ON WEAKLY e-CONTINUOUS FUNCTIONS

Murad Özkoç^{*†} and Gülhan Aslım[‡]

Received 16:12:2009 : Accepted 06:04:2011

Abstract

The main goal of this paper is to introduce and look into some of the fundamental properties of weakly *e*-continuous functions defined via *e*-open sets introduced by E. Ekici (*On e-open sets*, \mathcal{DP}^* -sets and \mathcal{DPE}^* -sets and decompositions of continuity, Arab. J. Sci. Eng. **33** (2A), 269–281, 2008). Some characterizations and several properties concerning weakly *e*-continuous functions are obtained. The concept of weak *e*-continuity is weaker than both the weak continuity introduced by N. Levine (*A decomposition of continuity in topological spaces*, Amer. Math. Monthly **68**, 44–46, 1961) and the *e*-continuity introduced by Ekici, but stronger than weak β -continuity introduced by Popa and Noiri (*Weakly* β -continuous functions, An. Univ. Timis. Ser. Mat.-Inform. **32** (2), 83–92, 1994). In order to investigate some different properties we introduce the concept of *e*-strongly closed graphs and also investigate relationships between weak *e*-continuity and separation axioms, and *e*-strongly closed graphs and covering properties.

Keywords: Faint *e*-continuity, $e-T_2$ space, *e*-strongly closed graph, *e*-Lindelöf space, Weak *e*-continuity.

2000 AMS Classification: 54 C 05, 54 C 08, 54 C 10.

1. Introduction

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) represent nonempty topological spaces on which no separation axioms are assumed unless otherwise stated. Let X be a topological space and A a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. $\mathcal{U}(x)$ denotes all open neighborhoods of the point $x \in X$.

^{*}Muğla University, Faculty of Science, Department of Mathematics, 48000 Kötekli-Muğla, Turkey. E-mail: murad.ozkoc@mu.edu.tr

[†]Corresponding Author.

[‡]Ege University, Faculty of Science, Department of Mathematics, 35100 Bornova, İzmir, Turkey. E-mail: gulhan.aslim@ege.edu.tr

A subset A of a space X is called regular open [23] (resp. regular closed [23]) if $A = \operatorname{int}(\operatorname{cl}(A))$ (resp. $A = \operatorname{cl}(\operatorname{int}(A))$). A subset A of a space X is called δ -semiopen [19] (resp. preopen [12], δ -preopen [22], α -open [14], semi-preopen [3] or β -open [1], b-open [2] or sp-open [5] or γ -open [8], e-open [7]) if $A \subset \operatorname{cl}(\operatorname{int}_{\delta}(A))$ (resp. $A \subset \operatorname{int}(\operatorname{cl}(A)), A \subset \operatorname{int}(\operatorname{cl}(A)), A \subset \operatorname{int}(\operatorname{cl}(A)))$, $A \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))), A \subset \operatorname{int}(\operatorname{cl}(A)) \cup \operatorname{cl}(\operatorname{int}(A))$, $A \subset \operatorname{int}(\operatorname{cl}(A)))$.

The complement of a δ -semiopen (resp. preopen, δ -preopen, α -open, β -open, b-open, e-open) set is said to be δ -semiclosed (resp. preclosed, δ -preclosed, α -closed, β -closed, b-closed, e-closed).

The family of all δ -semiopen (resp. preopen, δ -preopen, α -open, β -open, b-open, *e*-open) sets of X are denoted by $\delta SO(X)$ (resp. PO(X), $\delta PO(X)$, $\alpha O(X)$, $\beta O(X)$, BO(X), eO(X)). The family of all *e*-closed sets of X is denoted by eC(X) and the family of all *e*-open sets of X containing a point $x \in X$ is denoted by eO(X, x).

A set A is called θ -open [11] if every point of A has an open neighborhood whose closure is contained in A. The θ -interior [11] of A in X is the union of all θ -open subsets of A and is denoted by $\operatorname{int}_{\theta}(A)$. Naturally, the complement of a θ -open set is called θ -closed [11]. Equivalently $\operatorname{cl}_{\theta}(A) = \{x \mid U \in \mathcal{U}(x) \Rightarrow \operatorname{cl}(U) \cap A \neq \emptyset\}$, and a set A is θ -closed if and only if $A = \operatorname{cl}_{\theta}(A)$.

A set A is called δ -open [24] if every point of A has an open neighborhood whose interior of the closure is contained in A. The δ -interior [24] of A in X is the union of all δ -open subsets of A, and is denoted by $\operatorname{int}_{\delta}(A)$. Naturally, the complement of a δ -open set is called δ -closed [24]. Equivalently $\operatorname{cl}_{\delta}(A) = \{x \mid U \in \mathfrak{U}(x) \Rightarrow \operatorname{int}(\operatorname{cl}(U)) \cap A \neq \emptyset\}$, and a set A is δ -closed if and only if $A = \operatorname{cl}_{\delta}(A)$.

If A is a subset of a space X, then the *e*-closure of A, denoted by e-cl(A), is the smallest *e*-closed set containing A. The *e*-interior of A, denoted by e-int(A), is the largest *e*-open set contained in A.

1.1. Definition. A function $f : (X, \tau) \to (Y, \sigma)$ is called:

- (a) *e-continuous* [7] (briefly, *e.c.*) if $f^{-1}(V)$ is *e*-open in (X, τ) for every open set V of (Y, σ) ;
- (b) Weakly continuous [5] (briefly w.c.) if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in \mathcal{U}(x)$ such that $f(U) \subset cl(V)$;
- (c) Weakly β -continuous [21] if for each $x \in X$ and each open set V of Y containing f(x), there exists a β -open U of X containing x such that $f(U) \subset cl(V)$.

