ON BI-IDEALS ON ORDERED「-SEMIGROUPS I

Kostaq Hila* ${ }^{* \dagger}$ and Edmond Pisha ${ }^{\ddagger}$

Received 01:02:2010 : Accepted 04:05:2011

Abstract

In this paper we introduce and give some characterizations of the left and right simple, the completely regular and the strongly regular po-Гsemigroups by means of bi-ideals.

Keywords: Γ-semigroup, po- Γ-semigroup, Γ-group, Left (right) ideal, Bi-ideal, Left (right) simple, Left (right) regular, Regular, Completely regular, Strongly regular, Duo, B-simple, Semiprime.

2000 AMS Classification: 06 F 99, 06 F 05, 20 M 12, 20 M 10.

1. Introduction and preliminaries

In 1981, Sen [15] introduced the concept and notion of the Γ-semigroup as a generalization of semigroup and ternary semigroup. Many classical notions and results of the theory of semigroups have been extended and generalized to Γ-semigroups. In this paper we introduce and characterize the left and right simple, the completely regular and the strongly regular po- Γ-semigroups in terms of bi-ideals and study their structure, extending and generalizing results for ordered semigroups (cf. [10, 11]).

We introduce below necessary notions and present a few auxiliary results that will be used throughout the paper.

In 1986, Sen and Saha [16] defined a Γ-semigroup as a generalization of semigroup and ternary semigroup as follows:
1.1. Definition. Let M and Γ be two non-empty sets. Denote by the letters of the English alphabet the elements of M and with the letters of the Greek alphabet the elements of Γ. Then M is called a Γ-semigroup if
(1) $a \gamma b \in M$, for all $\gamma \in \Gamma$.

[^0](2) If $m_{1}, m_{2}, m_{3}, m_{4} \in M, \gamma_{1}, \gamma_{2} \in \Gamma$ are such that $m_{1}=m_{3}, \gamma_{1}=\gamma_{2}$ and $m_{2}=$ m_{4}, then $m_{1} \gamma_{1} m_{2}=m_{3} \gamma_{2} m_{4}$.
(3) $(a \alpha b) \beta c=a \alpha(b \beta c)$ for all $a, b, c \in M$ and for all $\alpha, \beta \in \Gamma$.
1.2. Example. Let M be a semigroup and Γ any non-empty set. Define a mapping $M \times \Gamma \times M \rightarrow M$ by $a \gamma b=a b$ for all $a, b \in M$ and $\gamma \in \Gamma$. Then M is a Γ-semigroup.
1.3. Example. Let M be the set of all negative rational numbers. Obviously M is not a semigroup under the usual product of rational numbers. Let $\Gamma=\left\{-\frac{1}{p}: p\right.$ is prime $\}$. Let $a, b, c \in M$ and $\alpha \in \Gamma$. Now if $a \alpha b$ is equal to the usual product of the rational numbers a, α, b, then $a \alpha b \in M$ and $(a \alpha b) \beta c=a \alpha(b \beta c)$. Hence M is a Γ-semigroup.
1.4. Example. Let $M=\{-i, 0, i\}$ and $\Gamma=M$. Then M is a Γ-semigroup under the multiplication over complex numbers while M is not a semigroup under complex number multiplication.

These examples illustrate that every semigroup is a Γ-semigroup and that Γ-semigroups are a generalization of semigroups.

A Γ-semigroup M is called a commutative Γ-semigroup if for all $a, b \in M$ and $\gamma \in \Gamma$, $a \gamma b=b \gamma a$. A non-empty subset K of a Γ-semigroup M is called a sub- Γ-semigroup of M if for all $a, b \in K$ and $\gamma \in \Gamma, a \gamma b \in K$.
1.5. Example. Let $M=[0,1]$ and $\Gamma=\left\{\frac{1}{n}: n\right.$ is a positive integer $\}$. Then M is a Γ semigroup under usual multiplication. Let $K=[0,1 / 2]$. We have that K is a non-empty subset of M and $a \gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then K is a sub- Γ-semigroup of M.

Other examples of Γ-semigroups can be found in $[1,2,6,15,16]$.
1.6. Definition. A po- Γ-semigroup (:ordered Γ-semigroup) is a partially ordered set M which at the same time is a Γ-semigroup such that for all $a, b, c \in M$ and for all $\gamma \in \Gamma$

$$
a \leq b \Longrightarrow a \gamma c \leq b \gamma c, c \gamma a \leq c \gamma b
$$

Examples of ordered Γ-semigroups can be found in $[3,4,5,7,8,9,12,13,14]$.
Let M be a po- Γ-semigroup and A a non-empty subset of M. Then A is called a right (resp. left) ideal of M if
(1) $A \Gamma M \subseteq A($ resp. $M \Gamma A \subseteq A)$,
(2) $a \in A, b \leq a$ for $b \in M \Longrightarrow b \in A$.
A is called an ideal of M if it is right and left ideal of M. It is clear that the intersection of all ideals of a po- Γ-semigroup M is still an ideal of M. We shall call this particular ideal, if exists, the kernel of M and denote it by $K(M)$.

A non-empty subset B of a po- Γ-semigroup M is called a bi-ideal of M if
(1) $B \Gamma M \Gamma B \subseteq B$
(2) $a \in B$ and $b \leq a$ for $b \in M \Longrightarrow b \in B$

A right, left or bi-ideal A of a po- Γ-semigroup M is called proper if $A \neq M$.
A bi-ideal A of M is called subidempotent if $A \Gamma A \subseteq A$.
A bi-ideal A of M is called idempotent if $(A \Gamma A]=A$.
An element a of a Γ-semigroup M is called idempotent if $\exists \gamma \in \Gamma, a=a \gamma a$.
Let M be a po- Γ-semigroup. For $\emptyset \neq A \subseteq M$, we denote by $J(A)$ the ideal of M generated by A, by $L(A)$ (respectively $R(A)$) the left (respectively right) ideal of M generated by A, and by $B(A)$ the bi-ideal of M generated by A.

