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Abstract

The main goal of this paper is to introduce and look into some of the
fundamental properties of weakly e-continuous functions defined via e-
open sets introduced by E. Ekici (On e-open sets, DP

∗-sets and DPE
∗-

sets and decompositions of continuity, Arab. J. Sci. Eng. 33 (2A),
269–281, 2008). Some characterizations and several properties concern-
ing weakly e-continuous functions are obtained. The concept of weak
e-continuity is weaker than both the weak continuity introduced by
N. Levine (A decomposition of continuity in topological spaces, Amer.
Math. Monthly 68, 44–46, 1961) and the e-continuity introduced by
Ekici, but stronger than weak β-continuity introduced by Popa and
Noiri (Weakly β-continuous functions, An. Univ. Timis. Ser. Mat.-
Inform. 32 (2), 83–92, 1994). In order to investigate some different
properties we introduce the concept of e-strongly closed graphs and
also investigate relationships between weak e-continuity and separation
axioms, and e-strongly closed graphs and covering properties.

Keywords: Faint e-continuity, e-T2 space, e-strongly closed graph, e-Lindelöf space,
Weak e-continuity.

2000 AMS Classification: 54C05, 54C 08, 54C10.

1. Introduction

Throughout this paper (X, τ ) and (Y, σ) (or simply X and Y ) represent nonempty
topological spaces on which no separation axioms are assumed unless otherwise stated.
Let X be a topological space and A a subset of X. The closure of A and the interior of
A are denoted by cl(A) and int(A), respectively. U(x) denotes all open neighborhoods of
the point x ∈ X.
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A subset A of a space X is called regular open [23] (resp. regular closed [23]) if
A = int(cl(A)) (resp. A = cl(int(A))). A subset A of a space X is called δ-semiopen [19]
(resp. preopen [12], δ-preopen [22], α-open [14], semi-preopen [3] or β-open [1], b-open [2]
or sp-open [5] or γ-open [8], e-open [7]) if A ⊂ cl(intδ(A)) (resp. A ⊂ int(cl(A)), A ⊂
int(clδ(A)), A ⊂ int(cl(int(A))), A ⊂ cl(int(cl(A))), A ⊂ int(cl(A)) ∪ cl(int(A)), A ⊂
int(clδ(A)) ∪ cl(intδ(A))).

The complement of a δ-semiopen (resp. preopen, δ-preopen, α-open, β-open, b-open,
e-open) set is said to be δ-semiclosed (resp. preclosed, δ-preclosed, α-closed, β-closed,
b-closed, e-closed).

The family of all δ-semiopen (resp. preopen, δ-preopen, α-open, β-open, b-open,
e-open) sets of X are denoted by δSO(X) (resp. PO(X), δPO(X), αO(X), βO(X),
BO(X), eO(X)). The family of all e-closed sets of X is denoted by eC(X) and the
family of all e-open sets of X containing a point x ∈ X is denoted by eO(X,x).

A set A is called θ-open [11] if every point of A has an open neighborhood whose
closure is contained in A. The θ-interior [11] of A in X is the union of all θ-open subsets
of A and is denoted by intθ(A). Naturally, the complement of a θ-open set is called
θ-closed [11]. Equivalently clθ(A) = {x | U ∈ U(x) ⇒ cl(U) ∩ A 6= ∅}, and a set A is
θ-closed if and only if A = clθ(A).

A set A is called δ-open [24] if every point of A has an open neighborhood whose
interior of the closure is contained in A. The δ-interior [24] of A in X is the union of all
δ-open subsets of A, and is denoted by intδ(A). Naturally, the complement of a δ-open
set is called δ-closed [24]. Equivalently clδ(A) = {x | U ∈ U(x) ⇒ int(cl(U)) ∩ A 6= ∅},
and a set A is δ-closed if and only if A = clδ(A).

If A is a subset of a space X, then the e-closure of A, denoted by e-cl(A), is the smallest
e-closed set containing A. The e-interior of A, denoted by e-int(A), is the largest e-open
set contained in A.

1.1. Definition. A function f : (X, τ ) → (Y, σ) is called:

(a) e-continuous [7] (briefly, e.c.) if f−1(V ) is e-open in (X, τ ) for every open set V
of (Y, σ);

(b) Weakly continuous [5] (briefly w.c.) if for each x ∈ X and each open set V of Y
containing f(x), there exists U ∈ U(x) such that f(U) ⊂ cl(V );

(c) Weakly β-continuous [21] if for each x ∈ X and each open set V of Y containing
f(x), there exists a β-open U of X containing x such that f(U) ⊂ cl(V ).