1.2. Lemma. [19,22] The following properties hold for a set A in a space X:

(a) δ -sint $(A) = A \cap cl(int_{\delta}(A));$

(b) δ -pint $(A) = A \cap int(cl_{\delta}(A)).$

1.3. Lemma. [7] The following properties hold for a set A in a space X:

- (a) $e cl(A) = A \cup (int(cl_{\delta}(A)) \cap cl(int_{\delta}(A)));$
- (b) e-int $(A) = A \cap (int(cl_{\delta}(A)) \cup cl(int_{\delta}(A)));$
- (c) $e cl(X \setminus A) = X \setminus e int(A);$
- (d) $x \in e\text{-cl}(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in eO(X, x)$;

We get the following lemma from the definition of *e*-continuity.

- (e) $A \in eC(X)$ if and only if A = e-cl(A);
- (f) e-int $(A) = \delta$ -sint $(A) \cup \delta$ -pint(A).

1.4. Lemma. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping. Then the following statements are equivalent:

(a) f is e-continuous.

- (b) For each $x \in X$ and each $V \in U(f(x))$, there exists $U \in eO(X, x)$ such that $f(U) \subset V$.
- (c) The inverse image of each closed set in Y is e-closed in X.
- (d) $\operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(B))) \cap \operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(B))) \subset f^{-1}(\operatorname{cl}(B))$ for each $B \subset Y$.
- (e) $f(\operatorname{int}(\operatorname{cl}_{\delta}(A)) \cap \operatorname{cl}(\operatorname{int}_{\delta}(A))) \subset \operatorname{cl}(f(A))$ for each $A \subset X$.

Proof. (a) \implies (b) Let $x \in X$ and $V \in \mathcal{U}(f(x))$. Then $f^{-1}(V) \in eO(X, x)$. Set $U = f^{-1}(V)$ which contains x, then $f(U) \subset V$.

(b) \Longrightarrow (a) Let $V \subset Y$ be open and $x \in f^{-1}(V)$. Then $f(x) \in V$ and thus there exists $U_x \in eO(X, x)$ such that $f(U_x) \subset V$. Then $x \in U_x \subset f^{-1}(V)$, and so $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. Since the union of any family of *e*-open sets is an *e*-open set, we have $\bigcup_{x \in f^{-1}(V)} U_x \in eO(X)$. Then $f^{-1}(V) \in eO(X)$. Therefore, f is *e*-continuous.

(a)
$$\Longrightarrow$$
 (c) Clear.

- (c) \implies (a) Clear.
- (c) \Longrightarrow (d) Let $B \subset Y$. Then $f^{-1}(\operatorname{cl}(B))$ is *e*-closed in X, i.e. $\operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(B))) \cap \operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(B))) \subset \operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(\operatorname{cl}(B)))) \cap \operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(\operatorname{cl}(B))))$ $\subset f^{-1}(\operatorname{cl}(B)).$

(d) \implies (e) Let $A \subset X$. Set B = f(A) in (d), then

$$\operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(f(A)))) \cap \operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(f(A)))) \subset f^{-1}(\operatorname{cl}(f(A))),$$

so that $\operatorname{int}(\operatorname{cl}_{\delta}(A)) \cap \operatorname{cl}(\operatorname{int}_{\delta}(A)) \subset f^{-1}(\operatorname{cl}(f(A)))$. This gives $f(\operatorname{int}(\operatorname{cl}_{\delta}(A)) \cap \operatorname{cl}(\operatorname{int}_{\delta}(A))) \subset \operatorname{cl}(f(A))$.

(e)
$$\Longrightarrow$$
 (a) Let $V \in \sigma$. Set $W = Y \setminus V$ and $A = f^{-1}(W)$. Then

$$f(\operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(Y \setminus V))) \cap \operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(Y \setminus V)))) \subset \operatorname{cl}(f(f^{-1}(Y \setminus V)))$$

$$\subset \operatorname{cl}(Y \setminus V) = Y \setminus V,$$

that is $f^{-1}(W)$ is *e*-closed in X, so f is *e*-continuous.

2. Weakly *e*-continuous functions

In this section we obtain some characterizations and several properties concerning weakly *e*-continuous functions. Also, by defining faintly *e*-continuous functions we investigate relationships between faintly *e*-continuous functions and strongly θ -*e*-continuous functions and weakly *e*-continuous functions.

2.1. Definition. Let (X, τ) and (Y, σ) be topological spaces. $f : (X, \tau) \to (Y, \sigma)$ is a *weakly e-continuous* (briefly a *w.e.c.*) function at $x \in X$ if for each open set V of Y containing f(x) there exists $U \in eO(X, x)$ such that $f(U) \subset cl(V)$. The function f is w.e.c. iff f is *w.e.c.* for all $x \in X$.

2.2. Remark. From Definition 1.1 and Definition 2.1, we have the following diagram. The converses of these implications are not true in general, as shown in the following examples.

2.3. Example. Let $X = \{a, b, c, d, e\}$, $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$ and $\sigma = \{\emptyset, X, \{b, c, d\}\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is weakly *e*-continuous but not *e*-continuous.

2.4. Example. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{c\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{\emptyset, X, \{a, b\}, \{c, d\}\}$. Consider the function $f : (X, \tau) \to (X, \sigma)$ defined as follows: f(a) = a, f(b) = d, f(c) = c, f(d) = b. Then f is weakly β -continuous but not weakly e-continuous.

2.5. Example. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $\sigma = \{\emptyset, X, \{c\}, \{a, b\}\}$. Then the identity $f : (X, \tau) \to (X, \sigma)$ is weakly *e*-continuous but not weakly continuous.

2.6. Lemma. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then the following are equivalent: (a) f is w.e.c. at $x \in X$;

- (a) f is where $u \in CX$, (b) $x \in cl(int_{\delta}(f^{-1}(cl(V)))) \cup int(cl_{\delta}(f^{-1}(cl(V))))$ for each open neighborhood V of
- f(x);(c) $f^{-1}(V) \subset e$ -int $(f^{-1}(\operatorname{cl}(V)))$ for each $V \in \sigma$.