For non-empty subsets A and B of M and a non-empty subset Γ^{\prime} of Γ, let $A \Gamma^{\prime} B=$ $\left\{a \gamma b: a \in A, b \in B\right.$ and $\left.\gamma \in \Gamma^{\prime}\right\}$. If $A=\{a\}$, then we also write $\{a\} \Gamma^{\prime} B$ as $a \Gamma^{\prime} B$, and
similarly if $B=\{b\}$ or $\Gamma^{\prime}=\{\gamma\}$. For the sake of simplicity, we let M be a po- Γ-semigroup and T its sub- Γ-semigroup. For $A \subseteq T$ we write

$$
(A]_{T}=\{t \in T: t \leq a, \text { for some } a \in A\}
$$

If $T=M$, then we always write $(A]$ instead of $(A]_{M}$. Clearly, $A \subseteq(A]_{T} \subseteq(A]$ and $A \subseteq B$ implies that $(A]_{T} \subseteq(B]_{T}$ for any non-empty subsets A, B of T. For $A=\{a\}$, we write (a] instead of (\{a\}]. We denote by $L(a)$ (respectively $R(a)$) the left (respectively right) ideal of M generated by $a \in M$, by $B(a)$ the bi-ideal of M generated by $a \in M$, by $J(a)$ the ideal of M generated by $a \in M$. One can easily prove that

$$
\begin{aligned}
L(a) & =M \Gamma a=\{a\} \cup M \Gamma\{a\}=(a \cup M \Gamma a]=(a] \cup(M \Gamma a], \\
R(a) & =a \Gamma M=\{a\} \cup\{a\} \Gamma M=(a \cup a \Gamma M]=(a] \cup(a \Gamma M], \\
B(a) & =(a \cup a \Gamma M \Gamma a]=(a] \cup(a \Gamma M \Gamma a], \\
J(a) & =M \Gamma a \Gamma M=\{a\} \cup M \Gamma\{a\} \cup\{a\} \Gamma M \cup M \Gamma\{a\} \Gamma M \\
& =(a \cup M \Gamma a \cup a \Gamma M \cup M \Gamma a \Gamma M] .
\end{aligned}
$$

The authors of $[7,14]$ proved the following:
1.7. Lemma. Let M be a po-Г-semigroup. The following statements hold true:
(1) $A \subseteq(A]$ for any $A \subseteq M$
(2) If $A \subseteq B \subseteq M$, then $(A] \subseteq(B]$.
(3) $(A] \Gamma(B] \subseteq(A \Gamma B]$ for all subsets A and B of M.
(4) $\quad(A]] \subseteq(A]$ for all $A \subseteq M$.
(5) For every left (resp. right, two-sided, bi-) ideal T of $M,(T]=T$.
(6) If L is a left ideal and R a right ideal of M, then the set $(L \Gamma R]$ is an ideal of M.
(7) If A, B are ideals of M, then $(A \Gamma B],(B \Gamma A], A \cup B, A \cap B$ are ideals of M.
(8) $(M \Gamma a]$ (resp. $(a \Gamma M])$ is a left (resp. right) ideal of M for every $a \in M$.
(9) $(М Г а Г M]$ is an ideal of M for every $a \in M$.
(10) $((A] \Gamma(B]]=(A \Gamma B]$, for any $A, B \subseteq M$.

A po- Γ-semigroup M is called left (resp. right) simple if it does not contain proper left (respectively, right) ideals or equivalently, if for every left (respectively, right) ideal A of M, we have $A=M$.

A subset T of a po- Γ-semigroup M is called semiprime if for every $a \in M$ such that $a \Gamma a \subseteq T$, we have $a \in T$. Equivalent Definition: For each subset A of M such that $A \Gamma A \subseteq T$, we have $A \subseteq T$.

An element a of a po- Γ-semigroup M is called regular if there exists $x \in M$ such that $a \leq a \alpha x \beta a$ for some $\alpha, \beta \in \Gamma$.

A po- Γ-semigroup M is called regular if every element of M is regular. The following are equivalent definitions:
(1) For every $A \subseteq M, A \subseteq(A \Gamma M \Gamma A]$.
(2) For every element $a \in M, a \in(a \Gamma M \Gamma a]$.

Let M be a po- Γ-semigroup and $a \in M$. For the sake of simplicity, throughout the paper we write $a^{2}=a \gamma a, a^{3}=(a \gamma)^{2} a, \ldots, a^{n}=(a \gamma)^{n-1} a, \ldots$ for $\gamma \in \Gamma$ and $n \in Z^{+}$.

2. Characterizations of some classes of po-Г-semigroups by means of bi-ideals

In [7], the authors proved the following lemma.
2.1. Lemma. Let M be a po-Г-semigroup. Then M is left (resp. right) simple if and only if $(M \Gamma a]=M$ (resp. $(a \Gamma M]=M)$ for all $a \in M$.

Proof. We prove the lemma only for the left simple case, the other case can be proved analogously.
\Longrightarrow Let M be left simple and $a \in M$. Since ($M \Gamma a]$ is a left ideal of M, by the definition we have $(M \Gamma a]=M$.
\Longleftarrow Let $(M \Gamma a]=M, \forall a \in M$. Let A be a left ideal of M and $x \in A(A \neq \emptyset)$. Since $M=(M \Gamma x] \subseteq(M \Gamma A] \subseteq(A]=A$, we have $A=M$. This implies that M is left simple.
2.2. Theorem. Let M be a po-Г-semigroup. The following are equivalent:
(1) M is left and right simple.
(2) $M=(a \Gamma M \Gamma a], \forall a \in M$.
(3) M is regular, left and right simple.

Proof. (1) $\Longrightarrow(2)$. Let $a \in M$. By Lemma 2.1, $M=(M \Gamma a]=(a \Gamma M]$. Then $M=$ $(a \Gamma M]=(a \Gamma(M \Gamma a]]=(a \Gamma M \Gamma a]$.
$(2) \Longrightarrow(3)$. Let $a \in M$. By (ii), we have $M=(a \Gamma M \Gamma a] \subseteq(M \Gamma a],(a \Gamma M] \subseteq M$. It follows that $a \in(a \Gamma M \Gamma a]$ and $M=(M \Gamma a]=(a \Gamma M]$.
$(3) \Longrightarrow(1)$. Clear.
2.3. Proposition. Let M be a regular po- Γ-semigroup. Then the bi-ideals and the subidempotent bi-ideals of M are the same.

Proof. If B is a bi-ideal of M, then $B \Gamma M \Gamma B \subseteq B,(B \Gamma M \Gamma B] \subseteq(B]=B$. Since M is regular, $B \subseteq(B \Gamma M \Gamma B]$. Thus, $B=(B \Gamma M \Gamma B]$ and

$$
B \Gamma B=(B \Gamma M \Gamma B] \Gamma(B \Gamma M \Gamma B] \subseteq(B \Gamma M \Gamma B \Gamma B \Gamma M \Gamma B] \subseteq(B \Gamma M \Gamma B]=B .
$$

2.4. Theorem. A po-Г-semigoup M is left and right simple if and only if M does not contain proper bi-ideals.

Proof. \Longrightarrow Let A be a bi-ideal of M. Let $a \in M$ and $b \in A,(A \neq \emptyset)$.
Let $L(b)=(b \cup M \Gamma b]$ be the left ideal of M generated by b. Since M is left simple, we have $M=L(b)$. Since $a \in L(b)$, we have $a \leq b$ or $a \leq x \gamma b$ for some $x \in M$ and $\gamma \in \Gamma$. Let $a \leq b$. Then, since $M \ni a \leq b \in A, A$ is a bi-ideal of M, so we have $a \in A$. Let $a \leq x \gamma b$ for some $x \in M$ and $\gamma \in \Gamma$. Let $R(b)=(b \cup b \Gamma M]$ be the right ideal of M generated by b. Since M is right simple, we have $M=R(b)$.