1.2. Lemma. [19,22] The following properties hold for a set A in a space X:

(a) δ-sint(A) = A ∩ cl(intδ(A));
(b) δ-pint(A) = A ∩ int(clδ(A)). �

1.3. Lemma. [7] The following properties hold for a set A in a space X:

(a) e-cl(A) = A ∪ (int(clδ(A)) ∩ cl(intδ(A)));
(b) e-int(A) = A ∩ (int(clδ(A)) ∪ cl(intδ(A)));
(c) e-cl(X\A) = X\e-int(A);
(d) x ∈ e-cl(A) if and only if A ∩ U 6= ∅ for every U ∈ eO(X,x);
(e) A ∈ eC(X) if and only if A = e-cl(A);
(f) e-int(A) = δ-sint(A) ∪ δ-pint(A). �

We get the following lemma from the definition of e-continuity.

1.4. Lemma. Let f : (X, τ ) → (Y, σ) be a mapping. Then the following statements are

equivalent:

(a) f is e-continuous.
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(b) For each x ∈ X and each V ∈ U(f(x)), there exists U ∈ eO(X, x) such that

f(U) ⊂ V .

(c) The inverse image of each closed set in Y is e-closed in X.

(d) int(clδ(f
−1(B))) ∩ cl(intδ(f

−1(B))) ⊂ f−1(cl(B)) for each B ⊂ Y .

(e) f(int(clδ(A)) ∩ cl(intδ(A))) ⊂ cl(f(A)) for each A ⊂ X.

Proof. (a) =⇒ (b) Let x ∈ X and V ∈ U(f(x)). Then f−1(V ) ∈ eO(X, x). Set U =
f−1(V ) which contains x, then f(U) ⊂ V .

(b) =⇒ (a) Let V ⊂ Y be open and x ∈ f−1(V ). Then f(x) ∈ V and thus there
exists Ux ∈ eO(X,x) such that f(Ux) ⊂ V . Then x ∈ Ux ⊂ f−1(V ), and so f−1(V ) =⋃

x∈f−1(V ) Ux. Since the union of any family of e-open sets is an e-open set, we have⋃
x∈f−1(V ) Ux ∈ eO(X). Then f−1(V ) ∈ eO(X). Therefore, f is e-continuous.

(a) =⇒ (c) Clear.

(c) =⇒ (a) Clear.

(c) =⇒ (d) Let B ⊂ Y . Then f−1(cl(B)) is e-closed in X, i.e.

int(clδ(f
−1(B))) ∩ cl(intδ(f

−1(B))) ⊂ int(clδ(f
−1(cl(B)))) ∩ cl(intδ(f

−1(cl(B))))

⊂ f−1(cl(B)).

(d) =⇒ (e) Let A ⊂ X. Set B = f(A) in (d), then

int(clδ(f
−1(f(A)))) ∩ cl(intδ(f

−1(f(A)))) ⊂ f−1(cl(f(A))),

so that int(clδ(A))∩cl(intδ(A)) ⊂ f−1(cl(f(A))). This gives f(int(clδ(A))∩cl(intδ(A))) ⊂
cl(f(A)).

(e) =⇒ (a) Let V ∈ σ. Set W = Y \V and A = f−1(W ). Then

f(int(clδ(f
−1(Y \V ))) ∩ cl(intδ(f

−1(Y \V )))) ⊂ cl(f(f−1(Y \V )))

⊂ cl(Y \V ) = Y \V,

that is f−1(W ) is e-closed in X, so f is e-continuous. �

2. Weakly e-continuous functions

In this section we obtain some characterizations and several properties concerning
weakly e-continuous functions. Also, by defining faintly e-continuous functions we inves-
tigate relationships between faintly e-continuous functions and strongly θ-e-continuous
functions and weakly e-continuous functions.

2.1. Definition. Let (X, τ ) and (Y, σ) be topological spaces. f : (X, τ ) → (Y, σ) is a
weakly e-continuous (briefly a w.e.c.) function at x ∈ X if for each open set V of Y
containing f(x) there exists U ∈ eO(X,x) such that f(U) ⊂ cl(V ). The function f is
w.e.c. iff f is w.e.c. for all x ∈ X.

2.2. Remark. From Definition 1.1 and Definition 2.1, we have the following diagram.
The converses of these implications are not true in general, as shown in the following
examples.

e-continuity

��

weak continuity // weak e-continuity // weak β-continuity
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2.3. Example. Let X = {a, b, c, d, e}, τ = {∅, X, {a}, {c}, {a, c}, {c, d}, {a, c, d}} and
σ = {∅, X, {b, c, d}}. Then the identity function f : (X, τ ) → (X,σ) is weakly e-
continuous but not e-continuous.

