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Abstract

The main goal of this paper is to introduce and look into some of the
fundamental properties of weakly e-continuous functions defined via e-
open sets introduced by E. Ekici (On e-open sets, DP*-sets and DPE™ -
sets and decompositions of continuity, Arab. J. Sci. Eng. 33(2A),
269-281, 2008). Some characterizations and several properties concern-
ing weakly e-continuous functions are obtained. The concept of weak
e-continuity is weaker than both the weak continuity introduced by
N. Levine (A decomposition of continuity in topological spaces, Amer.
Math. Monthly 68, 44-46, 1961) and the e-continuity introduced by
Ekici, but stronger than weak ([-continuity introduced by Popa and
Noiri (Weakly B-continuous functions, An. Univ. Timis. Ser. Mat.-
Inform. 32(2), 83-92, 1994). In order to investigate some different
properties we introduce the concept of e-strongly closed graphs and
also investigate relationships between weak e-continuity and separation
axioms, and e-strongly closed graphs and covering properties.

Keywords: Faint e-continuity, e-7T> space, e-strongly closed graph, e-Lindelof space,
Weak e-continuity.
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1. Introduction

Throughout this paper (X,7) and (Y,0) (or simply X and Y') represent nonempty
topological spaces on which no separation axioms are assumed unless otherwise stated.
Let X be a topological space and A a subset of X. The closure of A and the interior of
A are denoted by cl(A) and int(A), respectively. U(x) denotes all open neighborhoods of
the point z € X.
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A subset A of a space X is called regular open [23] (resp. regular closed [23]) if
A = int(cl(A)) (resp. A = cl(int(A))). A subset A of a space X is called d-semiopen [19]
(resp. preopen [12], 0-preopen [22], a-open [14], semi-preopen [3] or B-open [1], b-open [2]
or sp-open [5] or y-open [8], e-open [7]) if A C cl(ints(A)) (resp. A C int(cl(A4)), A C
int(cls(A)), A C int(cl(int(A))), A C cl(int(cl(A))), A C int(cl(A)) U cl(int(A)), A C
int(cls (A)) U cl(ints (A))).

The complement of a J-semiopen (resp. preopen, d-preopen, a-open, -open, b-open,
e-open) set is said to be d-semiclosed (resp. preclosed, d-preclosed, a-closed, [5-closed,
b-closed, e-closed).

The family of all §-semiopen (resp. preopen, J-preopen, a-open, [-open, b-open,
e-open) sets of X are denoted by dSO(X) (resp. PO(X), dPO(X), aO(X), BO(X),
BO(X), eO(X)). The family of all e-closed sets of X is denoted by eC(X) and the
family of all e-open sets of X containing a point z € X is denoted by eO(X, ).

A set A is called 0-open [11] if every point of A has an open neighborhood whose
closure is contained in A. The @-interior [11] of A in X is the union of all f-open subsets
of A and is denoted by intg(A). Naturally, the complement of a f-open set is called
0-closed [11]. Equivalently clp(A) = {z | U € U(z) = cl(U) N A # 0}, and a set A is
0-closed if and only if A = clg(A).

A set A is called d-open [24] if every point of A has an open neighborhood whose
interior of the closure is contained in A. The §-interior [24] of A in X is the union of all
d-open subsets of A, and is denoted by ints(A). Naturally, the complement of a d-open
set is called d-closed [24]. Equivalently cls(A) = {z | U € U(z) = int(cl(U)) N A # 0},
and a set A is d-closed if and only if A = cls(A).

If A is a subset of a space X, then the e-closure of A, denoted by e-cl(A), is the smallest
e-closed set containing A. The e-interior of A, denoted by e-int(A), is the largest e-open
set contained in A.

1.1. Definition. A function f: (X,7) — (Y, 0) is called:
(a) e-continuous [7] (briefly, e.c.) if f~*(V) is e-open in (X, 7) for every open set V
of (Y, 0);
(b) Weakly continuous [5] (briefly w.c.) if for each z € X and each open set V of YV’
containing f(z), there exists U € U(z) such that f(U) C cl(V);
(c) Weakly -continuous [21] if for each z € X and each open set V of Y containing
f(z), there exists a B-open U of X containing z such that f(U) C cl(V).

