ON BI-IDEALS ON ORDERED Γ-SEMIGROUPS Ι

Kostaq Hila *† and Edmond Pisha ‡

Received 01:02:2010 : Accepted 04:05:2011

Abstract

In this paper we introduce and give some characterizations of the left and right simple, the completely regular and the strongly regular po- Γ -semigroups by means of bi-ideals.

Keywords: Γ-semigroup, po-Γ-semigroup, Γ-group, Left (right) ideal, Bi-ideal, Left (right) simple, Left (right) regular, Regular, Completely regular, Strongly regular, Duo, *B*-simple, Semiprime.

2000 AMS Classification: 06 F 99, 06 F 05, 20 M 12, 20 M 10.

1. Introduction and preliminaries

In 1981, Sen [15] introduced the concept and notion of the Γ -semigroup as a generalization of semigroup and ternary semigroup. Many classical notions and results of the theory of semigroups have been extended and generalized to Γ -semigroups. In this paper we introduce and characterize the left and right simple, the completely regular and the strongly regular po- Γ -semigroups in terms of bi-ideals and study their structure, extending and generalizing results for ordered semigroups (cf. [10, 11]).

We introduce below necessary notions and present a few auxiliary results that will be used throughout the paper.

In 1986, Sen and Saha [16] defined a Γ -semigroup as a generalization of semigroup and ternary semigroup as follows:

1.1. Definition. Let M and Γ be two non-empty sets. Denote by the letters of the English alphabet the elements of M and with the letters of the Greek alphabet the elements of Γ . Then M is called a Γ -semigroup if

(1) $a\gamma b \in M$, for all $\gamma \in \Gamma$.

^{*}Department of Mathematics & Computer Science, Faculty of Natural Sciences, University of Gjirokastra, Albania. E-mail: kostaq_hila@yahoo.com khila@uogj.edu.al

[†]Corresponding Author.

 $^{^{\}ddagger} Department of Mathematics, Faculty of Natural Sciences, University of Tirana, Albania. E-mail: pishamondi@yahoo.com$

- (2) If $m_1, m_2, m_3, m_4 \in M, \gamma_1, \gamma_2 \in \Gamma$ are such that $m_1 = m_3, \gamma_1 = \gamma_2$ and $m_2 = m_4$, then $m_1\gamma_1m_2 = m_3\gamma_2m_4$.
- (3) $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in M$ and for all $\alpha, \beta \in \Gamma$.

1.2. Example. Let M be a semigroup and Γ any non-empty set. Define a mapping $M \times \Gamma \times M \to M$ by $a\gamma b = ab$ for all $a, b \in M$ and $\gamma \in \Gamma$. Then M is a Γ -semigroup.

1.3. Example. Let M be the set of all negative rational numbers. Obviously M is not a semigroup under the usual product of rational numbers. Let $\Gamma = \{-\frac{1}{p} : p \text{ is prime}\}$. Let $a, b, c \in M$ and $\alpha \in \Gamma$. Now if $a\alpha b$ is equal to the usual product of the rational numbers a, α, b , then $a\alpha b \in M$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$. Hence M is a Γ -semigroup.

1.4. Example. Let $M = \{-i, 0, i\}$ and $\Gamma = M$. Then M is a Γ -semigroup under the multiplication over complex numbers while M is not a semigroup under complex number multiplication.

These examples illustrate that every semigroup is a Γ -semigroup and that Γ -semigroups are a generalization of semigroups.

A Γ -semigroup M is called a *commutative* Γ -semigroup if for all $a, b \in M$ and $\gamma \in \Gamma$, $a\gamma b = b\gamma a$. A non-empty subset K of a Γ -semigroup M is called a *sub*- Γ -semigroup of M if for all $a, b \in K$ and $\gamma \in \Gamma$, $a\gamma b \in K$.

1.5. Example. Let M = [0, 1] and $\Gamma = \{\frac{1}{n} : n \text{ is a positive integer}\}$. Then M is a Γ -semigroup under usual multiplication. Let K = [0, 1/2]. We have that K is a non-empty subset of M and $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then K is a sub- Γ -semigroup of M.

Other examples of Γ -semigroups can be found in [1, 2, 6, 15, 16].

1.6. Definition. A po- Γ -semigroup (:ordered Γ -semigroup) is a partially ordered set M which at the same time is a Γ -semigroup such that for all $a, b, c \in M$ and for all $\gamma \in \Gamma$

$$a \leq b \implies a\gamma c \leq b\gamma c, c\gamma a \leq c\gamma b$$

Examples of ordered Γ -semigroups can be found in [3, 4, 5, 7, 8, 9, 12, 13, 14].