2.4. Example. LetX = {a, b, c, d}, τ = {∅, X, {c}, {a, b}, {a, b, c}} and σ = {∅, X, {a, b},
{c, d}}. Consider the function f : (X, τ ) → (X,σ) defined as follows: f(a) = a, f(b) =
d, f(c) = c, f(d) = b. Then f is weakly β-continuous but not weakly e-continuous.

2.5. Example. Let X = {a, b, c}, τ = {∅, X, {a}, {b, c}} and σ = {∅, X, {c}, {a, b}}.
Then the identity f : (X, τ ) → (X,σ) is weakly e-continuous but not weakly continuous.

2.6. Lemma. Let f : (X, τ ) → (Y, σ) be a function. Then the following are equivalent:

(a) f is w.e.c. at x ∈ X;

(b) x ∈ cl(intδ(f
−1(cl(V )))) ∪ int(clδ(f

−1(cl(V )))) for each open neighborhood V of

f(x);
(c) f−1(V ) ⊂ e-int(f−1(cl(V ))) for each V ∈ σ.

Proof. (a) =⇒ (b) Let V ∈ U(f(x)). Since f is w.e.c. at x, there exists U ∈ eO(X,x)
such that f(U) ⊂ cl(V ). Then U ⊂ f−1(cl(V )). Since U is e-open,

x ∈ U ⊂ cl(intδ(U)) ∪ int(clδ(U)) ⊂ cl(intδ(f
−1(cl(V )))) ∪ int(clδ(f

−1(cl(V )))).

(b) =⇒ (c) Let x ∈ f−1(V ), so f(x) ∈ V . Then x ∈ f−1(cl(V )), and since x ∈
cl(intδ(f

−1(cl(V )))) ∪ int(clδ(f
−1(cl(V )))) we have

x ∈ f−1(cl(V ))∩[cl(intδ(f
−1(cl(V ))))∪int(clδ(f

−1(cl(V ))))] = e-int(f−1(cl(V ))).

Hence f−1(V ) ⊂ e-int(f−1(cl(V ))).

(c) =⇒ (a) Let V ∈ U(f(x)). Then x ∈ f−1(V ) ⊂ e-int(f−1(cl(V ))). Set U = e-
int(f−1(cl(V ))). Then U ∈ eO(X,x) and f(U) ⊂ cl(V ). This shows that f is w.e.c. at
x ∈ X. �

2.7. Theorem. Let f : (X, τ ) → (Y, σ) be a function. Then the following are equivalent:

(a) f is w.e.c.;

(b) e-cl(f−1(int(cl(B)))) ⊂ f−1(cl(B)) for every subset B of Y ;

(c) e-cl(f−1(int(F ))) ⊂ f−1(F ) for every regular closed set F of Y ;

(d) e-cl(f−1(V )) ⊂ f−1(cl(V )) for every open set V of Y ;

(e) f−1(V ) ⊂ e-int(f−1(cl(V ))) for every open set V of Y ;

(f) f−1(V ) ⊂ cl(intδ(f
−1(cl(V ))))∪ int(clδ(f

−1(cl(V )))) for every open set V of Y .

Proof. (a) =⇒ (b) Let B ⊂ Y . Suppose that x ∈ X\f−1(cl(B)). Then f(x) ∈ Y \cl(B)
and there exists an open set V containing f(x) such that V ∩ B = ∅; therefore cl(V ) ∩
int(cl(B)) = ∅. Since f is w.e.c. there exists U ∈ eO(X,x) such that f(U) ⊂ cl(V ).
Therefore, we have U ∩ f−1(int(cl(B))) = ∅, hence x ∈ X\e-cl(f−1(int(cl(B)))). Thus
we obtain e-cl(f−1(int(cl(B)))) ⊂ f−1(cl(B)).

(b) =⇒ (c) Let F ∈ RC(Y ). Then we have

e-cl(f−1(int(F ))) = e-cl(f−1(int(cl(int(F ))))) ⊂ f−1(cl(int(F ))) = f−1(F ).

(c) =⇒ (d) For every V ∈ σ, cl(V ) is regular closed in Y and we have e-cl(f−1(V )) ⊂
e-cl(f−1(int(cl(V )))) ⊂ f−1(cl(V )).

(d) =⇒ (e) Let V ∈ σ. Then Y \cl(V ) is open in Y , and using Lemma 1.3 (c) we have

X\e-int(f−1(cl(V )) = e-cl(f−1(Y \cl(V ))) ⊂ f−1(cl(Y \cl(V ))) ⊂ X\f−1(V ).