1.2. Lemma. [19,22] The following properties hold for a set A in a space X :
(a) d-sint(A) = ANcl(ints(A));
(b) 6-pint(A) = ANint(cls(A)). O

1.3. Lemma. [7] The following properties hold for a set A in a space X :

) e-cl(A) = AU (int(cls (A)) Ncl(ints(A)));

) e-int(A) = AN (int(cls(A)) Ucl(ints (A)));

) e-cl(X\A) = X\e-int(A);

) x € e-cl(A) if and only if ANU # 0 for every U € eO(X, z);

) A€ eC(X) if and only if A= e-cl(A);

) e-int(A) = d-sint(A) U d-pint(A). O

(a

(b

(c

(d

(e
(f

We get the following lemma from the definition of e-continuity.

1.4. Lemma. Let f: (X,7) — (Y,0) be a mapping. Then the following statements are
equivalent:

(a) f is e-continuous.
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(b) For each x € X and each V € U(f(x)), there exists U € eO(X,x) such that
fU)cv.

(¢) The inverse image of each closed set in'Y is e-closed in X.

(d) int(cls(f~(B))) Nel(ints(f~1(B))) C f~(cl(B)) for each B CY.

(e) f(int(cls(A)) Ncl(ints(A))) C cl(f(A)) for each A C X.

Proof. (a) = (b) Let x € X and V € U(f(z)). Then f~'(V) € eO(X,z). Set U =
f~1(V) which contains z, then f(U) C V.

(b) = (a) Let V C Y be open and € f~'(V). Then f(z) € V and thus there
exists U, € eO(X,z) such that f(U,) C V. Then z € U, C f~'(V), and so f~1(V) =
Uxef,l(v) U;. Since the union of any family of e-open sets is an e-open set, we have
Uses-1v) Ux € €O(X). Then f7HV) € eO(X). Therefore, f is e-continuous.

(a) = (c) Clear.

(¢) = (a) Clear.

(c) => (d) Let B C Y. Then f~'(cl(B)) is e-closed in X, i.e.

int (cls (£~ (B))) N el(ints (£ (B))) € int(cla(f " (cl(B)))) N cl(ints(f ' (c(B))))
C 1B,
(d) = (e) Let A C X. Set B = f(A) in (d), then

int(cls (f " (£(A)))) N el(ints (f71(f(A)))) € F7(cl(f(A))),
so that int(cls(A))Ncl(ints(A)) C £ (cl(f(A))). This gives f(int(cls(A))Ncl(ints(A))) C
cl(f(A))-
(e) = (a) Let V€o. Set W =Y\V and A = f~*(W). Then

Flint(els (F~ (Y\V))) Nel(ints (£ (Y\V)))) € el(F(F (Y \V)))
C(Y\V)=Y\V,

that is f~'(W) is e-closed in X, so f is e-continuous. O

2. Weakly e-continuous functions

In this section we obtain some characterizations and several properties concerning
weakly e-continuous functions. Also, by defining faintly e-continuous functions we inves-
tigate relationships between faintly e-continuous functions and strongly 6#-e-continuous
functions and weakly e-continuous functions.

2.1. Definition. Let (X, 7) and (Y, o) be topological spaces. f : (X,7) — (Y,0) is a
weakly e-continuous (briefly a w.e.c.) function at z € X if for each open set V of YV
containing f(x) there exists U € eO(X,x) such that f(U) C cl(V). The function f is
w.e.c. iff f is w.e.c. for all z € X.

2.2. Remark. From Definition 1.1 and Definition 2.1, we have the following diagram.
The converses of these implications are not true in general, as shown in the following

examples. o
e-continuity

|

weak continuity —— weak e-continuity —— weak [-continuity
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2.3. Example. Let X = {a,b,c,d,e}, 7 = {0, X, {a},{c},{a,c},{c,d},{a,c,d}} and
o = {0,X,{b,c,d}}. Then the identity function f : (X,7) — (X,0) is weakly e-
continuous but not e-continuous.