Proof. (a) \Longrightarrow (b) Let $V \in \mathcal{U}(f(x))$. Since f is w.e.c. at x, there exists $U \in eO(X, x)$ such that $f(U) \subset cl(V)$. Then $U \subset f^{-1}(cl(V))$. Since U is e-open,

$$x \in U \subset \operatorname{cl}(\operatorname{int}_{\delta}(U)) \cup \operatorname{int}(\operatorname{cl}_{\delta}(U)) \subset \operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(\operatorname{cl}(V)))) \cup \operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(\operatorname{cl}(V)))).$$

(b) \Longrightarrow (c) Let $x \in f^{-1}(V)$, so $f(x) \in V$. Then $x \in f^{-1}(\operatorname{cl}(V))$, and since $x \in \operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(\operatorname{cl}(V)))) \cup \operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(\operatorname{cl}(V))))$ we have

 $x \in f^{-1}(\mathrm{cl}(V)) \cap [\mathrm{cl}(\mathrm{int}_{\delta}(f^{-1}(\mathrm{cl}(V)))) \cup \mathrm{int}(\mathrm{cl}_{\delta}(f^{-1}(\mathrm{cl}(V))))] = e - \mathrm{int}(f^{-1}(\mathrm{cl}(V))).$

Hence $f^{-1}(V) \subset e\text{-int}(f^{-1}(\operatorname{cl}(V))).$

(c) \Longrightarrow (a) Let $V \in \mathcal{U}(f(x))$. Then $x \in f^{-1}(V) \subset e\text{-int}(f^{-1}(\operatorname{cl}(V)))$. Set $U = e\text{-int}(f^{-1}(\operatorname{cl}(V)))$. Then $U \in eO(X, x)$ and $f(U) \subset \operatorname{cl}(V)$. This shows that f is w.e.c. at $x \in X$.

2.7. Theorem. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then the following are equivalent: (a) f is w.e.c.;

- (b) $e cl(f^{-1}(int(cl(B)))) \subset f^{-1}(cl(B))$ for every subset B of Y;
- (c) $e\text{-cl}(f^{-1}(\operatorname{int}(F))) \subset f^{-1}(F)$ for every regular closed set F of Y;
- (d) $e cl(f^{-1}(V)) \subset f^{-1}(cl(V))$ for every open set V of Y;
- (e) $f^{-1}(V) \subset e$ -int $(f^{-1}(\operatorname{cl}(V)))$ for every open set V of Y;
- (f) $f^{-1}(V) \subset \operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(\operatorname{cl}(V)))) \cup \operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(\operatorname{cl}(V))))$ for every open set V of Y.

Proof. (a) ⇒ (b) Let $B \subset Y$. Suppose that $x \in X \setminus f^{-1}(\operatorname{cl}(B))$. Then $f(x) \in Y \setminus \operatorname{cl}(B)$ and there exists an open set V containing f(x) such that $V \cap B = \emptyset$; therefore $\operatorname{cl}(V) \cap$ $\operatorname{int}(\operatorname{cl}(B)) = \emptyset$. Since f is w.e.c. there exists $U \in eO(X, x)$ such that $f(U) \subset \operatorname{cl}(V)$. Therefore, we have $U \cap f^{-1}(\operatorname{int}(\operatorname{cl}(B))) = \emptyset$, hence $x \in X \setminus e\operatorname{-cl}(f^{-1}(\operatorname{int}(\operatorname{cl}(B))))$. Thus we obtain $e\operatorname{-cl}(f^{-1}(\operatorname{int}(\operatorname{cl}(B)))) \subset f^{-1}(\operatorname{cl}(B))$.

(b) \Longrightarrow (c) Let $F \in RC(Y)$. Then we have

$$e-{\rm cl}(f^{-1}({\rm int}(F))) = e-{\rm cl}(f^{-1}({\rm int}({\rm cl}({\rm int}(F))))) \subset f^{-1}({\rm cl}({\rm int}(F))) = f^{-1}(F).$$

(c) ⇒ (d) For every $V \in \sigma$, cl(V) is regular closed in Y and we have e-cl($f^{-1}(V)$) ⊂ e-cl($f^{-1}(\operatorname{int}(\operatorname{cl}(V)))$) ⊂ $f^{-1}(\operatorname{cl}(V))$.

(d)
$$\Longrightarrow$$
 (e) Let $V \in \sigma$. Then $Y \setminus cl(V)$ is open in Y, and using Lemma 1.3 (c) we have

$$X \setminus e\operatorname{-int}(f^{-1}(\operatorname{cl}(V))) = e\operatorname{-cl}(f^{-1}(Y \setminus \operatorname{cl}(V))) \subset f^{-1}(\operatorname{cl}(Y \setminus \operatorname{cl}(V))) \subset X \setminus f^{-1}(V)$$

Therefore we obtain $f^{-1}(V) \subset e$ -int $(f^{-1}(\operatorname{cl}(V)))$.

(e) \implies (f) Let $V \in \sigma$. By Lemma 1.3 we have

$$f^{-1}(V) \subset e\operatorname{-int}(f^{-1}(\operatorname{cl}(V))) \subset \operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(\operatorname{cl}(V)))) \cup \operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(\operatorname{cl}(V)))).$$

(f) \Longrightarrow (a) Let $x \in X$ and $V \in \mathcal{U}(f(x))$. Then

$$x \in f^{-1}(V) \subset \operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(\operatorname{cl}(V)))) \cup \operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(\operatorname{cl}(V)))).$$

It follows from Lemma 2.6 that f is w.e.c.