Therefore we obtain f−1(V ) ⊂ e-int(f−1(cl(V )).
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(e) =⇒ (f) Let V ∈ σ. By Lemma 1.3 we have

f−1(V ) ⊂ e-int(f−1(cl(V ))) ⊂ cl(intδ(f
−1(cl(V )))) ∪ int(clδ(f

−1(cl(V )))).

(f) =⇒ (a) Let x ∈ X and V ∈ U(f(x)). Then

x ∈ f−1(V ) ⊂ cl(intδ(f
−1(cl(V )))) ∪ int(clδ(f

−1(cl(V )))).

It follows from Lemma 2.6 that f is w.e.c. �

2.8. Theorem. Let f : (X, τ ) → (Y, σ) be a function. Then the following are equivalent:

(a) f is w.e.c.;

(b) e-cl(f−1(int(cl(V )))) ⊂ f−1(cl(V )) for every e-open subset V of Y ;

(c) e-cl(f−1(V )) ⊂ f−1(cl(V )) for every preopen subset V of Y ;

(d) f−1(V ) ⊂ e-int(f−1(cl(V ))) for every preopen subset V of Y ;

Proof. (a) =⇒ (b) Let V ∈ eO(Y ). Since f is w.e.c., from Theorem 2.7 (b) we have
e-cl(f−1(int(cl(V )))) ⊂ f−1(cl(V )).

(b) =⇒ (c) Clear since PO(Y ) ⊂ eO(Y ) and V ⊂ int(cl(V )).

(c) =⇒ (d) Similar to the proof of the implication (d) =⇒ (e) in Theorem 2.7.

(d) =⇒ (a) This follows from Theorem 2.7 since every open set is preopen. �

2.9. Theorem. Let f : (X, τ ) → (Y, σ) be a function. Then the following are equivalent:

(a) f is w.e.c.;

(b) f(e-cl(A)) ⊂ clθ(f(A)) for every subset A of X;

(c) e-cl(f−1(B)) ⊂ f−1(clθ(B)) for every subset B of Y ;

(d) e-cl(f−1(int(clθ(B)))) ⊂ f−1(clθ(B)) for every subset B of Y .

Proof. (a) =⇒ (b) Let x ∈ e-cl(A), V be any open set of Y containing f(x). Then there
exists U ∈ eO(X, x) such that f(U) ⊂ cl(V ). Then U ∩ A 6= ∅ and ∅ 6= f(U) ∩ f(A) ⊂
cl(V ) ∩ f(A), so that f(x) ∈ clθ(f(A)).

(b) =⇒ (c) Let B ⊂ Y . Set A = f−1(B) in (b). Then we have f(e-cl(f−1(B))) ⊂
clθ(B) and e-cl(f−1(B)) ⊂ f−1(f(e-cl(f−1(B)))) ⊂ f−1(clθ(B)).

(c) =⇒ (d) Let B be a subset of Y . Since clθ(B) is closed in Y , we have

e-cl(f−1(int(clθ(B))) ⊂ f−1(clθ(int(clθ(B)))) ⊂ f−1(clθ(B)).

(d) =⇒ (a) Let V ∈ σ. Then V ⊂ int(cl(V )) = int(clθ(V )), and hence

e-cl(f−1(V )) ⊂ e-cl(f−1(int(clθ(V )))) ⊂ f−1(clθ(V )) = f−1(cl(V )).

It follows from Theorem 2.7 that f is w.e.c. �

2.10. Corollary. If f : (X, τ ) → (Y, σ) is w.e.c., then f−1(V ) is e-closed (resp. e-open)
in X for every θ-closed (resp. θ-open) subset V of Y .

Proof. If V is θ-closed, Theorem 2.9 (c) gives e-cl(f−1(V )) ⊂ f−1(clθ(V )) = f−1(V ), so
f−1(V ) is e-closed. If V is θ-open, Y \V is θ-closed and Theorem 2.9 gives

e-cl(f−1(Y \V )) ⊂ f−1(clθ(Y \V )) = f−1(Y \V ).

Now e-cl(X\f−1(V )) ⊂ X\f−1(V ), and then X\e-int(f−1(V )) ⊂ X\f−1(V ), so that
f−1(V ) ⊂ e-int(f−1(V )) and f−1(V ) is e-open. �

2.11. Corollary. If f−1(clθ(B)) is e-closed in X for every subset B of Y , then a function

f : (X, τ ) → (Y, σ) is w.e.c.
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Proof. Since f−1(clθ(B)) is e-closed in X, we have e-cl(f−1(B)) ⊂ e-cl(f−1(clθ(B))) =
f−1(clθ(B)), and by Theorem 2.9, f is w.e.c. �

2.12. Definition. A function f : (X, τ ) → (Y, σ) is said to be faintly e-continuous
(briefly, f.e.c.) if for each x ∈ X and each θ-open set V of Y containing f(x), there exists
an e-open subset U of X containing x such that f(U) ⊂ V .