2.4. Example. Let X = {a,b,¢,d}, 7 = {0, X, {c}, {a,b},{a,b,c}} and o = {0, X, {a, b},
{¢,d}}. Consider the function f : (X,7) — (X, o) defined as follows: f(a) = a, f(b) =
d, f(c)=c¢, f(d) =0b. Then f is weakly S-continuous but not weakly e-continuous.
2.5. Example. Let X = {a,b,c}, 7 = {0, X, {a},{b,c}} and o = {0, X, {c}, {a, b}}.
Then the identity f : (X,7) — (X, o) is weakly e-continuous but not weakly continuous.
2.6. Lemma. Let f: (X,7) — (Y,0) be a function. Then the following are equivalent:

(a) fisw.ec atzeX;
(b) x € cl(ints (= (cl(V)))) Uint(cls (£~ (cl(V)))) for each open neighborhood V of

f(@);
(c) f~H(V) C e-int(f~'(cl(V))) for each V € o.

Proof. (a) = (b) Let V € U(f(z)). Since f is w.e.c. at z, there exists U € eO(X, )
such that f(U) C cl(V). Then U C f~'(cl(V)). Since U is e-open,
x € U C cl(ints(U)) Uint(cls(U)) € el(ints(F~ " (cl(V)))) Uint(cls(f " (cl(V)))).
(b):>(c)Letgr:€f()7 f(
cl(ints (£ (cl(V)))) Uint(cls(f~ (c (V)
z € (V) Nfel(ints (£ (el
Hence f~1(V) C e-int(f~*(cl(V))).

(¢) = (a) Let V € U(f(z)). Then = € f~*(V) C e-int(f~ (cl(V))). Set U = e-
int(f~*(cl(V))). Then U € eO(X, ) and f(U) C cl(V). This shows that f is w.e.c. at
reX. |

x) € V. Then z € f~'(cl(V)), and since = €
))) we have
(

V)))uint(cls (f 7 (cl(V))))] = e-int(f~* (cl(V)).

2.7. Theorem. Let f: (X,7) — (Y,0) be a function. Then the following are equivalent:

(a) f isw.e.c.;
(int(cl(B)))) C f~(cl(B)) for every subset B of Y;

(f!
e- cl(f L(int(F))) C F7H(F) for every regular closed set F of Y;
(fr(V)) € F7H(cl(V)) for every open set V of Y;
e-int(f~1(cl(V))) for every open set V of Y;
cl(ints(f 7 (cl(V)))) Uint(cls (f 2 (cl(V)))) for every open set V of Y.

Proof. (a) = (b) Let B C Y. Suppose that = € X\ f~*(cl(B)). Then f(x) € Y\cl(B)
and there exists an open set V containing f(z) such that V N B = @; therefore cl(V) N
int(cl(B)) = 0. Since f is w.e.c. there exists U € eO(X,z) such that f(U) C cl(V).
Therefore, we have U N f~"(int(cl(B))) = 0, hence z € X\e-cl(f~"(int(cl(B)))). Thus

we obtain e-cl(f~*(int(cl(B)))) C f~*(cl(B)).
(b) = (c) Let F € RC(Y). Then we have
e-cl(f (it(F))) = e-cl(f~ (imt(cl(int(F))))) < /= (cl(ine(F))) = f~(F).
(c) = (d) For every V € o, cl(V) is regular closed in Y and we have e-cl(f~(V)) C
e-cl(f 7 (int(cl(V)))) C f(cl(V)).
(d) = (e) Let V € 0. Then Y\cl(V) is open in Y, and using Lemma 1.3 (c) we have
X\erint(f~H(l(V)) = e=el(f~ (V\(V))) © FHAV\(V)) € X\f (V).
Therefore we obtain f~1(V) C e-int(f~*(cl(V)).
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(e) = (f) Let V € 0. By Lemma 1.3 we have
FTHV) Cesint(f7H(el(V))) C elints (f7 (cl(V)))) Uint(cls (f " (cl(V)))).
(f) = (a) Let z € X and V € U(f(z)). Then
z € fH(V) Cel(ints(f 1 (cl(V)))) Uint(cls (£~ (cl(V)))).
It follows from Lemma 2.6 that f is w.e.c. |