Since $x \in R(b)$, we have $x \leq b$ or $x \leq b \rho y$ for some $y \in M$ and $\rho \in \Gamma$. Let $x \leq b$. Then we have $a \leq x \gamma b \leq b \gamma b \in A$ and $a \in A$. Let $x \leq b \rho y$ for some $y \in M$ and $\rho \in \Gamma$. Then $a \leq x \gamma b \leq b \rho y \gamma b \in A Г M \Gamma A \subseteq A$ and $a \in A$.
\Longleftarrow Let L be a left ideal of M. Then L is a bi-ideal of M. By hypothesis, $L=M$. Similarly, M is right simple.

In [1], the authors gave the following definition.
2.5. Definition. Let M be a Γ-semigroup. Then M is called a Γ-group if for every $a, a_{1} \in M$ and $\alpha, \alpha_{1} \in \Gamma$, there exist $b, b_{1} \in M$ and $\beta, \beta_{1} \in \Gamma$ such that for all $s \in M$ and $\gamma \in \Gamma$,

$$
s=b \beta a \alpha s, \gamma=\gamma b \beta a \alpha, \gamma=\beta_{1} b_{1} \alpha_{1} a_{1} \gamma, s=s \beta_{1} b_{1} \alpha_{1} a_{1} .
$$

Also, they proved the following proposition.
2.6. Proposition. Let M be a Γ-semigroup. Then M is a Γ-group if and only if both M and Γ are left simple as well as right simple.
2.7. Theorem. Let M be an ordered Γ-group. Then M does not contain proper bi-ideals.

Proof. An ordered Γ-group is a Γ-group. From Proposition 2.6 and Theorem 2.4, it follows that the ordered Γ-groups do not contain proper bi-ideals, as well. Another independent proof is given as follows:

Let A be a bi-ideal of M and $a \in M$. Let $b \in A(A \neq \emptyset)$. Since $b \in M$, there exist $b_{1}, b_{2} \in M$ and $\beta, \alpha, \beta_{1}, \alpha_{1} \in \Gamma$ such that $a=b \beta b_{1} \alpha a, a=a \beta_{1} b_{2} \alpha_{1} b$. Then we have

$$
a=b \beta b_{1} \alpha a \beta_{1} b_{2} \alpha_{1} b=b \beta\left(b_{1} \alpha a \beta_{1} b_{2}\right) \alpha_{1} b \in A \Gamma M \Gamma A \subseteq A \text { and } a \in A .
$$

2.8. Definition. A po- Γ-semigroup M is called left (resp. right) regular if for every $a \in M$, there exist $x \in M, \gamma, \mu \in \Gamma$ such that $a \leq x \gamma(a \mu a)$ (resp. $a \leq(a \mu a) \gamma x)$.

The following are equivalent definitions:
(1) $a \in(M \Gamma a \Gamma a]$ (resp. $a \in(a \Gamma a \Gamma M]), \forall a \in M$
(2) $A \subseteq(M \Gamma A \Gamma A]$ (resp. $A \in(A \Gamma A \Gamma M]), \forall A \subseteq M$.
2.9. Lemma. A po-Г-semigroup M is left regular if and only if every left ideal of M is semiprime.

Proof. \Longrightarrow. Let L be a left ideal of M and $a \in M, a \Gamma a \subseteq L$. Since $M \Gamma(a \Gamma a) \subseteq M \Gamma L \subseteq$ L, we have $(M \Gamma(a \Gamma a)] \subseteq(L]=L$. Since M is left regular, we have $a \in(M \Gamma(a \Gamma a)] \subseteq L$, so $a \in L$.
\Longleftarrow. Let $a \in M$. The set $(M \Gamma(a \Gamma a)]$, as a left ideal of M, is semiprime. Since

$$
a \Gamma a \Gamma a \Gamma a=(a \Gamma a) \Gamma(a \Gamma a) \in M \Gamma(a \Gamma a) \subseteq(M \Gamma(a \Gamma a)],
$$

we have $a \Gamma a \in(M \Gamma(a \Gamma a)]$ and $a \in(M \Gamma(a \Gamma a)]$.
2.10. Definition. A po- Γ-semigroup M is called completely regular if it is regular, left regular and right regular.

If M is a po- Γ-semigroup and $\emptyset \neq A \subseteq M$, then one can easily proves that the set $(A \cup A \Gamma A \cup A \Gamma M \Gamma A]$ is the bi-ideal of M generated by A. In particular, for $A=$ $\{a\},(a \in M)$, we write $B(a)=(a \cup a \Gamma a \cup a \Gamma M \Gamma a]$ for the bi-ideal generated by a. If M is regular, then it is clear that: $B(a)=(a \Gamma M \Gamma a]$. We define a relation \mathcal{B} on M as follows:

$$
a \mathcal{B} b \Longleftrightarrow B(a)=B(b) .
$$

Clearly, \mathcal{B} is an equivalence relation on M.
2.11. Lemma. Let M be a po- Γ-semigroup and $B(x), B(y)$ the bi-ideals of M generated by the elements $x, y \in M$, respectively. Then we have $B(x) \Gamma M \Gamma B(y) \subseteq(x \Gamma M \Gamma y]$.

Proof. We have

$$
\begin{aligned}
B(x) \Gamma M \Gamma B(y) & =\left(x \cup x^{2} \cup x \Gamma M \Gamma x\right] \Gamma(M] \Gamma\left(y \cup y^{2} \cup y \Gamma M \Gamma y\right] \\
& \subseteq\left(\left(x \cup x^{2} \cup x \Gamma M \Gamma x\right) \Gamma M \Gamma\left(y \cup y^{2} \cup y \Gamma M \Gamma y\right)\right]=(x \Gamma M \Gamma y] .
\end{aligned}
$$

2.12. Lemma. A po- Γ-semigroup M is completely regular if and only if for any $a \in M$, there exist $x \in M, \mu, \alpha, \beta \in \Gamma$ such that $a \leq(a \mu a) \alpha x \beta(a \mu a)$.

Proof. Assume that M is completely regular. Then for any $a \in M$, there exist $x, y, z \in$ $M, \alpha, \beta, \mu, \rho, \gamma \in \Gamma$ such that

$$
a \leq a \alpha x \beta a \leq(a \mu a \gamma y) \alpha x \beta(z \rho a \mu a)=a \mu a \gamma(y \alpha x \beta z) \rho a \mu a .
$$

Conversely, suppose that, for any $a \in M$, there exist $x \in M, \mu, \alpha, \beta \in \Gamma$ such that $a \leq(a \mu a) \alpha x \beta(a \mu a)$. Then
(1) $a \leq(a \mu a) \alpha x \beta(a \mu a)=a \mu(a \alpha x \beta a) \mu a$.
(2) $a \leq(a \mu a) \alpha x \beta(a \mu a)=(a \mu a \alpha x) \beta a \mu a$.
(3) $a \leq(a \mu a) \alpha x \beta(a \mu a)=a \mu a \alpha(x \beta a \mu a)$.