2.8. Theorem. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then the following are equivalent:

- (a) f is w.e.c.;
- (b) $e cl(f^{-1}(int(cl(V)))) \subset f^{-1}(cl(V))$ for every e-open subset V of Y;
- (c) $e cl(f^{-1}(V)) \subset f^{-1}(cl(V))$ for every preopen subset V of Y;
- (d) $f^{-1}(V) \subset e$ -int $(f^{-1}(cl(V)))$ for every preopen subset V of Y;

Proof. (a) \implies (b) Let $V \in eO(Y)$. Since f is w.e.c., from Theorem 2.7(b) we have $e\text{-cl}(f^{-1}(\operatorname{int}(\operatorname{cl}(V)))) \subset f^{-1}(\operatorname{cl}(V)).$

- (b) \Longrightarrow (c) Clear since $PO(Y) \subset eO(Y)$ and $V \subset int(cl(V))$.
- (c) \implies (d) Similar to the proof of the implication (d) \implies (e) in Theorem 2.7.
- (d) \implies (a) This follows from Theorem 2.7 since every open set is preopen.

2.9. Theorem. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then the following are equivalent:

- (a) f is w.e.c.;
- (b) $f(e-cl(A)) \subset cl_{\theta}(f(A))$ for every subset A of X;
- (c) $e\text{-cl}(f^{-1}(B)) \subset f^{-1}(cl_{\theta}(B))$ for every subset B of Y; (d) $e\text{-cl}(f^{-1}(int(cl_{\theta}(B)))) \subset f^{-1}(cl_{\theta}(B))$ for every subset B of Y.

Proof. (a) \Longrightarrow (b) Let $x \in e\text{-cl}(A)$, V be any open set of Y containing f(x). Then there exists $U \in eO(X, x)$ such that $f(U) \subset cl(V)$. Then $U \cap A \neq \emptyset$ and $\emptyset \neq f(U) \cap f(A) \subset cl(V)$. $\operatorname{cl}(V) \cap f(A)$, so that $f(x) \in \operatorname{cl}_{\theta}(f(A))$.

(b) \implies (c) Let $B \subset Y$. Set $A = f^{-1}(B)$ in (b). Then we have $f(e\text{-cl}(f^{-1}(B))) \subset$ $\operatorname{cl}_{\theta}(B)$ and $e\operatorname{-cl}(f^{-1}(B)) \subset f^{-1}(f(e\operatorname{-cl}(f^{-1}(B)))) \subset f^{-1}(\operatorname{cl}_{\theta}(B)).$

(c) \Longrightarrow (d) Let B be a subset of Y. Since $cl_{\theta}(B)$ is closed in Y, we have

$$e\text{-cl}(f^{-1}(\operatorname{int}(\operatorname{cl}_{\theta}(B))) \subset f^{-1}(\operatorname{cl}_{\theta}(\operatorname{int}(\operatorname{cl}_{\theta}(B)))) \subset f^{-1}(\operatorname{cl}_{\theta}(B)).$$

(d)
$$\Longrightarrow$$
 (a) Let $V \in \sigma$. Then $V \subset int(cl(V)) = int(cl_{\theta}(V))$, and hence

$$e\text{-cl}(f^{-1}(V)) \subset e\text{-cl}(f^{-1}(\operatorname{int}(\operatorname{cl}_{\theta}(V)))) \subset f^{-1}(\operatorname{cl}_{\theta}(V)) = f^{-1}(\operatorname{cl}(V)).$$

It follows from Theorem 2.7 that f is w.e.c.

2.10. Corollary. If $f:(X,\tau) \to (Y,\sigma)$ is w.e.c., then $f^{-1}(V)$ is e-closed (resp. e-open) in X for every θ -closed (resp. θ -open) subset V of Y.

Proof. If V is θ -closed, Theorem 2.9 (c) gives e-cl $(f^{-1}(V)) \subset f^{-1}(cl_{\theta}(V)) = f^{-1}(V)$, so $f^{-1}(V)$ is e-closed. If V is θ -open, $Y \setminus V$ is θ -closed and Theorem 2.9 gives

$$e\text{-cl}(f^{-1}(Y \setminus V)) \subset f^{-1}(cl_{\theta}(Y \setminus V)) = f^{-1}(Y \setminus V).$$

Now $e\text{-cl}(X \setminus f^{-1}(V)) \subset X \setminus f^{-1}(V)$, and then $X \setminus e\text{-int}(f^{-1}(V)) \subset X \setminus f^{-1}(V)$, so that $f^{-1}(V) \subset e\text{-int}(f^{-1}(V))$ and $f^{-1}(V)$ is e-open. \Box

2.11. Corollary. If $f^{-1}(cl_{\theta}(B))$ is e-closed in X for every subset B of Y, then a function $f: (X, \tau) \to (Y, \sigma)$ is w.e.c.

Proof. Since $f^{-1}(cl_{\theta}(B))$ is *e*-closed in X, we have $e\text{-cl}(f^{-1}(B)) \subset e\text{-cl}(f^{-1}(cl_{\theta}(B))) = f^{-1}(cl_{\theta}(B))$, and by Theorem 2.9, f is w.e.c.

2.12. Definition. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be *faintly e-continuous* (briefly, *f.e.c.*) if for each $x \in X$ and each θ -open set V of Y containing f(x), there exists an *e*-open subset U of X containing x such that $f(U) \subset V$.

2.13. Definition. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be strongly θ -*e*-continuous [17] (briefly, *st.* θ .*e.c.*) if for each $x \in X$ and each open set V of Y containing f(x), there exists an *e*-open set U of X containing x such that $f(e\text{-cl}(U)) \subset V$.