2.8. Theorem. Let f: (X,7) — (Y,0) be a function. Then the following are equivalent:
(a) f is w. e c.;

(b) e-cl(f~ (1nt(cl(V)))) C
(c) e-cl(f H(V) c (01( )
(@) f71(v )Celnt( Hel(V))
Proof. (a) = (b) Let V € eO(Y). Since f is w.e.c., from Theorem 2.7 (b) we have
e-cl(f 7 (int(cl(V)))) € 71 (cl(V)).

(b) = (c) Clear since PO(Y) C eO(Y) and V C int(cl(V)).

(¢) = (d) Similar to the proof of the implication (d) = (e) in Theorem 2.7.

(d) = (a)
2.9. Theorem. Let f: (X,7) — (Y,0) be a function. Then the following are equivalent:

(a) f isw.e.c.;
(b) f(e-cl(A)) C clo(f (f(l)) for every subset A of X ;

)
(c) e-cl(f 1( ) C lo(B)) for every subset B of Y;
(d) e-cl(f~ (1nt(c19( M) C £ (clg(B)) for every subset B of Y.

Proof. (a) = (b) Let = € e-cl(A), V be any open set of Y containing f(z). Then there
exists U € eO(X,x) such that f(U) C cl(V). Then UNA # 0 and 0 # f(U) N f(A) C
cl(V) N f(A), so that f(z) € clo(f(A)).
(b) = (c) Let BCY. Set A = ! ( ) in (b). Then we have f(e-cl(f~'(B))) C
clp(B) and e-cl(f ' (B)) C f~ (f(e-cl(f ' (B)))) C ™ (clo(B)).
(¢) = (d) Let B be a subset of Y. Since clg(B) is closed in Y, we have
e-cl(f~ (int(cla(B))) © £~ (cla(int(clo (B)))) © £~ (clo(B)).
(d) = (a) Let V € 0. Then V C int(cl(V)) = int(clp(V')), and hence
e-cl(f (V) C e-cl(f ™ (int(clo(V)))) € S~ (cla(V)) =/~ (cl(V))-
It follows from Theorem 2.7 that f is w.e.c. a

Hcl(V) for every e-open subset V of Y;
for every preopen subset V of Y;

I~
\%
V))) for every preopen subset V of Y;

This follows from Theorem 2.7 since every open set is preopen. (|

2.10. Corollary. If f : (X,7) — (Y,0) is w.e.c., then f~* (V) is e-closed (resp. e-open)
in X for every 0-closed (resp. 0-open) subset V of Y.

Proof. Tf V is 6-closed, Theorem 2.9 (c) gives e-cl(f~*(V)) C f~*(clo(V)) = f~*(V), so
F7H(V) is e-closed. If V is f-open, Y'\V is f-closed and Theorem 2.9 gives

e-cl(fTH(Y\V)) C fTH(clo(Y\V)) = fTH(Y\V).
Now e-cl(X\f~'(V)) € X\f~'(V), and then X\e-int(f~*(V)) c X\f~'(V), so that
V) Ce-int(f~1(V)) and f~1(V) is e-open. O

2.11. Corollary. If f~*(clg(B)) is e-closed in X for every subset B of Y, then a function
f:(X,7) = (Y,0) is w.e.c.
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Proof. Since f~*(clg(B)) is e-closed in X, we have e-cl(f~*(B)) C e-cl(f*(clg(B))) =
f(clg(B)), and by Theorem 2.9, f is w.e.c. O

2.12. Definition. A function f : (X,7) — (Y,0) is said to be faintly e-continuous
(briefly, f.e.c.) if for each z € X and each 6-open set V of Y containing f(z), there exists
an e-open subset U of X containing x such that f(U) C V.