Let M be a po- Γ -semigroup and A a non-empty subset of M. Then A is called a *right* (resp. *left*) ideal of M if

(1) $A\Gamma M \subseteq A$ (resp. $M\Gamma A \subseteq A$),

(2) $a \in A, b \leq a \text{ for } b \in M \implies b \in A.$

A is called an *ideal* of M if it is right and left ideal of M. It is clear that the intersection of all ideals of a po- Γ -semigroup M is still an ideal of M. We shall call this particular ideal, if exists, the *kernel* of M and denote it by K(M).

A non-empty subset B of a po- Γ -semigroup M is called a *bi-ideal* of M if

(1) $B\Gamma M\Gamma B \subseteq B$

(2) $a \in B$ and $b \leq a$ for $b \in M \implies b \in B$

A right, left or bi-ideal A of a po- Γ -semigroup M is called *proper* if $A \neq M$.

A bi-ideal A of M is called *subidempotent* if $A\Gamma A \subseteq A$.

A bi-ideal A of M is called *idempotent* if $(A\Gamma A] = A$.

An element a of a Γ -semigroup M is called *idempotent* if $\exists \gamma \in \Gamma, a = a\gamma a$.

Let M be a po- Γ -semigroup. For $\emptyset \neq A \subseteq M$, we denote by J(A) the ideal of M generated by A, by L(A) (respectively R(A)) the left (respectively right) ideal of M generated by A, and by B(A) the bi-ideal of M generated by A.

For non-empty subsets A and B of M and a non-empty subset Γ' of Γ , let $A\Gamma'B = \{a\gamma b : a \in A, b \in B \text{ and } \gamma \in \Gamma'\}$. If $A = \{a\}$, then we also write $\{a\}\Gamma'B$ as $a\Gamma'B$, and

794

similarly if $B = \{b\}$ or $\Gamma' = \{\gamma\}$. For the sake of simplicity, we let M be a po- Γ -semigroup and T its sub- Γ -semigroup. For $A \subseteq T$ we write

$$(A]_T = \{t \in T : t \le a, \text{ for some } a \in A\}$$

If T = M, then we always write (A] instead of $(A]_M$. Clearly, $A \subseteq (A]_T \subseteq (A]$ and $A \subseteq B$ implies that $(A]_T \subseteq (B]_T$ for any non-empty subsets A, B of T. For $A = \{a\}$, we write (a] instead of $(\{a\}]$. We denote by L(a) (respectively R(a)) the left (respectively right) ideal of M generated by $a \in M$, by B(a) the bi-ideal of M generated by $a \in M$, by J(a) the ideal of M generated by $a \in M$. One can easily prove that

$$L(a) = M\Gamma a = \{a\} \cup M\Gamma\{a\} = (a \cup M\Gamma a] = (a] \cup (M\Gamma a],$$

$$R(a) = a\Gamma M = \{a\} \cup \{a\}\Gamma M = (a \cup a\Gamma M] = (a] \cup (a\Gamma M],$$

$$B(a) = (a \cup a\Gamma M\Gamma a] = (a] \cup (a\Gamma M\Gamma a],$$

$$J(a) = M\Gamma a\Gamma M = \{a\} \cup M\Gamma\{a\} \cup \{a\}\Gamma M \cup M\Gamma\{a\}\Gamma M$$

$$= (a \cup M\Gamma a \cup a\Gamma M \cup M\Gamma a\Gamma M].$$

The authors of [7, 14] proved the following:

1.7. Lemma. Let M be a po- Γ -semigroup. The following statements hold true:

- (1) $A \subseteq (A]$ for any $A \subseteq M$
- (2) If $A \subseteq B \subseteq M$, then $(A] \subseteq (B]$.
- (3) $(A]\Gamma(B] \subseteq (A\Gamma B]$ for all subsets A and B of M.
- (4) $((A]] \subseteq (A]$ for all $A \subseteq M$.
- (5) For every left (resp. right, two-sided, bi-) ideal T of M, (T] = T.
- (6) If L is a left ideal and R a right ideal of M, then the set (LΓR] is an ideal of M.
- (7) If A, B are ideals of M, then $(A\Gamma B], (B\Gamma A], A \cup B, A \cap B$ are ideals of M.
- (8) $(M\Gamma a]$ $(resp.(a\Gamma M])$ is a left (resp. right) ideal of M for every $a \in M$.
- (9) $(M\Gamma a\Gamma M]$ is an ideal of M for every $a \in M$.
- (10) $((A]\Gamma(B]] = (A\Gamma B], \text{ for any } A, B \subseteq M.$

A po- Γ -semigroup M is called *left* (resp. *right*) *simple* if it does not contain proper left (respectively, right) ideals or equivalently, if for every left (respectively, right) ideal A of M, we have A = M.