2.14. Lemma. Let Y be a regular space. Then $f : X \to Y$ is st. θ .e.c. if and only if f is e-continuous.

Proof. Let $x \in X$ and V an open subset of Y containing f(x). Since Y is regular, there exists an open set W such that $f(x) \in W \subset \operatorname{cl}(W) \subset V$. If f is e-continuous, there exists $U \in eO(X, x)$ such that $f(U) \subset W$. We shall show that $f(e\operatorname{-cl}(U)) \subset \operatorname{cl}(W)$. Suppose that $y \notin \operatorname{cl}(W)$. There exists an open set G containing y such that $G \cap W = \emptyset$. Since f is e-continuous, $f^{-1}(G) \in eO(X)$ and $f^{-1}(G) \cap U = \emptyset$, and hence $f^{-1}(G) \cap e\operatorname{-cl}(U) = \emptyset$. Therefore, we obtain $G \cap f(e\operatorname{-cl}(U)) = \emptyset$ and $y \notin f(e\operatorname{-cl}(U))$. Consequently, we have $f(e\operatorname{-cl}(U)) \subset \operatorname{cl}(W) \subset V$. The converse is obvious.

2.15. Lemma. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping. Then the following statements are equivalent:

- (a) f is faintly e-continuous;
- (b) The inverse image of every θ -open set in Y is e-open in X;
- (c) The inverse image of every θ -closed set in Y is e-closed in X.

Proof. (a) \Longrightarrow (b) Let $V \subset Y$ be θ -open and $x \in f^{-1}(V)$. Then $f(x) \in V$ and thus there exists $U_x \in eO(X, x)$ such that $f(U_x) \subset V$. Then $x \in U_x \subset f^{-1}(V)$, and so $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. Since the union of any family of e-open sets is an e-open set, we have $\bigcup_{x \in f^{-1}(V)} U_x \in eO(X)$. Then $f^{-1}(V) \in eO(X)$.

(b) \implies (a) Let $x \in X$ and $V \in \theta O(Y, f(x))$. Then $f^{-1}(V) \in eO(X, x)$. Set $U = f^{-1}(V)$ which contains x, then $f(U) \subset V$.

- (a) \Longrightarrow (c) Similar to (a) \Longrightarrow (b) since the complement of every θ -closed set is θ -open.
- (c) \Longrightarrow (a) Similar to (b) \Longrightarrow (a) since the complement of every θ -closed set is θ -open.
- (b) \implies (c) Routine.
- (c) \implies (b) Routine.

2.16. Theorem. Let $f : (X, \tau) \to (Y, \sigma)$ be a function and Y a regular space. Then the following are equivalent:

- (a) f is st. θ .e.c.;
- (b) f is e-continuous;
- (c) $f^{-1}(cl_{\theta}(B))$ is e-closed in X for every subset B of Y;
- (d) f is w.e.c.;
- (e) f is f.e.c.

Proof. (a) \Longrightarrow (b) Let $x \in X$ and let V be an open subset of Y containing f(x). Then there exists $U \in eO(X, x)$ such that $f(e-\operatorname{cl}(U)) \subset V$ but $f(U) \subset f(e-\operatorname{cl}(U)) \subset V$, hence f is e.c.

(b) \implies (c) Since $cl_{\theta}(B)$ is closed in Y for every subset B of Y, by Lemma 1.4(c) $f^{-1}(cl_{\theta}(B))$ is e-closed in X.

- (c) \implies (d) Corollary 2.11.
- (d) \implies (e) Corollary 2.10 and Lemma 2.15.

(e) \implies (a) Let V be any open subset of Y. Since Y is regular, V is θ -open in Y. By the faint *e*-continuity of $f, f^{-1}(V)$ is *e*-open in X. Therefore f is *e*-continuous, and then according to Lemma 2.14, f is st. θ -e.c. since Y is regular.

2.17. Remark. Faint *e*-continuity does not imply strong θ -*e*-continuity.

2.18. Example. Let $X = \{a, b, c, d, e\}, \tau = \{X, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}, \emptyset\}$ and $\sigma = \{\emptyset, X, \{b, c, d\}\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is f.e.c. but not st. θ .e.c.

3. Some properties

3.1. Theorem. If $f : (X, \tau) \to (Y, \sigma)$ is w.e.c. and $g : (Y, \sigma) \to (Z, \rho)$ is continuous, then the composition $g \circ f : (X, \tau) \to (Z, \rho)$ is w.e.c.

Proof. Let $x \in X$ and $g(f(x)) \in W \in \rho$. Then $g^{-1}(W)$ is an open subset of Y containing f(x), and there exists $U \in eO(X, x)$ such that $f(U) \subset cl(g^{-1}(W))$. Since g is continuous, we obtain $g(f(U)) \subset g(cl(g^{-1}(W))) \subset g(g^{-1}(cl(W))) \subset cl(W)$.

3.2. Theorem. If $g \circ f : (X, \tau) \to (Z, \rho)$ is w.e.c. and $f : (X, \tau) \to (Y, \sigma)$ is an open continuous surjection, then $g : (Y, \sigma) \to (Z, \rho)$ is w.e.c.

Proof. Let $W \in \rho$. Since $g \circ f : (X, \tau) \to (Z, \rho)$ is w.e.c. and f is continuous we have $(g \circ f)^{-1}(W) \subset \operatorname{cl}(\operatorname{int}_{\delta}((g \circ f)^{-1}(\operatorname{cl}(W)))) \cup \operatorname{int}(\operatorname{cl}_{\delta}((g \circ f)^{-1}(\operatorname{cl}(W)))) = \operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(g^{-1}(\operatorname{cl}(W))))) \cup \operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(g^{-1}(\operatorname{cl}(W)))))$. Since f is an open continuous surjection, we have $g^{-1}(W) = f(f^{-1}(g^{-1}(W)))$ and

$$g^{-1}(W) \subset f(\operatorname{cl}(\operatorname{int}_{\delta}(f^{-1}(g^{-1}(\operatorname{cl}(W)))))) \cup f(\operatorname{int}(\operatorname{cl}_{\delta}(f^{-1}(g^{-1}(\operatorname{cl}(W)))))) \\ \subset \operatorname{cl}(\operatorname{int}_{\delta}(f(f^{-1}(g^{-1}(\operatorname{cl}(W)))))) \cup \operatorname{int}(\operatorname{cl}_{\delta}(f(f^{-1}(g^{-1}(\operatorname{cl}(W)))))) \\ \subset \operatorname{cl}(\operatorname{int}_{\delta}(g^{-1}(\operatorname{cl}(W)))) \cup \operatorname{int}(\operatorname{cl}_{\delta}(g^{-1}(\operatorname{cl}(W)))),$$

and by Theorem 2.7, g is w.e.c.