2.13. Definition. A function f : (X,7) — (Y, 0) is said to be strongly 0-e-continuous
[17] (briefly, st.f.e.c.) if for each € X and each open set V of Y containing f(z), there
exists an e-open set U of X containing x such that f(e-cl(U)) C V.

2.14. Lemma. Let Y be a reqular space. Then f: X — Y is st.0.e.c. if and only if f
s e-continuous.

Proof. Let z € X and V an open subset of Y containing f(x). Since Y is regular, there
exists an open set W such that f(z) € W C cl(W) C V. If f is e-continuous, there exists
U € eO(X,z) such that f(U) C W. We shall show that f(e-cl(U)) C cl(W). Suppose
that y ¢ cl(W). There exists an open set G containing y such that GNW = . Since f
is e-continuous, f~(G) € eO(X) and f~*(G)NU = @, and hence f~*(G) Ne-cl(U) = 0.
Therefore, we obtain G N f(e-cl(U)) = 0 and y ¢ f(e-cl(U)). Consequently, we have
f(e-cl(U)) C cl(W) C V. The converse is obvious. O

2.15. Lemma. Let f: (X,7) — (Y,0) be a mapping. Then the following statements are
equivalent:

(a) f is faintly e-continuous;

(b) The inverse image of every 0-open set in'Y is e-open in X;

(¢) The inverse image of every 6-closed set in'Y is e-closed in X.

Proof. (a) == (b) Let V C Y be f-open and = € f (V). Then f(x) € V and thus
there exists U, € eO(X,z) such that f(U,) C V. Then x € U, C f~*(V), and so
) = Ugzes—1(vyUe. Since the union of any family of e-open sets is an e-open set,
we have U, ¢ j-1(v) Uz € €O(X). Then f7H(V) € eO(X).

(b) = (a) Let € X and V € 00(Y, f(x)). Then f~1(V) € eO(X,z). Set U =
f~1(V) which contains z, then f(U) C V.

(a) = (c) Similar to (a) = (b) since the complement of every 6-closed set is -open.
(¢) = (a) Similar to (b) = (a) since the complement of every 6-closed set is -open.
(b) = (c) Routine.

(¢) = (b) Routine. O

2.16. Theorem. Let f: (X,7) = (Y,0) be a function and Y a regular space. Then the
following are equivalent:

(a) f is st.f.e.c.;

(b) f zs e- contmuous,

(c) f (Cle(B)) is e-closed in X for every subset B of Y;

(d) fisw.e.c.;

(e)

f is fe.c.

Proof. (a) => (b) Let z € X and let V be an open subset of ¥ containing f(z). Then
there exists U € eO(X, z) such that f(e-cl(U)) C V but f(U) C f(e-cl(U)) C V, hence
f is e.c.

(b) = (c) Since clg(B) is closed in Y for every subset B of Y, by Lemma 1.4 (c)
F(clg(B)) is e-closed in X.
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(¢) = (d) Corollary 2.11.
(d) = (e) Corollary 2.10 and Lemma 2.15.

(e) = (a) Let V be any open subset of Y. Since Y is regular, V is 6-open in Y. By
the faint e-continuity of f, f~'(V) is e-open in X. Therefore f is e-continuous, and then
according to Lemma 2.14, f is st.f.e.c. since Y is regular. (|

2.17. Remark. Faint e-continuity does not imply strong #-e-continuity.

2.18. Example. Let X = {a,b,¢,d, e}, 7 = {X, {a},{c},{a,c}, {c,d},{a,c,d}, 0} and
o ={0,X,{b,c,d}}. Then the identity function f : (X,7) = (X,0) is f.e.c. but not
st.f.e.c.

3. Some properties

3.1. Theorem. If f : (X,7) — (Y,0) is w.e.c. and g : (Y,0) = (Z,p) is continuous,
then the composition go f: (X,7) — (Z,p) is w.e.c.