2.13. Definition. A function f : (X, τ ) → (Y, σ) is said to be strongly θ-e-continuous
[17] (briefly, st.θ.e.c.) if for each x ∈ X and each open set V of Y containing f(x), there
exists an e-open set U of X containing x such that f(e-cl(U)) ⊂ V .

2.14. Lemma. Let Y be a regular space. Then f : X → Y is st.θ.e.c. if and only if f
is e-continuous.

Proof. Let x ∈ X and V an open subset of Y containing f(x). Since Y is regular, there
exists an open set W such that f(x) ∈ W ⊂ cl(W ) ⊂ V . If f is e-continuous, there exists
U ∈ eO(X,x) such that f(U) ⊂ W . We shall show that f(e-cl(U)) ⊂ cl(W ). Suppose
that y /∈ cl(W ). There exists an open set G containing y such that G ∩W = ∅. Since f
is e-continuous, f−1(G) ∈ eO(X) and f−1(G) ∩ U = ∅, and hence f−1(G)∩ e-cl(U) = ∅.
Therefore, we obtain G ∩ f(e-cl(U)) = ∅ and y /∈ f(e-cl(U)). Consequently, we have
f(e-cl(U)) ⊂ cl(W ) ⊂ V . The converse is obvious. �

2.15. Lemma. Let f : (X, τ ) → (Y, σ) be a mapping. Then the following statements are

equivalent:

(a) f is faintly e-continuous;
(b) The inverse image of every θ-open set in Y is e-open in X;
(c) The inverse image of every θ-closed set in Y is e-closed in X.

Proof. (a) =⇒ (b) Let V ⊂ Y be θ-open and x ∈ f−1(V ). Then f(x) ∈ V and thus
there exists Ux ∈ eO(X,x) such that f(Ux) ⊂ V . Then x ∈ Ux ⊂ f−1(V ), and so
f−1(V ) = ∪x∈f−1(V )Ux. Since the union of any family of e-open sets is an e-open set,

we have
⋃

x∈f−1(V ) Ux ∈ eO(X). Then f−1(V ) ∈ eO(X).

(b) =⇒ (a) Let x ∈ X and V ∈ θO(Y, f(x)). Then f−1(V ) ∈ eO(X,x). Set U =
f−1(V ) which contains x, then f(U) ⊂ V .

(a) =⇒ (c) Similar to (a) =⇒ (b) since the complement of every θ-closed set is θ-open.

(c) =⇒ (a) Similar to (b) =⇒ (a) since the complement of every θ-closed set is θ-open.

(b) =⇒ (c) Routine.

(c) =⇒ (b) Routine. �

2.16. Theorem. Let f : (X, τ ) → (Y, σ) be a function and Y a regular space. Then the

following are equivalent:

(a) f is st.θ.e.c.;
(b) f is e-continuous;
(c) f−1(clθ(B)) is e-closed in X for every subset B of Y ;

(d) f is w.e.c.;

(e) f is f.e.c.

Proof. (a) =⇒ (b) Let x ∈ X and let V be an open subset of Y containing f(x). Then
there exists U ∈ eO(X, x) such that f(e-cl(U)) ⊂ V but f(U) ⊂ f(e-cl(U)) ⊂ V , hence
f is e.c.

(b) =⇒ (c) Since clθ(B) is closed in Y for every subset B of Y , by Lemma 1.4 (c)
f−1(clθ(B)) is e-closed in X.
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(c) =⇒ (d) Corollary 2.11.

(d) =⇒ (e) Corollary 2.10 and Lemma 2.15.

(e) =⇒ (a) Let V be any open subset of Y . Since Y is regular, V is θ-open in Y . By
the faint e-continuity of f , f−1(V ) is e-open in X. Therefore f is e-continuous, and then
according to Lemma 2.14, f is st.θ.e.c. since Y is regular. �

2.17. Remark. Faint e-continuity does not imply strong θ-e-continuity.

2.18. Example. Let X = {a, b, c, d, e}, τ = {X, {a}, {c}, {a, c}, {c, d}, {a, c, d}, ∅} and
σ = {∅, X, {b, c, d}}. Then the identity function f : (X, τ ) → (X,σ) is f.e.c. but not
st.θ.e.c.