Thus, M is regular, left regular and right regular. Therefore M is completely regular.
From Lemma 2.12, it is obvious that the following lemma holds true:
2.13. Lemma. A po-Г-semigroup M is completely regular if and only if for every $A \subseteq M$, $A \subseteq((A \Gamma A) \Gamma M \Gamma(A \Gamma A)]$.

Equivalently, if for every $a \in M, a \in((a \Gamma a) \Gamma M \Gamma(a \Gamma a)]$.
2.14. Theorem. A po- Γ-semigroup M is completely regular if and only if every bi-ideal B of M is semiprime.

Proof. \Longrightarrow. Let B be a bi-ideal, $a \in M$ and $a \Gamma a \subseteq B$. Then for some $x, y, z \in M$, $\alpha, \beta, \gamma, \rho, \mu \in \Gamma$,

$$
a \leq a \alpha x \beta a \leq(a \gamma a \rho y) \alpha x \beta(z \mu a \gamma a)=a \gamma(a \rho y \alpha x \beta z \mu a) \gamma a \in В Г М Г B \subseteq B .
$$

Thus B is semiprime.
\Longleftarrow. Let $a \in M$. Then $(a \Gamma a \Gamma M \Gamma a \Gamma a]$ is a non-empty subset of M. Let $x, y \in$ $(a \Gamma a \Gamma M \Gamma a \Gamma a]$ and $z \in M$. Then for some $u, v \in M, \alpha, \beta, \gamma, \rho, \mu, \delta, \sigma \in \Gamma$,

$$
\begin{aligned}
x \alpha z \beta y & \leq(a \gamma a \rho u \mu a \gamma a) \alpha z \beta(a \gamma a \delta v \sigma a \gamma a) \\
& =a \gamma a \rho(u \mu a \gamma a \alpha z \beta a \gamma a \delta v) \sigma a \gamma a \in a \Gamma a \Gamma М \Gamma a \Gamma a
\end{aligned}
$$

Thus
$x \alpha z \beta y \in(a \Gamma a \Gamma M \Gamma a \Gamma a]$ and $(a \Gamma a \Gamma M \Gamma a \Gamma a] \Gamma M \Gamma(a \Gamma a \Gamma M \Gamma a \Gamma a] \subseteq(a \Gamma a \Gamma M \Gamma a \Gamma a]$.
Furthermore, if $x \in(a \Gamma a \Gamma M \Gamma a \Gamma a]$ and $y \leq x$, for some $y \in M$, then

$$
y \leq x \in(a \Gamma a \Gamma M \Gamma a \Gamma a], \text { so } y \in(a \Gamma a \Gamma M \Gamma a \Gamma a] .
$$

Hence $(a \Gamma a \Gamma M \Gamma a \Gamma a]$ is a bi-ideal of M, for all $a \in M$. Since $(a \Gamma a \Gamma a \Gamma a \Gamma a \Gamma a \Gamma a \Gamma a)=$ $(a \Gamma a) \Gamma(a \Gamma a \Gamma a \Gamma a) \Gamma(a \Gamma a) \subseteq(a \Gamma a \Gamma M \Gamma a \Gamma a]$ and $(a \Gamma a \Gamma M \Gamma a \Gamma a]$ is semiprime, we get $(a \Gamma a \Gamma a \Gamma a),(a \Gamma a) \subseteq(a \Gamma a \Gamma M \Gamma a \Gamma a]$ and so $a \in(a \Gamma a \Gamma M \Gamma a \Gamma a]$. By Lemma 2.10, M is completely regular.
2.15. Lemma. Let M be a po-Г-semigroup. Then the following are equivalent:
(1) M is completely regular;
(2) $B(a)=B(a \Gamma a)=B(a \Gamma a \Gamma M \Gamma a \Gamma a), \forall a \in M$;
(3) $a \mathcal{B} a \Gamma a$.

Proof. (1) $\Longrightarrow(2)$. Since M is completely regular, M is regular and we have $B(a)=$ $(a \Gamma M \Gamma a]$. Then $B(a \Gamma a)=(a \Gamma a \Gamma M \Gamma a \Gamma a]$. Since M is regular, left regular and right regular, we have for all $a \in M$:

$$
a \in(a \Gamma M \Gamma a] \subseteq((a \Gamma a \Gamma M] \Gamma M \Gamma(M \Gamma a \Gamma a]] \subseteq(a \Gamma a \Gamma M \Gamma a \Gamma a] \subseteq(a \Gamma M \Gamma a] .
$$

Therefore

$$
B(a)=(a \Gamma M \Gamma a]=(a \Gamma a \Gamma M \Gamma a \Gamma a]=B(a \Gamma a) .
$$

Also, since for all $a \in M$,

$$
\begin{aligned}
a \in(a \Gamma M \Gamma a] & \subseteq((a \Gamma a \Gamma M \Gamma a \Gamma a] \Gamma M \Gamma(a \Gamma a \Gamma M \Gamma a \Gamma a]] \\
& \subseteq(a \Gamma a \Gamma M \Gamma a \Gamma a] \subseteq(a \Gamma M \Gamma a],
\end{aligned}
$$

we have $B(a)=B(a \Gamma a)=B(a \Gamma a \Gamma M \Gamma a \Gamma a)$.
$(2) \Longrightarrow(3)$. Clear since $B(a)=B(a \Gamma a), \forall a \in M$.
$(3) \Longrightarrow(1)$. If $a \mathcal{B} a \Gamma a$, then $B(a)=B(a \Gamma a)$. We have

$$
a \in B(a)=B(a \Gamma a)=(a \Gamma a \cup a \Gamma a \Gamma a \Gamma a \cup a \Gamma a \Gamma M \Gamma a \Gamma a] .
$$