Proof. Let x € X and g(f(x)) € W € p. Then g~'(W) is an open subset of Y containing
f(z), and there exists U € eO(X, x) such that f(U) C cl(g~*(W)). Since g is continuous,
we obtain g(f(U)) C g(cl(g™"(W))) C g(g™" (cl(W))) C cl(W). 0

3.2. Theorem. Ifgo f: (X,7) = (Z,p) is w.e.c. and f: (X,7) — (Y,0) is an open
continuous surjection, then g: (Y,o) — (Z,p) is w.e.c.

Proof. Let W € p. Since go f : (X,7) — (Z, p) is w.e.c. and f is continuous we have (go
£)7HW) € clints ((gof) ~H (cl(W))))Uint(cls ((gof) ~* (cl(W)))) = el(ints (f " (g~ (cl(W)))))U
int(cls(f 71 (g7 (cl(W))))). Since f is an open continuous surjection, we have g~ *(W) =
F(f g™ (W) and
g~ (W) € f(cl(ints (7 (g~ (cl(W))))) U f(int(cls(f (g™ (cl(W))))))
C cl(ints (f(f 7 (g7 (cl(W))))) U int(cls (F(f (g7 (cl(W))))))
C cl(ints (g~ (cl(W)))) Uint(cls(g~ " (cl(W)))),

—~ o~

and by Theorem 2.7, g is w.e.c. O

Let {Xo | @ € I} and {Yo | @ € I} be any two families of spaces with the same index
set I. Let fo : Xa — Ya be a function for each o € I. The product space II{ X4 | a € I}
will be denoted by I1X, and f : [I1X, — IIY, will denote the product function defined
by f({za}) = {fa(za)} for every {zo} € IIX,. Moreover, let pg : IIX, — Xpg and
gs : I1Yo — Y3 be the natural projections. Then we have the following theorem.

3.3. Theorem. If a function f : I1X, — IIY, is w.e.c., then fo : Xo — Yo is w.e.c.
for each o € 1.

Proof. Suppose that f is w.e.c. Let € I. Since gg is continuous, by Theorem 3.1,
gsof = fgopg is w.e.c. Moreover, pg is an open continuous surjection so by Theorem 3.2,
fs is w.e.c. O
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4. Separation axioms and graph properties

In this section we define an e-strongly closed graph. We look into some relationships
between weakly e-continuous functions and e-T1 spaces and e-T> spaces.

4.1. Definition. A space X is called:

(a) Urysohn [27] if for each pair of distinct points z and y in X, there exist open
sets U and V such that z € U, y € V and cl(U) Ncl(V) = §;

(b) e-T1 [6] if for each pair of distinct points z and y in X, there exist e-open sets
U and V of X containing x and y, respectively, such that y ¢ U and = ¢ V;

(c) e-T5 [6] if for each pair of distinct points z and y in X, there exist e-open sets
U and V of X containing = and y, respectively, such that U NV = {.

4.2. Theorem. Let f: (X,7) — (Y,0) be a w.e.c. injective function. Then the following
hold:

(a) IfY is Urysohn, then X is e-Ts.

(b) IfY is Hausdorff, then X is e-T1.

Proof. (a) Let z1 and z2 be any distinct points in X. Then f(z1) # f(z2) and there exist
open sets Vi and V2 of Y containing f(x1) and f(x2), respectively, such that cl(Vi) N
cl(Vz) = 0. Since f is w.e.c. there exists U; € eO(X,z;) such that f(U;) C cl(V;), for
i=1,2. Since f~(cl(V1)) and f~'(cl(Vz)) are disjoint, we obtain U; N Uz = (). Hence
X is e-Ts.

(b) Let 1 and z2 be any distinct points in X. Then f(z1) # f(x2) and there exist
open sets V4 and Vo of Y such that f(z1) € Vi and f(z2) € Vo. Then we obtain
f(z1) ¢ cl(Va) and f(z2) ¢ cl(V1). Since f is w.e.c., there exists U; € eO(X,z;) such
that f(U;) C cl(V;), for ¢ = 1,2. Hence we obtain 2 ¢ Uy and x1 ¢ Uz. This shows that
X is e-T1. O

4.3. Theorem. Ifg: (X,7) — (Y,0) is w.e.c. and A is a 0-closed subset of X XY then
px(ANG(g)) is e-closed in X, where px represents the projection of X XY onto X and
G(g) denotes the graph of g.