Let $\{X_{\alpha} \mid \alpha \in I\}$ and $\{Y_{\alpha} \mid \alpha \in I\}$ be any two families of spaces with the same index set *I*. Let $f_{\alpha} : X_{\alpha} \to Y_{\alpha}$ be a function for each $\alpha \in I$. The product space $\Pi\{X_{\alpha} \mid \alpha \in I\}$ will be denoted by ΠX_{α} and $f : \Pi X_{\alpha} \to \Pi Y_{\alpha}$ will denote the product function defined by $f(\{x_{\alpha}\}) = \{f_{\alpha}(x_{\alpha})\}$ for every $\{x_{\alpha}\} \in \Pi X_{\alpha}$. Moreover, let $p_{\beta} : \Pi X_{\alpha} \to X_{\beta}$ and $q_{\beta} : \Pi Y_{\alpha} \to Y_{\beta}$ be the natural projections. Then we have the following theorem.

3.3. Theorem. If a function $f : \Pi X_{\alpha} \to \Pi Y_{\alpha}$ is w.e.c., then $f_{\alpha} : X_{\alpha} \to Y_{\alpha}$ is w.e.c. for each $\alpha \in I$.

Proof. Suppose that f is w.e.c. Let $\beta \in I$. Since q_{β} is continuous, by Theorem 3.1, $q_{\beta} \circ f = f_{\beta} \circ p_{\beta}$ is w.e.c. Moreover, p_{β} is an open continuous surjection so by Theorem 3.2, f_{β} is w.e.c.

4. Separation axioms and graph properties

In this section we define an *e*-strongly closed graph. We look into some relationships between weakly *e*-continuous functions and $e T_1$ spaces and $e T_2$ spaces.

4.1. Definition. A space X is called:

- (a) Urysohn [27] if for each pair of distinct points x and y in X, there exist open sets U and V such that $x \in U, y \in V$ and $cl(U) \cap cl(V) = \emptyset$;
- (b) $e \cdot T_1$ [6] if for each pair of distinct points x and y in X, there exist e-open sets U and V of X containing x and y, respectively, such that $y \notin U$ and $x \notin V$;
- (c) $e \cdot T_2$ [6] if for each pair of distinct points x and y in X, there exist e-open sets U and V of X containing x and y, respectively, such that $U \cap V = \emptyset$.

4.2. Theorem. Let $f : (X, \tau) \to (Y, \sigma)$ be a w.e.c. injective function. Then the following hold:

- (a) If Y is Urysohn, then X is $e-T_2$.
- (b) If Y is Hausdorff, then X is $e-T_1$.

Proof. (a) Let x_1 and x_2 be any distinct points in X. Then $f(x_1) \neq f(x_2)$ and there exist open sets V_1 and V_2 of Y containing $f(x_1)$ and $f(x_2)$, respectively, such that $cl(V_1) \cap$ $cl(V_2) = \emptyset$. Since f is w.e.c. there exists $U_i \in eO(X, x_i)$ such that $f(U_i) \subset cl(V_i)$, for i = 1, 2. Since $f^{-1}(cl(V_1))$ and $f^{-1}(cl(V_2))$ are disjoint, we obtain $U_1 \cap U_2 = \emptyset$. Hence X is $e \cdot T_2$.

(b) Let x_1 and x_2 be any distinct points in X. Then $f(x_1) \neq f(x_2)$ and there exist open sets V_1 and V_2 of Y such that $f(x_1) \in V_1$ and $f(x_2) \in V_2$. Then we obtain $f(x_1) \notin \operatorname{cl}(V_2)$ and $f(x_2) \notin \operatorname{cl}(V_1)$. Since f is w.e.c., there exists $U_i \in eO(X, x_i)$ such that $f(U_i) \subset \operatorname{cl}(V_i)$, for i = 1, 2. Hence we obtain $x_2 \notin U_1$ and $x_1 \notin U_2$. This shows that X is $e \cdot T_1$.

4.3. Theorem. If $g: (X, \tau) \to (Y, \sigma)$ is w.e.c. and A is a θ -closed subset of $X \times Y$ then $p_X(A \cap G(g))$ is e-closed in X, where p_X represents the projection of $X \times Y$ onto X and G(g) denotes the graph of g.

Proof. Let A be a θ -closed subset of $X \times Y$ and $x \in e\text{-cl}(p_X(A \cap G(g)))$. Let U be any open subset of X containing x, and V any open set of Y containing g(x). Since g is w.e.c., by Theorem 2.7, we have $x \in g^{-1}(V) \subset e\text{-int}(g^{-1}(\text{cl}(V)))$ and $U \cap e\text{-int}(g^{-1}(\text{cl}(V))) \in eO(X, x)$. Since $x \in e\text{-cl}(p_X(A \cap G(g)))$ by Lemma 1.3,

 $[U \cap e\text{-int}(g^{-1}(\operatorname{cl}(V)))] \cap p_X(A \cap G(g))$

contains some point u of X. This implies that $(u, g(u)) \in A$ and $g(u) \in cl(V)$. Thus we have $\emptyset \neq (U \times cl(V)) \cap A \subset cl(U \times V) \cap A$ and hence $(x, g(x)) \in cl_{\theta}(A)$. Since A is θ -closed, $(x, g(x)) \in A \cap G(g)$ and $x \in p_X(A \cap G(g))$. Then $p_X(A \cap G(g))$ is e-closed by Lemma 1.3.

4.4. Corollary. If $f : (X, \tau) \to (Y, \sigma)$ has a θ -closed graph and $g : (X, \tau) \to (Y, \sigma)$ is w.e.c., then the set $\{x \in X \mid f(x) = g(x)\}$ is e-closed in X.

