow}(U) = A} \mathfrak{T}_i(U) \text{ and } \mathfrak{B}(B) = \bigvee_{\sqcap A = B} \bigwedge_{A \in \mathcal{A}} \phi(A),$$ where (\sqcap) stands for "finite intersection". Then ϕ is a subbase of (X, \mathcal{T}) and $\mathcal{B}: L^X \to L$ is a base of (X, \mathfrak{T}) . For each $A \in L^X$, by Theorem 1.5 we have $\mathfrak{T}(C) = \bigvee_{\forall \mathcal{D} = C} \bigwedge_{B \in \mathcal{D}} \mathfrak{B}(B)$. Now $\forall a \in M(L)$, if $\mathfrak{T}(C) \geq a$, then $\forall r \in \beta(a)$, there exists \mathfrak{D} such that $\bigvee \mathfrak{D} = C$ and $\forall B \in \mathfrak{D}, r \prec \mathfrak{B}(B)$. By $\mathfrak{B}(B) = \bigvee_{\Box A = B} \bigwedge_{A \in A} \phi(A)$, we know that there exists \mathcal{A} such that $\Box \mathcal{A} = B$ and $\forall A \in \mathcal{A}$, $r \prec \phi(A). \text{ Furthermore by } \phi(A) = \bigvee_{i \in J} \bigvee_{P_i^{\leftarrow}(U) = A} \Im_i(U), \text{ there exists } i \in J \text{ and } U \in L^X$ such that $r \prec \Im_i(U)$. By $P_i^{\leftarrow}(U) = A$ and $B = \sqcap A$, we have that $C = \bigvee\{B : B \in \mathcal{D}\} \in \prod_{i \in J} (\Im_i)_{[r]}.$ Therefore $\Im_{[a]} \subseteq \prod_{i \in J} (\Im_i)_{[r]}.$ For each $i \in J$, by the L-fuzzy compactness of (X_i, \mathcal{T}_i) , Theorem 3.2 and Lemma 3.10 we know that $\forall a \in M(L), \forall r \in \beta(a), (\prod_i X_i, \prod_i (\mathfrak{T}_i)_{[r]})$ is r-compact. Hence by Lemma 3.11, $(X, \mathcal{T}_{[a]})$ is r-compact. Now, $\forall b \in \beta(a)$, take $r \in \beta(a)$ such that $b \in \beta(r)$. Since each Q_a -cover \mathcal{U} of X must be a Q_r -cover \mathcal{U} of X, by the r-compactness of $(X, \mathcal{T}_{[a]})$, \mathcal{U} has a finite subfamily \mathcal{V} which is a Q_b -cover of X. This shows that $\forall a \in M(L), (X, \mathcal{T}_{[a]})$ is a-fuzzy compact. Thus by Theorem 3.2, (X, \mathcal{T}) is L-fuzzy compact. #### Acknowledgements The authors would like to thank the referees for their helpful suggestions. ## References - [1] Aygün, H. and Abbas, S. E. Some good extensions of compactness in Sostak's L-fuzzy topology, Hacet. J. Math. Stat. 36 (2), 115-125, 2007. - [2] Aygün, H., Warner, M. W. and Kudri, S. R. T. On smooth L-fuzzy toplogical spaces, J. Fuzzy Math. 5, 321-338, 1997. - [3] Chang, C. L. Fuzzy topological spaces, J. Math. Anal. Appl. 24, 182-190, 1968. - [4] Dwinger, P. Characterizations of the complete homomorphic images of a completely distributive complete lattice I, Indagationes Mathematicae (Proceedings) 85, 403–414, 1982. - [5] Fang, J. M. and Yue, Y. L. Base and subbase in I-fuzzy topological spaces, Journal of Mathematical Research and Exposition 26, 89-95, 2006. - Gantner, T. E., Steinlage R. C. and Warren R. H. Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62, 547-562, 1978. - [7] Höhle, U. and Rodabaugh, S. E. Mathematics of fuzzy sets: logic, topology, and measure theory (Kluwer Academic Publishers, Boston/Dordrecht/London, 1999). - [8] Höhle, U. and Šostak, A. P. Axiomatic foundations of fixed-basis fuzzy topology, Chapter 3 in [7]. - [9] Kubiak, T. On fuzzy topologies (Ph.D. Thesis, Adam Mickiewicz, Poznan, Poland, 1985). - [10] Liu, Y. M. Compactness and Tychnoff theorem in fuzzy topological spaces, Acta Mathematica Sinica 24, 260–268, 1981 (in Chinese). - [11] Liu, Y. M., Luo, M. K. Fuzzy topology (World Scientific Publishing, Singapore, 1997). - [12] Lowen, R. Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56, 621–633, 1976 - [13] Lowen, R. A comparision of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64, 446–454, 1978. - [14] Ramadan, A. A. and Abbas, S. E. On L-smooth compactness, J. Fuzzy Math. 9 (1), 59–72, 2001. - [15] Rodabaugh, S. E. Categorical foundations of variable-basis fuzzy topology, Chapter 4 in [7]. - [16] Shi, F.-G. and Zheng, C.-Y. O-convergence of fuzzy nets and its applications, Fuzzy Sets and Systems 140, 499–507, 2003. - [17] Shi, F.-G. A new notion of fuzzy compactness in L-topological spaces, Information Sciences 173, 35–48, 2005. - [18] Shi, F.-G. A new definition of fuzzy compactness, Fuzzy Sets and Systems 158, 1486–1495, 2007. - [19] Šostak, A. P. On a fuzzy topological structure, Rend. Circ. Mat. Palermo, II. Ser. Suppl. 11, 89–103, 1985 - [20] Wang, G. J. A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl. 94, 1–23, 1983. - [21] Wang, G. J. Theory of L-Fuzzy Topological Spaces (Shaanxi Normal University Press, Xi'an, 1988 (in Chinese)). - [22] Zhang, J., Shi, F.-G. and Zheng, C.-Y. On L-fuzzy topological spaces, Fuzzy Sets and Systems 149, 473–484, 2005. - [23] Zhao, D.S. The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl. 128, 64–70, 1987.