Proof. Let A be a 0-closed subset of X x Y and z € e-cl(px(A N G(g))). Let U be any
open subset of X containing z, and V' any open set of Y containing g(z). Since g is w.e.c.,
by Theorem 2.7, we have 2 € g~(V) C e-int(g~*(cl(V))) and U N e-int(g~*(cl(V))) €
eO(X,z). Since z € e-cl(px (AN G(g))) by Lemma 1.3,

[U N e-int(g ™" (cl(V)] Npx (AN G(g))

contains some point w of X. This implies that (u,g(u)) € A and g(u) € cl(V). Thus
we have ) # (U x cl(V))N A C cl(U x V)N A and hence (z,g(z)) € clg(A). Since A is
f-closed, (z,g(xz)) € ANG(g) and = € px (AN G(g)). Then px(ANG(g)) is e-closed by
Lemma 1.3. O

4.4. Corollary. If f : (X,7) — (Y,0) has a 0-closed graph and g : (X,7) = (Y,0) is
w.e.c., then the set {x € X | f(z) = g(x)} is e-closed in X.

Proof. Since G(f) is 0-closed and px(G(f) N G(g)) = {x € X | f(z) = g(x)}, it follows
from Theorem 4.3 that {z € X | f(z) = g(x)} is e-closed. O

4.5. Definition. A function f : (X,7) — (Y,0) is said to have an e-strongly closed
graph if for each (z,y) € (X X Y)\G(f), there exist an e-open subset U of X and an open
subset V of Y such that (z,y) € U x V and (U x cl(V)) NG(f) = 0. O
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4.6. Theorem. IfY is a Urysohn space and f : (X,7) — (Y, 0) is w.e.c., then G(f) is
e-strongly closed.

Proof. Let (z,y) € (X x Y)\G(f). Then y # f(x), and there exist open sets V and W
of Y containing f(z) and y, respectively, such that cl(V) Ncl(W) = (. Since f is w.e.c.,
there exists an e-open subset U of X containing z such that f(U) C cl(V'). Therefore,
we obtain f(U) Ncl(V) = 0. Since f is w.e.c., there exists a W € eO(X,z2) such that
S(W) C cl(V). Therefore, we have f(U) N f(W) =0, and hence U N W = (). This shows
that X is e-T5. O

4.7. Theorem. Let f: (X,7) — (Y,0) be a w.e.c. function having an e-strongly closed
graph G(f). If [ is injective, then X is e-T>.

Proof. Let z1 and x2 be two distinct points of X. Since f is injective, f(z1) # f(x2)
and (z1, f(z2)) ¢ G(f). Since G(f) is e-strongly closed, there exist U € eO(X,z1) and
an open subset V' of Y such that (z1, f(z2)) € U x V and (U x cl(V)) N G(f) = 0,
and hence f(U) Ncl(V) = 0. Since f is w.e.c., there exists a W € eO(X,x2) such that
F(W) C cl(V). Therefore, we have f(U) N f(W) =0 and hence U N W = (. This shows
that X is e-T5. O

5. Covering properties

Finally in this last section, by defining the notion of e-Lindeléf space we investi-
gate some relationships between e-compact spaces and e-Lindeléf spaces and weakly
e-continuous functions.

5.1. Definition. A Hausdorff space X is called semicompact [28] at a point z if every
neighborhood U, contains a V; such that B(V;), the boundary of V;, is compact. It is
called semicompact if it has this property at every point.

5.2. Theorem. IfY is a semicompact Hausdorff space and f : (X,7) — (Y,0) is w.e.c.,
then f is e-continuous.

Proof. Every semicompact Hausdorff space is regular, and it follows from Theorem 2.16
that f is e-continuous. a

5.3. Definition. A subset A of a space X is said to be an H-set [24] or to be quasi
H-closed relative to X [20] if for every cover {Us | « € I} of A by open sets of X, there
exists a finite subset Iy of I such that A C |J{cl(Ua) | & € Io}.