Proof. Since G(f) is θ -closed and $p_X(G(f) \cap G(g)) = \{x \in X \mid f(x) = g(x)\}$, it follows from Theorem 4.3 that $\{x \in X \mid f(x) = g(x)\}$ is *e*-closed.

4.5. Definition. A function $f : (X, \tau) \to (Y, \sigma)$ is said to have an *e-strongly closed* graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist an *e*-open subset U of X and an open subset V of Y such that $(x, y) \in U \times V$ and $(U \times cl(V)) \cap G(f) = \emptyset$.

4.6. Theorem. If Y is a Urysohn space and $f : (X, \tau) \to (Y, \sigma)$ is w.e.c., then G(f) is *e*-strongly closed.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Then $y \neq f(x)$, and there exist open sets V and W of Y containing f(x) and y, respectively, such that $cl(V) \cap cl(W) = \emptyset$. Since f is w.e.c., there exists an e-open subset U of X containing x such that $f(U) \subset cl(V)$. Therefore, we obtain $f(U) \cap cl(V) = \emptyset$. Since f is w.e.c., there exists a $W \in eO(X, x_2)$ such that $f(W) \subset cl(V)$. Therefore, we have $f(U) \cap f(W) = \emptyset$, and hence $U \cap W = \emptyset$. This shows that X is e- T_2 .

4.7. Theorem. Let $f : (X, \tau) \to (Y, \sigma)$ be a w.e.c. function having an e-strongly closed graph G(f). If f is injective, then X is e^{-T_2} .

Proof. Let x_1 and x_2 be two distinct points of X. Since f is injective, $f(x_1) \neq f(x_2)$ and $(x_1, f(x_2)) \notin G(f)$. Since G(f) is e-strongly closed, there exist $U \in eO(X, x_1)$ and an open subset V of Y such that $(x_1, f(x_2)) \in U \times V$ and $(U \times cl(V)) \cap G(f) = \emptyset$, and hence $f(U) \cap cl(V) = \emptyset$. Since f is w.e.c., there exists a $W \in eO(X, x_2)$ such that $f(W) \subset cl(V)$. Therefore, we have $f(U) \cap f(W) = \emptyset$ and hence $U \cap W = \emptyset$. This shows that X is e- T_2 .

5. Covering properties

Finally in this last section, by defining the notion of *e*-Lindelöf space we investigate some relationships between *e*-compact spaces and *e*-Lindelöf spaces and weakly *e*-continuous functions.

5.1. Definition. A Hausdorff space X is called *semicompact* [28] at a point x if every neighborhood U_x contains a V_x such that $B(V_x)$, the boundary of V_x , is compact. It is called semicompact if it has this property at every point.

5.2. Theorem. If Y is a semicompact Hausdorff space and $f : (X, \tau) \to (Y, \sigma)$ is w.e.c., then f is e-continuous.

Proof. Every semicompact Hausdorff space is regular, and it follows from Theorem 2.16 that f is *e*-continuous.

5.3. Definition. A subset A of a space X is said to be an *H*-set [24] or to be quasi *H*-closed relative to X [20] if for every cover $\{U_{\alpha} \mid \alpha \in I\}$ of A by open sets of X, there exists a finite subset I_0 of I such that $A \subset \bigcup \{ \operatorname{cl}(U_{\alpha}) \mid \alpha \in I_0 \}$.

5.4. Definition. A topological space (X, τ) is said to be

- (a) e-compact [6] (resp. e-Lindelöf) if every e-open cover of X has a finite (resp. countable) subcover;
- (b) Almost compact [15] or quasi H-closed [20] if every cover of X by open sets has a finite subcover whose closures cover X;
- (c) Almost Lindelöf [26] if every cover of X by open sets has a countable subcover whose closures cover X;
- (d) C-compact [25] if for each closed subset $A \subset X$ and each open cover $\{U_{\alpha} : \alpha \in I\}$ of A, there exists a finite subset I_0 of I such that $A \subset \bigcup \{ cl(U_{\alpha}) \mid \alpha \in I_0 \}$.

5.5. Theorem. Let $f: (X, \tau) \to (Y, \sigma)$ be a w.e.c. surjection. Then the following hold:

- (a) If X is e-compact, then Y is almost compact.
- (b) If X is e-Lindelöf, then Y is almost Lindelöf.

Proof. (a) Let $\{V_{\alpha} \mid \alpha \in I\}$ be a cover of Y by open subsets of Y. For each point $x \in X$ there exists $\alpha(x) \in I$ such that $f(x) \in V_{\alpha(x)}$. Since f is w.e.c., there exists an *e*-open set U_x of X containing x such that $f(U_x) \subset \operatorname{cl}(V_{\alpha(x)})$. The family $\{U_x \mid x \in X\}$ is a cover of X by *e*-open subsets of X, and hence there exists a finite subset X_0 of X such that $X = \bigcup_{x \in X_0} U_x$. Therefore, we obtain $Y = f(X) = \bigcup_{x \in X_0} \operatorname{cl}(V_{\alpha(x)})$. This shows that Y is almost compact.

(b) Analogous to (a).

5.6. Theorem. If a function $f : (X, \tau) \to (Y, \sigma)$ has an e-strongly closed graph G(f), then f(A) is θ -closed in Y for each subset A which is e-compact relative to X.

Proof. Let A be e-compact relative to X and $y \in Y \setminus f(A)$. Then for each $x \in A$ we have $(x, y) \notin G(f)$, and there exist $U_x \in eO(X, x)$ and an open V_x of Y containing y such that $f(U_x) \cap \operatorname{cl}(V_x) = \emptyset$. The family $\{U_x \mid x \in A\}$ is a cover of A by e-open subsets of X. Since A is e-compact relative to X, there exists a finite subset A_0 of A such that $A \subset \bigcup \{U_x \mid x \in A_0\}$. Put $V = \bigcap_{x \in A_0} V_x$. Then V is an open set in Y, $y \in V$ and

$$f(A) \cap \operatorname{cl}(V) \subset [\bigcup_{x \in A_0} f(U_x)] \cap \operatorname{cl}(V) \subset [\bigcup_{x \in A_0} f(U_x) \cap \operatorname{cl}(V)] = \emptyset.$$

Therefore $y \notin cl_{\theta}(f(A))$, and hence f(A) is θ -closed in Y.