3. Some properties

3.1. Theorem. If f : (X, τ ) → (Y, σ) is w.e.c. and g : (Y, σ) → (Z, ρ) is continuous,

then the composition g ◦ f : (X, τ ) → (Z, ρ) is w.e.c.

Proof. Let x ∈ X and g(f(x)) ∈ W ∈ ρ. Then g−1(W ) is an open subset of Y containing
f(x), and there exists U ∈ eO(X, x) such that f(U) ⊂ cl(g−1(W )). Since g is continuous,
we obtain g(f(U)) ⊂ g(cl(g−1(W ))) ⊂ g(g−1(cl(W ))) ⊂ cl(W ). �

3.2. Theorem. If g ◦ f : (X, τ ) → (Z, ρ) is w.e.c. and f : (X, τ ) → (Y, σ) is an open

continuous surjection, then g : (Y, σ) → (Z, ρ) is w.e.c.

Proof. Let W ∈ ρ. Since g ◦f : (X, τ ) → (Z, ρ) is w.e.c. and f is continuous we have (g ◦
f)−1(W ) ⊂ cl(intδ((g◦f)

−1(cl(W ))))∪int(clδ((g◦f)
−1(cl(W )))) = cl(intδ(f

−1(g−1(cl(W )))))∪
int(clδ(f

−1(g−1(cl(W ))))). Since f is an open continuous surjection, we have g−1(W ) =
f(f−1(g−1(W ))) and

g−1(W ) ⊂ f(cl(intδ(f
−1(g−1(cl(W ))))))∪ f(int(clδ(f

−1(g−1(cl(W ))))))

⊂ cl(intδ(f(f
−1(g−1(cl(W ))))))∪ int(clδ(f(f

−1(g−1(cl(W ))))))

⊂ cl(intδ(g
−1(cl(W ))))∪ int(clδ(g

−1(cl(W )))),

and by Theorem 2.7, g is w.e.c. �

Let {Xα | α ∈ I} and {Yα | α ∈ I} be any two families of spaces with the same index
set I . Let fα : Xα → Yα be a function for each α ∈ I . The product space Π{Xα | α ∈ I}
will be denoted by ΠXα and f : ΠXα → ΠYα will denote the product function defined
by f({xα}) = {fα(xα)} for every {xα} ∈ ΠXα. Moreover, let pβ : ΠXα → Xβ and
qβ : ΠYα → Yβ be the natural projections. Then we have the following theorem.

3.3. Theorem. If a function f : ΠXα → ΠYα is w.e.c., then fα : Xα → Yα is w.e.c.

for each α ∈ I.

Proof. Suppose that f is w.e.c. Let β ∈ I . Since qβ is continuous, by Theorem 3.1,
qβ ◦f = fβ ◦pβ is w.e.c. Moreover, pβ is an open continuous surjection so by Theorem 3.2,
fβ is w.e.c. �
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4. Separation axioms and graph properties

In this section we define an e-strongly closed graph. We look into some relationships
between weakly e-continuous functions and e-T1 spaces and e-T2 spaces.

4.1. Definition. A space X is called:

(a) Urysohn [27] if for each pair of distinct points x and y in X, there exist open
sets U and V such that x ∈ U , y ∈ V and cl(U) ∩ cl(V ) = ∅;

(b) e-T1 [6] if for each pair of distinct points x and y in X, there exist e-open sets
U and V of X containing x and y, respectively, such that y /∈ U and x /∈ V ;

(c) e-T2 [6] if for each pair of distinct points x and y in X, there exist e-open sets
U and V of X containing x and y, respectively, such that U ∩ V = ∅.

4.2. Theorem. Let f : (X, τ ) → (Y, σ) be a w.e.c. injective function. Then the following

hold:

(a) If Y is Urysohn, then X is e-T2.

(b) If Y is Hausdorff, then X is e-T1.

Proof. (a) Let x1 and x2 be any distinct points in X. Then f(x1) 6= f(x2) and there exist
open sets V1 and V2 of Y containing f(x1) and f(x2), respectively, such that cl(V1) ∩
cl(V2) = ∅. Since f is w.e.c. there exists Ui ∈ eO(X,xi) such that f(Ui) ⊂ cl(Vi), for
i = 1, 2. Since f−1(cl(V1)) and f−1(cl(V2)) are disjoint, we obtain U1 ∩ U2 = ∅. Hence
X is e-T2.