Then $a \leq y$ for some $y \in a \Gamma a \cup a \Gamma a \Gamma a \Gamma a \cup a \Gamma a \Gamma M \Gamma a \Gamma a$.
If $y \in a \Gamma a$, then for some $\gamma \in \Gamma$,

$$
a \leq y=a \gamma a \leq(a \gamma a) \gamma(a \gamma a)=a \gamma a \gamma(a \gamma a) \leq(a \gamma a) \gamma a \gamma(a \gamma a) \in(a \Gamma a) \Gamma M \Gamma(a \Gamma a)
$$

and $a \in(a \Gamma a \Gamma M \Gamma a \Gamma a]$.
If $y \in a \Gamma a \Gamma a \Gamma a$, then for some $\gamma \in \Gamma$,

$$
a \leq y=a^{4}=\left((a \gamma)^{3} a\right)=a \gamma a \gamma(a \gamma a) \leq a^{4} \gamma a \gamma(a \gamma a) \in a \Gamma a \Gamma М Г a \Gamma a,
$$

and $a \in(a \Gamma a \Gamma M \Gamma a \Gamma a]$.
If $y \in a \Gamma a \Gamma M \Gamma a \Gamma a$, then $a \in(a \Gamma a \Gamma M \Gamma a \Gamma a]$.
2.16. Theorem. A po- Γ-semigroup M is completely regular if and only if for each biideal B of M, we have

$$
B=(B \Gamma B] .
$$

Proof. \Longrightarrow. Since B is a sub- Γ-semigroup of M, we have $B \Gamma B \subseteq B$. Then since B is an ideal of M, we have $(B \Gamma B] \subseteq(B]=B$. By Lemma 2.13, we have

$$
B \subseteq((B \Gamma B) \Gamma M \Gamma(B \Gamma B)] .
$$

Then, by the definition of bi-ideal, we have

$$
B \subseteq(B \Gamma(B \Gamma M \Gamma B) \Gamma B] \subseteq(B \Gamma B \Gamma B] \subseteq(B \Gamma B] .
$$

Thus, $B=(B \Gamma B]$.
\Longleftarrow Let L be a left ideal of M. Then $M \Gamma L \subseteq L$ and $L \Gamma(M \Gamma L) \subseteq M \Gamma L \subseteq L$. Thus L is a bi-ideal of M. Let $x \in M$ be such that $x^{2} \in L$. Then $x \in L$. Indeed: We consider the bi-ideal of M generated by x. That is, the set $B(x)=\left(x \cup x^{2} \cup x \Gamma M \Gamma x\right]$. By hypothesis, we have $x \in B(x)=(B(x) \Gamma B(x)]$. On the other hand, $(B(x) \Gamma B(x)] \subseteq L$. In fact: We have

$$
\begin{aligned}
B(x) \Gamma B(x) & =\left(x \cup x^{2} \cup x \Gamma M \Gamma x\right] \Gamma\left(x \cup x^{2} \cup x \Gamma M \Gamma x\right] \\
& \subseteq\left(\left(x \cup x^{2} \cup x \Gamma M \Gamma x\right) \Gamma\left(x \cup x^{2} \cup x \Gamma M \Gamma x\right)\right] \\
& =\left(x^{2} \cup x^{3} \cup x \Gamma M \Gamma x^{2} \cup x^{4} \cup x \Gamma M \Gamma x^{3} \cup x^{2} \Gamma M \Gamma x \cup x^{3} \Gamma M \Gamma x\right. \\
& \left.\cup x \Gamma M \Gamma x^{2} \Gamma M \Gamma x\right]
\end{aligned}
$$

Since $x^{2} \in L, x^{3} \in M \Gamma L \subseteq L,(x \Gamma M) \Gamma x^{2} \subseteq M \Gamma L \subseteq L, x^{4} \in M \Gamma L \subseteq L$, we have

$$
B(x) \Gamma B(x) \subseteq(L \cup L \Gamma M]=(L]=L
$$

Then we have $(B(x) \Gamma B(x)] \subseteq((L]]=(L]=L$ and $x \in L$. In a similar way, we prove that every right ideal of M is semiprime. That is, by Lemma $2.9, M$ is left and right
regular. So, M is a regular po- Γ-semigroup. Indeed: Now let $a \in M$. Let $B(a)$ be the bi-ideal generated by a. Then by hypothesis and Lemma 2.11, we have

$$
\begin{aligned}
a \in B(a) & =(B(a) \Gamma B(a)]=((B(a) \Gamma B(a)] \Gamma B(a)]=(B(a) \Gamma B(a) \Gamma B(a)] \\
& \subseteq(B(a) \Gamma M \Gamma B(a)] \subseteq(a \Gamma M \Gamma a]
\end{aligned}
$$

That is, M is completely regular.
Let M be a po- Γ-semigroup. Then M is called a B-simple po- Γ-semigroup if M does not contain proper bi-ideals.
2.17. Theorem. Let M be a po-Г-semigroup. Then the following are equivalent:
(1) M is completely regular;
(2) $\forall a \in M, a \in(a \Gamma M \Gamma a]=(a \Gamma a \Gamma M \Gamma a \Gamma a]$;
(3) Every \mathcal{B}-class of M is a B-simple sub- Γ-semigroup of M;
(4) Every \mathcal{B}-class of M is a sub- Γ-semigroup of M;
(5) M is a union of disjoint B-simple sub- Γ-semigroups of M;
(6) M is a union of disjoint sub- Γ-semigroups of M;
(7) Every bi-ideal of M is semiprime;
(8) The set $\left\{(x)_{\mathcal{B}} \mid x \in M\right\}$ coincides with the set of all maximal B-simple sub- Γ semigroups of M.

Proof. (1) $\Longrightarrow(2)$ Let M be completely regular. Then M is regular, left regular and right regular. We have for all $a \in M$:

$$
a \in(a \Gamma M \Gamma a] \subseteq((a \Gamma a \Gamma M] \Gamma M \Gamma(M \Gamma a \Gamma a]] \subseteq(a \Gamma a \Gamma M \Gamma a \Gamma a] \subseteq(a \Gamma M \Gamma a] .
$$

Therefore,

$$
a \in(a \Gamma M \Gamma a]=(a \Gamma a \Gamma M \Gamma a \Gamma a] .
$$

$(2) \Longrightarrow(3)$ We have that $(x)_{\mathcal{B}}$ is a sub- Γ-semigroup of M. Indeed: First, $\emptyset \neq(x)_{\mathcal{B}} \subseteq$ $M, \forall x \in(x)_{\mathcal{B}}$. Let $a, b \in(x)_{\mathcal{B}}$. Since $a \mathcal{B} x, b \mathcal{B} x$, we have $B(a)=B(x)=B(b)$. Now, by hypothesis, we have:

$$
\begin{aligned}
a \Gamma b & \subseteq(((a \Gamma b \Gamma a \Gamma b) \Gamma M \Gamma(a \Gamma b \Gamma a \Gamma b)] \\
& \subseteq(B(a) \Gamma M \Gamma B(b)]=(B(b) \Gamma M \Gamma B(b)] \subseteq B(b) .
\end{aligned}
$$