5.4. Definition. A topological space (X, 7) is said to be

(a) e-compact [6] (resp. e-Lindelof) if every e-open cover of X has a finite (resp.
countable) subcover;

(b) Almost compact [15] or quasi H-closed [20] if every cover of X by open sets has
a finite subcover whose closures cover X;

(¢) Almost Lindelof [26] if every cover of X by open sets has a countable subcover
whose closures cover X

(d) C-compact [25] if for each closed subset A C X and each open cover {Us : « € I}
of A, there exists a finite subset Iy of I such that A C J{cl(Ua) | « € Io}.

5.5. Theorem. Let f: (X,7) = (Y,0) be a w.e.c. surjection. Then the following hold:

(a) If X is e-compact, then'Y is almost compact.
(b) If X is e-Lindeldf, then Y is almost Lindeldf.



790 M. Ozkog, G. Ashm

Proof. (a) Let {V. | @ € I} be a cover of Y by open subsets of Y. For each point z € X
there exists a(x) € I such that f(x) € V(). Since f is w.e.c., there exists an e-open set
U of X containing x such that f(Uz) C cl(Vy(s)). The family {U. | z € X} is a cover
of X by e-open subsets of X, and hence there exists a finite subset Xo of X such that
X =U,ex, Us- Therefore, we obtain ¥ = f(X) = U,cx, cl(Va(s)). This shows that ¥’
is almost compact.

(b) Analogous to (a). O

5.6. Theorem. If a function f : (X,7) — (Y,0) has an e-strongly closed graph G(f),
then f(A) is O-closed in'Y for each subset A which is e-compact relative to X .

Proof. Let A be e-compact relative to X and y € Y\ f(A). Then for each z € A we have

(z,y) ¢ G(f), and there exist U, € eO(X,z) and an open V, of Y containing y such

that f(Uz) Ncl(Vz) = 0. The family {U, | € A} is a cover of A by e-open subsets of

X. Since A is e-compact relative to X, there exists a finite subset Ag of A such that

ACU{Uz |z € Ao}. Put V.={,c4, Vo Then V is an open set in Y, y € V and
F(A) Nel(V) C [Useao f(U)]Nel(V) C [ f(Uz) Nel(V)] = 0.

TEAg

Therefore y ¢ clo(f(A)), and hence f(A) is 0-closed in Y. O

We recall that a space X is said to be submazimal [4] if every dense subset of X is
open in X. A space X is said to be extremally disconnected [4] if the closure of each open
set of X is open in X.

5.7. Theorem. Let X be a submazximal extremally disconnected space. If a function
f:X =Y has an e-strongly closed graph then f~'(A) is closed in X for each subset A
which is an H-set in Y.

Proof. Let A be an H-set of Y and © ¢ f~'(A). For each y € A we have (z,y) €
X X Y\G(f), and there exist an e-open set U, of X containing = and an open set V; of
Y containing y such that f(U,) N cl(Vy) = 0, hence Uy N f~(cl(V})) = 0. The family
{Vy | y € A} is a cover of A by open sets of Y. Since A is an H-set in Y, there exists
a finite subset Ao of A such that A C UJ{cl(V}) | y € Ao}. Since X is submaximal
extremally disconnected, each Uy is open in X. Set U = [ Uy, then U is an open
set containing x and

FU)NACUyea, [f(U) Nel(Vy)] C Uyeao [f(Uy) Nel(Vy)] = 0.
Therefore we have U N f~*(A) = 0. Hence f~'(A) is closed in X. O

yEAo

5.8. Corollary. Let f : X — Y be a function with an e-strongly closed graph, from
a submaximal extremally disconnected space X into a C-compact space Y. Then f is
continuous.

Proof. Let A be a closed subset in the C-compact space Y. Then A is an H-set and
f71(A) is closed in X according to Theorem 5.7. Therefore f is continuous. O
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