(b) Let x1 and x2 be any distinct points in X. Then f(x1) 6= f(x2) and there exist
open sets V1 and V2 of Y such that f(x1) ∈ V1 and f(x2) ∈ V2. Then we obtain
f(x1) /∈ cl(V2) and f(x2) /∈ cl(V1). Since f is w.e.c., there exists Ui ∈ eO(X,xi) such
that f(Ui) ⊂ cl(Vi), for i = 1, 2. Hence we obtain x2 /∈ U1 and x1 /∈ U2. This shows that
X is e-T1. �

4.3. Theorem. If g : (X, τ ) → (Y, σ) is w.e.c. and A is a θ-closed subset of X×Y then

pX(A∩G(g)) is e-closed in X, where pX represents the projection of X ×Y onto X and

G(g) denotes the graph of g.

Proof. Let A be a θ-closed subset of X × Y and x ∈ e-cl(pX(A ∩G(g))). Let U be any
open subset of X containing x, and V any open set of Y containing g(x). Since g is w.e.c.,
by Theorem 2.7, we have x ∈ g−1(V ) ⊂ e-int(g−1(cl(V ))) and U ∩ e-int(g−1(cl(V ))) ∈
eO(X,x). Since x ∈ e-cl(pX(A ∩G(g))) by Lemma 1.3,

[U ∩ e-int(g−1(cl(V )))] ∩ pX(A ∩G(g))

contains some point u of X. This implies that (u, g(u)) ∈ A and g(u) ∈ cl(V ). Thus
we have ∅ 6= (U × cl(V )) ∩ A ⊂ cl(U × V ) ∩ A and hence (x, g(x)) ∈ clθ(A). Since A is
θ-closed, (x, g(x)) ∈ A ∩G(g) and x ∈ pX(A ∩G(g)). Then pX(A ∩G(g)) is e-closed by
Lemma 1.3. �

4.4. Corollary. If f : (X, τ ) → (Y, σ) has a θ-closed graph and g : (X, τ ) → (Y, σ) is

w.e.c., then the set {x ∈ X | f(x) = g(x)} is e-closed in X.

Proof. Since G(f) is θ-closed and pX(G(f) ∩G(g)) = {x ∈ X | f(x) = g(x)}, it follows
from Theorem 4.3 that {x ∈ X | f(x) = g(x)} is e-closed. �

4.5. Definition. A function f : (X, τ ) → (Y, σ) is said to have an e-strongly closed

graph if for each (x, y) ∈ (X×Y )\G(f), there exist an e-open subset U of X and an open
subset V of Y such that (x, y) ∈ U × V and (U × cl(V )) ∩G(f) = ∅. �
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4.6. Theorem. If Y is a Urysohn space and f : (X, τ ) → (Y, σ) is w.e.c., then G(f) is

e-strongly closed.

Proof. Let (x, y) ∈ (X × Y )\G(f). Then y 6= f(x), and there exist open sets V and W
of Y containing f(x) and y, respectively, such that cl(V ) ∩ cl(W ) = ∅. Since f is w.e.c.,
there exists an e-open subset U of X containing x such that f(U) ⊂ cl(V ). Therefore,
we obtain f(U) ∩ cl(V ) = ∅. Since f is w.e.c., there exists a W ∈ eO(X,x2) such that
f(W ) ⊂ cl(V ). Therefore, we have f(U) ∩ f(W ) = ∅, and hence U ∩W = ∅. This shows
that X is e-T2. �

4.7. Theorem. Let f : (X, τ ) → (Y, σ) be a w.e.c. function having an e-strongly closed

graph G(f). If f is injective, then X is e-T2.

Proof. Let x1 and x2 be two distinct points of X. Since f is injective, f(x1) 6= f(x2)
and (x1, f(x2)) /∈ G(f). Since G(f) is e-strongly closed, there exist U ∈ eO(X, x1) and
an open subset V of Y such that (x1, f(x2)) ∈ U × V and (U × cl(V )) ∩ G(f) = ∅,
and hence f(U) ∩ cl(V ) = ∅. Since f is w.e.c., there exists a W ∈ eO(X,x2) such that
f(W ) ⊂ cl(V ). Therefore, we have f(U) ∩ f(W ) = ∅ and hence U ∩W = ∅. This shows
that X is e-T2. �

5. Covering properties

Finally in this last section, by defining the notion of e-Lindelöf space we investi-
gate some relationships between e-compact spaces and e-Lindelöf spaces and weakly
e-continuous functions.

5.1. Definition. A Hausdorff space X is called semicompact [28] at a point x if every
neighborhood Ux contains a Vx such that B(Vx), the boundary of Vx, is compact. It is
called semicompact if it has this property at every point.