Then

$$
a \Gamma b \subseteq B(b)=B(x)
$$

Hence

$$
B(a \Gamma b) \subseteq B(b)=B(x)
$$

On the other hand, let $y \in B(x)$. By hypothesis, we have:

$$
\begin{aligned}
(a \Gamma M \Gamma y] & \subseteq((a \Gamma a \Gamma M \Gamma a \Gamma a] \Gamma M \Gamma y] \\
& \subseteq(a \Gamma a \Gamma M \Gamma a \Gamma a \Gamma M \Gamma y] \subseteq(a \Gamma B(a) \Gamma M \Gamma B(b)] \\
& =(a \Gamma B(b) \Gamma M \Gamma B(b)] \subseteq(a \Gamma B(b)] \subseteq(a \Gamma b \Gamma M \Gamma b]
\end{aligned}
$$

and

$$
\begin{aligned}
(y \Gamma M \Gamma b] & \subseteq(y \Gamma M \Gamma(b \Gamma b \Gamma M \Gamma b \Gamma b]] \subseteq(y \Gamma M \Gamma b \Gamma b \Gamma M \Gamma b \Gamma b] \subseteq(B(x) \Gamma M \Gamma B(b) \Gamma b] \\
& =(B(a) \Gamma M \Gamma B(b) \Gamma b]=(B(a) \Gamma M \Gamma B(a) \Gamma b] \subseteq(B(a) \Gamma b] \subseteq(a \Gamma M \Gamma a \Gamma b] .
\end{aligned}
$$

So

$$
\begin{aligned}
y & \in(y \Gamma y \Gamma M \Gamma y \Gamma y] \subseteq(y \Gamma(y \Gamma y \Gamma M \Gamma y \Gamma y] \Gamma M \Gamma y \Gamma y] \Gamma(y \Gamma y \Gamma y \Gamma M \Gamma y \Gamma y \Gamma M \Gamma y \Gamma y] \\
& \subseteq(B(a) \Gamma M \Gamma y \Gamma y \Gamma M \Gamma B(b)] \subseteq((B(a) \Gamma M \Gamma y] \Gamma(y \Gamma M \Gamma B(b)]] \\
& \subseteq((a \Gamma M \Gamma y] \Gamma(y \Gamma M \Gamma b]] \subseteq((a \Gamma b \Gamma M \Gamma b] \Gamma(a \Gamma M \Gamma a \Gamma b]] \\
& \subseteq(a \Gamma b \Gamma M \Gamma b \Gamma a \Gamma M \Gamma a \Gamma b] \subseteq(B(a \Gamma b) \Gamma M \Gamma b \Gamma a \Gamma M \Gamma B(a \Gamma b)] \\
& \subseteq(B(a \Gamma b)]=B(a \Gamma b) .
\end{aligned}
$$

Thus, $y \in B(a \Gamma b)$, so $B(x) \subseteq B(a \Gamma b)$. Therefore $B(x)=B(a \Gamma b)$. Moreover, $(x)_{\mathcal{B}}$ is a sub- Γ-semigroup of M.

Let B be a bi-ideal of $(x)_{\mathcal{B}}$. Then $B=(x)_{\mathcal{B}}$. Indeed: For any $y \in(x)_{\mathcal{B}}$, suppose that $z \in B$. Since $z \in B \subseteq(x)_{\mathcal{B}}=(y)_{\mathcal{B}}$, then we have

$$
y \in B(y)=B(z)=B(x)
$$

By the hypothesis and Lemma 2.15, then

$$
y \in B(z) \subseteq B(z \Gamma z \Gamma z \Gamma z)=(z \Gamma M \Gamma z] \subseteq(B \Gamma M \Gamma B] \subseteq(B]=B
$$

Therefore $B=(x)_{\mathcal{B}}$, that is, $(x)_{\mathcal{B}}$ is a B-simple sub- Γ-semigroup of M.
$(3) \Longrightarrow(4)$ Clear.
$(3) \Longrightarrow(5)$ It is clear that $M=\bigcup\left\{(x)_{\mathcal{B}} \mid x \in M\right\}$, and M is a union of disjoint B-simple sub- Γ-semigroups of M.

$$
(5) \Longrightarrow(6) \text { Clear. }
$$

(6) \Longrightarrow (7) Let

$$
M=\bigcup\left\{S_{\alpha} \mid \alpha \in Y\right\},
$$

where S_{α} is a B-simple sub- Γ-semigroup of M for all $\alpha \in Y, Y$ is an index set. Then every bi-ideal is semiprime. Indeed: Let B be a bi-ideal of $M, \forall \alpha \in M$ such that $a \Gamma a \subseteq B$. Since $a \in M$, then there exists $\alpha \in Y$ such that $a \in S_{\alpha}$. On the other hand, $B \cap S_{\alpha}$ is a bi-ideal of S_{α}. In fact:

$$
\begin{aligned}
\emptyset \neq B \bigcap S_{\alpha} & \subseteq S_{\alpha}\left(a \Gamma a \subseteq B, a \Gamma a \subseteq S_{\alpha}\right) \\
\left(B \bigcap S_{\alpha}\right) \Gamma S_{\alpha} \Gamma\left(B \bigcap S_{\alpha}\right) & \subseteq B \Gamma S_{\alpha} \Gamma B \bigcap B \Gamma S_{\alpha} \Gamma S_{\alpha} \bigcap S_{\alpha} \Gamma S_{\alpha} \Gamma B \bigcap S_{\alpha} \Gamma S_{\alpha} \Gamma S_{\alpha} \\
& \subseteq B \Gamma M \Gamma B \bigcap B \Gamma S_{\alpha} \Gamma S_{\alpha} \bigcap S_{\alpha} \Gamma S_{\alpha} \Gamma B \bigcap S_{\alpha} \\
& \subseteq\left(B \bigcap S_{\alpha}\right) \bigcap B \Gamma S_{\alpha} \Gamma S_{\alpha} \bigcap S_{\alpha} \Gamma S_{\alpha} \Gamma B \subseteq B \bigcap S_{\alpha}
\end{aligned}
$$

Let

$$
y \in B \bigcap S_{\alpha}, S_{\alpha} \ni z \leq y
$$

Since $z \leq y \in B$ and B is a bi-ideal of M, we have $z \in B$. Thus $z \in B \bigcap S_{\alpha}$. By hypothesis, we have $B \bigcap S_{\alpha}=S_{\alpha}$, that is $a \in B$.
$(7) \Longleftrightarrow(1)$ Clear by Theorem 2.14 .
$(1) \Longrightarrow(8)$ Let $x \in M$. By $(2) \Longrightarrow(3),(x)_{\mathcal{B}}$ is a B-simple sub- Γ-semigroup of M. By $(1) \Longrightarrow(2)$ and the proof of Theorem 2.14, we have $(x \Gamma x \Gamma M \Gamma x \Gamma x]=(x \Gamma M \Gamma x]$ is
a bi-ideal of M. Let T be a B-simple sub- Γ-semigroup of M such that $T \supseteq(x)_{\mathcal{B}}$, then $(x \Gamma M \Gamma x] \bigcap T$ is a bi-ideal of T. Indeed:

$$
\begin{aligned}
& \emptyset \neq(x \Gamma M \Gamma x] \bigcap T \subseteq T(x \Gamma x \Gamma x \subseteq(x \Gamma M \Gamma x], x \Gamma x \Gamma x \subseteq T) \\
&((x \Gamma M \Gamma x] \bigcap T) \Gamma T \Gamma((x \Gamma M \Gamma x] \bigcap T) \subseteq(x \Gamma M \Gamma x] \Gamma T \Gamma(x \Gamma M \Gamma x] \\
& \bigcap(x \Gamma M \Gamma x] \Gamma T \Gamma T \\
& \subseteq(x \Gamma M \Gamma x] \bigcap(x \Gamma M \Gamma x] \Gamma T \Gamma T \\
&=((x \Gamma M \Gamma x] \bigcap T) \bigcap(x \Gamma M \Gamma x] \Gamma T \Gamma T \\
& \bigcap T \Gamma T \Gamma(x \Gamma M \Gamma x] \bigcap T \\
& \subseteq(x \Gamma M \Gamma x] \bigcap T .
\end{aligned}
$$