We recall that a space X is said to be *submaximal* [4] if every dense subset of X is open in X. A space X is said to be *extremally disconnected* [4] if the closure of each open set of X is open in X.

5.7. Theorem. Let X be a submaximal extremally disconnected space. If a function $f: X \to Y$ has an e-strongly closed graph then $f^{-1}(A)$ is closed in X for each subset A which is an H-set in Y.

Proof. Let A be an H-set of Y and $x \notin f^{-1}(A)$. For each $y \in A$ we have $(x, y) \in X \times Y \setminus G(f)$, and there exist an e-open set U_y of X containing x and an open set V_y of Y containing y such that $f(U_y) \cap \operatorname{cl}(V_y) = \emptyset$, hence $U_y \cap f^{-1}(\operatorname{cl}(V_y)) = \emptyset$. The family $\{V_y \mid y \in A\}$ is a cover of A by open sets of Y. Since A is an H-set in Y, there exists a finite subset A_0 of A such that $A \subset \bigcup \{\operatorname{cl}(V_y) \mid y \in A_0\}$. Since X is submaximal extremally disconnected, each U_y is open in X. Set $U = \bigcap_{y \in A_0} U_y$, then U is an open set containing x and

$$f(U) \cap A \subset \bigcup_{y \in A_0} [f(U) \cap \operatorname{cl}(V_y)] \subset \bigcup_{y \in A_0} [f(U_y) \cap \operatorname{cl}(V_y)] = \emptyset.$$

Therefore we have $U \cap f^{-1}(A) = \emptyset$. Hence $f^{-1}(A)$ is closed in X.

5.8. Corollary. Let $f : X \to Y$ be a function with an e-strongly closed graph, from a submaximal extremally disconnected space X into a C-compact space Y. Then f is continuous.

Proof. Let A be a closed subset in the C-compact space Y. Then A is an H-set and $f^{-1}(A)$ is closed in X according to Theorem 5.7. Therefore f is continuous.

Acknowledgments

We would like to express our sincere gratitude to the referees for their valuable suggestions and comments which improved the paper.

$$\square$$

References

- Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A. β-open sets and β-continuous mappings, Bull-Fac. Sci. Assiut Univ. 12, 77–90, 1983.
- [2] Andrijevič, D. On b-open sets, Mat. Vesnik 48, 59–64, 1996.
- [3] Andrijević, D. Semi-preopen sets, Mat. Vesnik 38, 24–32, 1986.
- [4] Bourbaki, N. General Topology (Part I) (Addison Wesley, Reading, MA, 1966).
- [5] Dontchev, J. and Przemski, M. On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar. 71 (1-2), 109–120, 1996.
- [6] Ekici, E. New forms of contra continuity, Carpathian J. Math. 24 (1), 37–45, 2008.
- [7] Ekici, E. On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arab. J. Sci. Eng. 33 (2A), 269–281, 2008.
- [8] El-Atik, A.A. A Study on some Types of Mappings on Topological Spaces (MSc Thesis, Tanta University, Egypt, 1997).
- [9] Levine, N. A decomposition of continuity in topological spaces, Amer. Math. Monthly 68, 44–46, 1961.
- [10] Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70, 36–41, 1963.
- [11] Long, P. E. and Herrington, L. L. The T_θ-topology and faintly continuous functions, Kyungpook Math. J. 22, 7–14, 1982.
- [12] Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N. On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt 53, 47–53, 1982.
- [13] Nasef, A. A. Another weak form of faint continuity, Chaos Solitons Fractals 12 (12), 2219– 2225, 2001.
- [14] Njåstad, O. On some classes of nearly open sets, Pacific J. Math. 15, 961–970, 1965.
- [15] Noiri, T. Between continuity and weak continuity, Boll. Unione Mat. Ital. 9 (4), 647–654, 1974.
- [16] Noiri, T. Weakly α-continuous functions, Int. J. Math. Sci. 10, 483–490, 1987.
- [17] Özkoç, M. and Aslım, G. On strongly θ-e-continuous functions, Bull. Korean Math. Soc. 47 (5), 1025-1036, 2010.
- [18] Park, J. H. Strongly θ -b-continuous functions, Acta Math. Hungar. **110** (4), 347–359, 2006.
- [19] Park, J. H., Lee, B. Y. and Son, M. J. On δ-semiopen sets in topological space, J. Indian Acad. Math. 19 (1), 59–67, 1997.
- [20] Porter, J. and Thomas, J. On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 118, 159–170, 1974.
- [21] Popa, V. and Noiri, T. Weakly β-continuous functions, An. Univ. Timis. Ser. Mat.-Inform. 32 (2), 83–92, 1994.
- [22] Raychaudhuri, S. and Mukherjee, M.N. On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sin. 21 (4), 357–366, 1993.
- [23] Stone, M. H. Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41, 375–381, 1937.
- [24] Veličko, N. V. H-closed topological spaces, Amer. Math. Soc. Transl. 78, 103–118, 1968.
- [25] Viglino, G. C-compact spaces, Duke Math. J. 36, 761-764, 1969.
- [26] Willard, S. and Dissanayake, U. N. B. The almost Lindelöf degree, Canad. Math. Bull. 27 (4), 452–455, 1984.
- [27] Willard, S. General Topology (Addison Wesley Publishing Company, London, 1970).
- [28] Zippin, L. On semicompact spaces, Amer. J. Math. 57 (2), 27-341, 1935.