5.2. Theorem. If Y is a semicompact Hausdorff space and f : (X, τ ) → (Y, σ) is w.e.c.,
then f is e-continuous.

Proof. Every semicompact Hausdorff space is regular, and it follows from Theorem 2.16
that f is e-continuous. �

5.3. Definition. A subset A of a space X is said to be an H-set [24] or to be quasi

H-closed relative to X [20] if for every cover {Uα | α ∈ I} of A by open sets of X, there
exists a finite subset I0 of I such that A ⊂

⋃
{cl(Uα) | α ∈ I0}.

5.4. Definition. A topological space (X, τ ) is said to be

(a) e-compact [6] (resp. e-Lindelöf ) if every e-open cover of X has a finite (resp.
countable) subcover;

(b) Almost compact [15] or quasi H-closed [20] if every cover of X by open sets has
a finite subcover whose closures cover X;

(c) Almost Lindelöf [26] if every cover of X by open sets has a countable subcover
whose closures cover X;

(d) C-compact [25] if for each closed subset A ⊂ X and each open cover {Uα : α ∈ I}
of A, there exists a finite subset I0 of I such that A ⊂

⋃
{cl(Uα) | α ∈ I0}.

5.5. Theorem. Let f : (X, τ ) → (Y, σ) be a w.e.c. surjection. Then the following hold:

(a) If X is e-compact, then Y is almost compact.

(b) If X is e-Lindelöf, then Y is almost Lindelöf.
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Proof. (a) Let {Vα | α ∈ I} be a cover of Y by open subsets of Y . For each point x ∈ X
there exists α(x) ∈ I such that f(x) ∈ Vα(x). Since f is w.e.c., there exists an e-open set
Ux of X containing x such that f(Ux) ⊂ cl(Vα(x)). The family {Ux | x ∈ X} is a cover
of X by e-open subsets of X, and hence there exists a finite subset X0 of X such that
X =

⋃
x∈X0

Ux. Therefore, we obtain Y = f(X) =
⋃

x∈X0
cl(Vα(x)). This shows that Y

is almost compact.

(b) Analogous to (a). �

5.6. Theorem. If a function f : (X, τ ) → (Y, σ) has an e-strongly closed graph G(f),
then f(A) is θ-closed in Y for each subset A which is e-compact relative to X.

Proof. Let A be e-compact relative to X and y ∈ Y \f(A). Then for each x ∈ A we have
(x, y) /∈ G(f), and there exist Ux ∈ eO(X,x) and an open Vx of Y containing y such
that f(Ux) ∩ cl(Vx) = ∅. The family {Ux | x ∈ A} is a cover of A by e-open subsets of
X. Since A is e-compact relative to X, there exists a finite subset A0 of A such that
A ⊂

⋃
{Ux | x ∈ A0}. Put V =

⋂
x∈A0

Vx. Then V is an open set in Y , y ∈ V and

f(A) ∩ cl(V ) ⊂ [∪x∈A0
f(Ux)] ∩ cl(V ) ⊂ [

⋃

x∈A0

f(Ux) ∩ cl(V )] = ∅.

Therefore y /∈ clθ(f(A)), and hence f(A) is θ-closed in Y . �

We recall that a space X is said to be submaximal [4] if every dense subset of X is
open in X. A space X is said to be extremally disconnected [4] if the closure of each open
set of X is open in X.

5.7. Theorem. Let X be a submaximal extremally disconnected space. If a function

f : X → Y has an e-strongly closed graph then f−1(A) is closed in X for each subset A
which is an H-set in Y .

Proof. Let A be an H-set of Y and x /∈ f−1(A). For each y ∈ A we have (x, y) ∈
X × Y \G(f), and there exist an e-open set Uy of X containing x and an open set Vy of
Y containing y such that f(Uy) ∩ cl(Vy) = ∅, hence Uy ∩ f−1(cl(Vy)) = ∅. The family
{Vy | y ∈ A} is a cover of A by open sets of Y . Since A is an H-set in Y , there exists
a finite subset A0 of A such that A ⊂

⋃
{cl(Vy) | y ∈ A0}. Since X is submaximal

extremally disconnected, each Uy is open in X. Set U =
⋂

y∈A0
Uy , then U is an open

set containing x and

f(U) ∩A ⊂ ∪y∈A0
[f(U) ∩ cl(Vy)] ⊂ ∪y∈A0

[f(Uy) ∩ cl(Vy)] = ∅.

Therefore we have U ∩ f−1(A) = ∅. Hence f−1(A) is closed in X. �

5.8. Corollary. Let f : X → Y be a function with an e-strongly closed graph, from

a submaximal extremally disconnected space X into a C-compact space Y . Then f is

continuous.

Proof. Let A be a closed subset in the C-compact space Y . Then A is an H-set and
f−1(A) is closed in X according to Theorem 5.7. Therefore f is continuous. �
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