If $a \in(x \Gamma M \Gamma x] \bigcap T, T \ni b \leq a \in(x \Gamma M \Gamma x] \bigcap T$, by $b \leq a \in(x \Gamma M \Gamma x],(x \Gamma M \Gamma x]$ is a bi-ideal of M, we have $b \in(x \Gamma M \Gamma x]$, that is $b \in(x \Gamma M \Gamma x] \bigcap T$. Since T is B-simple, we have $(x \Gamma M \Gamma x] \bigcap T=T$. Let $y \in T$. We have

$$
B(y) \ni y \in(x \Gamma M \Gamma x] \subseteq B(x) \Gamma M \Gamma B(x) \subseteq B(x)
$$

then $B(y) \subseteq B(x)$. Similarly, $y \in T$ implies that $(y \Gamma M \Gamma y] \bigcap T$ is a bi-ideal of T and $(y \Gamma M \Gamma y] \bigcap T=T$. Since $x \in T$, we get

$$
B(x) \ni x \in(y \Gamma M \Gamma y] \subseteq B(y) \Gamma M \Gamma B(y) \subseteq B(y) \text { and } B(y) \subseteq B(x)
$$

Therefore, we have $y \in(x)_{\mathcal{B}}$, that is $T=(x)_{\mathcal{B}}$, thus $(x)_{\mathcal{B}}$ is a maximal B-simple sub- Γ semigroup of M.

On the other hand, let T be a maximal B-simple sub- Γ-semigroup of M and $x \in T$. Since $T \subseteq(x)_{\mathcal{B}}$ (from the above proof), we have $T=(x)_{\mathcal{B}}(x \in M)$. That is $T \subseteq\left\{(x)_{\mathcal{B}} \mid\right.$ $x \in M\}$.
(8) $\Longrightarrow(4)$ For any $x \in M$, by (8), we have $(x)_{\mathcal{B}}$ is a B-simple sub- Γ-semigroup of M.
$(4) \Longrightarrow(1)$ Since $(x)_{\mathcal{B}}$ is a sub- Γ-semigroup of $M, \forall x \in M$, then $x \Gamma x \Gamma \Gamma x \Gamma x \subseteq(x)_{\mathcal{B}}$ and we have

$$
x \in B(x)=B(x \Gamma x \Gamma x \Gamma x \Gamma x) \subseteq B(x \Gamma x \Gamma M \Gamma x \Gamma x) .
$$

It is easy to see that M is regular, left regular and right regular.
2.18. Definition. A po- Γ-semigroup M is called strongly regular if for every $a \in M$, there exist $x \in M, \alpha, \beta \in \Gamma$ such that $a \leq a \alpha x \beta a$ and $a \gamma x=x \gamma a$ for all $\gamma \in \Gamma$.
2.19. Lemma. Let M be a po-Г-semigroup. The following are equivalent:
(1) M is strongly regular
(2) M is left regular, right regular, and $(M \Gamma a \Gamma M]$ is a strongly regular sub- Γ semigroup of M, for every $a \in M$.
(3) For every $a \in M$, we have $a \in(M \Gamma a] \cap(a \Gamma M]$ and ($M \Gamma a \Gamma M]$ is a strongly regular sub-Г-semigroup of M.

Proof. (1) $\Longrightarrow(2)$ Let $a \in M$. Since M is strongly regular, then there exist $x \in M$, $\alpha, \beta \in \Gamma$ such that $a \leq a \alpha x \beta a=a \alpha a \beta x$. This shows that M is left regular. Similarly, M is right regular. We also have ($M \Gamma a \Gamma M]$ is strongly regular. Indeed:
A) Let $a \in M$. Then there exists $x \in M$, such that $a \in(a \Gamma x \Gamma a]$ and $a \Gamma x=x \Gamma a$. Then

$$
a \in(a \Gamma x \Gamma a] \subseteq((a \Gamma x \Gamma a) \Gamma x \Gamma a]=(a \Gamma(x \Gamma a \Gamma x) \Gamma a] .
$$

We put $Y=x \Gamma a \Gamma x$. Then we have

$$
\begin{aligned}
a & \in(a \Gamma Y \Gamma a], \\
Y & =x \Gamma a \Gamma x \\
& \subseteq(x \Gamma(a \Gamma x \Gamma a) \Gamma x]=((x \Gamma a \Gamma x) \Gamma a \Gamma x]=(Y \Gamma a \Gamma x] \subseteq(Y \Gamma(a \Gamma x \Gamma a) \Gamma x] \\
& =(Y \Gamma a \Gamma(x \Gamma a \Gamma x)]=(Y \Gamma a \Gamma Y], \\
a \Gamma Y & =a \Gamma(x \Gamma a \Gamma x)=a \Gamma(x \Gamma a) \Gamma(x \Gamma a)=(x \Gamma a \Gamma x) \Gamma a=Y \Gamma a
\end{aligned}
$$

B) Let L be a left ideal and R a right ideal of M. Then ($L \Gamma R]$ is a strongly regular sub- Γ-semigroup of M. Indeed: By Lemma 1.4 (6), we have ($L \Gamma R]$ is an ideal of M, i.e. a sub- Γ-semigroup of M. Let $a \in(L \Gamma R] \subseteq M$. Since M is strongly regular, by A) there exist $z \in Y \subseteq M$ such that $a \leq(a \alpha z \beta a), z \leq(z \delta a \rho z)$ for some $\alpha, \beta, \delta, \rho \in \Gamma$ and $z \gamma a=a \gamma z$ for all $\gamma \in \Gamma$.

Since $a \in(L \Gamma R]$, there exist $y \in L, x \in R, \mu \in \Gamma$ such that $a \leq y \mu x$. Then $z \delta a \rho z \leq$ $z \delta y \mu x \rho z$ for some $\mu \in \Gamma$. Since $z \delta y \in M \Gamma L \subseteq L$ and $x \rho z \in R \Gamma M \subseteq R$, we have $z \delta y \mu x \rho z t \in L \Gamma R$ and $z \delta a \rho z \in(L \Gamma R]$. Since $z \leq z \delta a \rho z \in(L \Gamma R]$, then $z \in(L \Gamma R]$.
C) Let $a \in M$, then $(M \Gamma a]$ is a left ideal and $(a \Gamma M]$ is a right ideal of M. Moreover, $(M \Gamma a \Gamma M]=((M \Gamma a] \Gamma(a \Gamma M]]$. Indeed:

$$
\begin{aligned}
M \Gamma a \Gamma M & \subseteq M \Gamma(M \Gamma a \Gamma a] \Gamma M=(M] \Gamma(M \Gamma a \Gamma a] \Gamma(M] \subseteq(M \Gamma M \Gamma a \Gamma a \Gamma M] \\
& \subseteq(M \Gamma a \Gamma a \Gamma M]=((M \Gamma a) \Gamma(a \Gamma M)]=((M \Gamma a] \Gamma(a \Gamma M]],
\end{aligned}
$$

hence $(M \Gamma M] \subseteq(((M \Gamma a] \Gamma(a \Gamma M]]]=((M \Gamma a] \Gamma(a \Gamma M]]$. On the other hand,

$$
((M \Gamma a] \Gamma(a \Gamma M]]=((M \Gamma a) \Gamma(a \Gamma M)]=(M \Gamma a \Gamma a \Gamma M] \subseteq(M \Gamma a \Gamma M] .
$$

By B$),(M \Gamma a \Gamma M]$ is a strongly regular sub- Γ-semigroup.
(2) \Longrightarrow (3). Let $a \in M$. Since M is left and right regular, then $a \in(M \Gamma a \Gamma a]$ and $a \in(a \Gamma a \Gamma M]$, there exist $x, y \in M$ such that $a \leq x \alpha a \gamma a, a \leq a \gamma a \beta y, \alpha, \beta, \gamma \in \Gamma$. We have:

$$
\begin{aligned}
& a \leq x \alpha(a \gamma a) \leq x \alpha(a \gamma a \beta y) \gamma a=(x \alpha(a \gamma a) \beta y) \gamma a \in(M \Gamma a] \\
& a \leq(a \gamma a) \beta y \leq a \gamma(x \alpha a \gamma a) \beta y=a \gamma(x \alpha(a \gamma a) \beta y) \in(a \Gamma M] .
\end{aligned}
$$

So, $\forall a \in M$, we have $a \in(M \Gamma a] \cap(a \Gamma M]$.
$(3) \Longrightarrow(1)$ Let $a \in M$. Since $a \in(M \Gamma a] \cap(a \Gamma M]$, we have $a \leq x \alpha a, a \leq a \beta y$ for some $x, y \in M, \alpha, \beta \in \Gamma$. Then

$$
a \leq a \beta y \leq(x \alpha a) \beta y=x \alpha(a \beta y) \in M \Gamma a \Gamma M, \text { and } a \in(M \Gamma a \Gamma M] .
$$

Since ($M \Gamma a \Gamma M]$ is strongly regular, there exist $t \in(M \Gamma a \Gamma M](\subseteq M), \delta, \rho \in \Gamma$ such that $a \leq a \delta t \rho a$ and $a \gamma t=t \gamma a, \forall \gamma \in \Gamma$. That is, M is strongly regular.

It is clear that the strongly regular po- Γ-semigroups are completely regular. By Theorem 2.16 and Lemma 2.19, we have the following:
2.20. Theorem. A po-Г-semigroup M is strongly regular if and only if the following conditions hold true:
(1) For every bi-ideal B of M, we have $B=(B \Gamma B]$.
(2) $(М Г a \Gamma M]$ is a strongly regular sub-Г-semigroup of $M, \forall a \in M$.

References

[1] Dutta, T. K. and Adhikari, N. C. On Γ-semigroup with the right and left unities, Soochow Journal of Mathematics 19 (4), 461-474, 1993.
[2] Hila, K. On regular, semiprime and quasi-reflexive Γ-semigroup and minimal quasi-ideals, Lobachevskii Journal of Mathematics 29 (3), 141-152, 2008.
[3] Hila, K. On quasi-prime, weakly quasi-prime left ideals in ordered Γ-semigroups, Mathematica Slovaca 60 (2), 195-212, 2010.
[4] Hila, K. Filters in ordered Γ-semigroups, Rocky Mountain J. Math. 41 (1), 189-203, 2011.
[5] Hila, K. On prime, weakly prime ideals and prime radical in ordered Γ-semigroups, submitted.
[6] Hila, K. and Dine, J. Study on the structure of periodic Γ-semigroups, Math. Reports 13 (63) 3, 271-284, 2011.
[7] Hila, K. and Pisha, E. Characterizations on ordered Γ-semigroups, International Journal of Pure and Applied Mathematics 28 (3), 423-440, 2006.
[8] Hila, K. and Pisha, E. Generalized ideal elements in le-Г-semigroups, Communications of Korean Math. Soc. 26 (3), 373-384, 2011.
[9] Hila, K. and Pisha, E. On lattice-ordered Rees matrix Γ-semigroups, An. Stiint. Univ. Al. I. Cuza Iasi, Mat., to appear.
[10] Kehayopulu, N., Ponizovskii, J. S. and Tsingelis, M. Note on bi-ideals in ordered semigroups and in ordered groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 265 (1999), Vopr. Teor. Predst. Algebr i Grupp. 6, 198-û201, 327(2000); translation in J. Math. Sci. (New York) 112 (4), 4353-4354, 2002.
[11] Kehayopulu, N. and Tsingelis, M. Fuzzy bi-ideals in ordered semigroups, Inform. Sci. 171 (13), 13-28, 2005.
[12] Kwon, Y. I. Characterizations of regular ordered Γ-semigroups II, Far East Journal of Mathematical Sciences (FJMS), 11 (3), 281-287, 2003.
[13] Kwon, Y. I. and Lee, S. K. Some special elements in ordered Γ-semigroups, Kyungpook Math. J. 35, 679-685, 1996.
[14] Kwon, Y.I. and Lee, S. K. The weakly semi-prime ideals of po- Γ-semigroups, KangweonKyungki Math. Jour. 5 (2), 135-139, 1997.
[15] Sen, M. K. On Γ-semigroups (Proceedings of the International Conference on Algebra and its Applications, Dekker Publications, New York, 1981), pp. 301.
[16] Sen, M. K. and Saha, N. K. On Г-semigroup-I, Bull. Cal. Math. Soc. 78, 180-186, 1986.

[^0]: *Department of Mathematics \& Computer Science, Faculty of Natural Sciences, University of Gjirokastra, Albania. E-mail: kostaq_hila@yahoo.com khila@uogj.edu.al
 ${ }^{\dagger}$ Corresponding Author.
 ${ }^{\ddagger}$ Department of Mathematics, Faculty of Natural Sciences, University of Tirana, Albania. E-mail: pishamondi@yahoo.com