A subset T of a po- Γ -semigroup M is called *semiprime* if for every $a \in M$ such that $a\Gamma a \subseteq T$, we have $a \in T$. Equivalent Definition: For each subset A of M such that $A\Gamma A \subseteq T$, we have $A \subseteq T$.

An element a of a po- Γ -semigroup M is called *regular* if there exists $x \in M$ such that $a \leq a \alpha x \beta a$ for some $\alpha, \beta \in \Gamma$.

A po- Γ -semigroup M is called *regular* if every element of M is regular. The following are equivalent definitions:

- (1) For every $A \subseteq M, A \subseteq (A\Gamma M\Gamma A]$.
- (2) For every element $a \in M, a \in (a\Gamma M\Gamma a]$.

Let M be a po- Γ -semigroup and $a \in M$. For the sake of simplicity, throughout the paper we write $a^2 = a\gamma a$, $a^3 = (a\gamma)^2 a, \ldots, a^n = (a\gamma)^{n-1} a, \ldots$ for $\gamma \in \Gamma$ and $n \in Z^+$.

2. Characterizations of some classes of po-Γ-semigroups by means of bi-ideals

In [7], the authors proved the following lemma.

2.1. Lemma. Let M be a po- Γ -semigroup. Then M is left (resp. right) simple if and only if $(M\Gamma a] = M(resp. (a\Gamma M] = M)$ for all $a \in M$.

Proof. We prove the lemma only for the left simple case, the other case can be proved analogously.

 \implies Let M be left simple and $a \in M$. Since $(M\Gamma a]$ is a left ideal of M, by the definition we have $(M\Gamma a] = M$.

 $\xleftarrow{} \text{Let } (M\Gamma a] = M, \forall a \in M. \text{ Let } A \text{ be a left ideal of } M \text{ and } x \in A(A \neq \emptyset).$ Since $M = (M\Gamma x] \subseteq (M\Gamma A] \subseteq (A] = A$, we have A = M. This implies that M is left simple. \Box

2.2. Theorem. Let M be a po- Γ -semigroup. The following are equivalent:

- (1) M is left and right simple.
- (2) $M = (a\Gamma M\Gamma a], \forall a \in M.$
- (3) M is regular, left and right simple.

Proof. (1) \Longrightarrow (2). Let $a \in M$. By Lemma 2.1, $M = (M\Gamma a] = (a\Gamma M]$. Then $M = (a\Gamma M] = (a\Gamma (M\Gamma a)] = (a\Gamma M\Gamma a)$.

(2) \implies (3). Let $a \in M$. By (ii), we have $M = (a\Gamma M\Gamma a] \subseteq (M\Gamma a]$, $(a\Gamma M] \subseteq M$. It follows that $a \in (a\Gamma M\Gamma a]$ and $M = (M\Gamma a] = (a\Gamma M]$.

$$(3) \Longrightarrow (1)$$
. Clear.

2.3. Proposition. Let M be a regular po- Γ -semigroup. Then the bi-ideals and the subidempotent bi-ideals of M are the same.

Proof. If B is a bi-ideal of M, then $B\Gamma M\Gamma B \subseteq B$, $(B\Gamma M\Gamma B] \subseteq (B] = B$. Since M is regular, $B \subseteq (B\Gamma M\Gamma B]$. Thus, $B = (B\Gamma M\Gamma B]$ and

$$B\Gamma B = (B\Gamma M\Gamma B]\Gamma (B\Gamma M\Gamma B] \subseteq (B\Gamma M\Gamma B\Gamma B\Gamma B\Gamma M\Gamma B] \subseteq (B\Gamma M\Gamma B] = B. \square$$

2.4. Theorem. A po- Γ -semigoup M is left and right simple if and only if M does not contain proper bi-ideals.

Proof. \implies Let A be a bi-ideal of M. Let $a \in M$ and $b \in A$, $(A \neq \emptyset)$.

Let $L(b) = (b \cup M\Gamma b]$ be the left ideal of M generated by b. Since M is left simple, we have M = L(b). Since $a \in L(b)$, we have $a \leq b$ or $a \leq x\gamma b$ for some $x \in M$ and $\gamma \in \Gamma$. Let $a \leq b$. Then, since $M \ni a \leq b \in A, A$ is a bi-ideal of M, so we have $a \in A$. Let $a \leq x\gamma b$ for some $x \in M$ and $\gamma \in \Gamma$. Let $R(b) = (b \cup b\Gamma M]$ be the right ideal of Mgenerated by b. Since M is right simple, we have M = R(b).

Since $x \in R(b)$, we have $x \leq b$ or $x \leq b\rho y$ for some $y \in M$ and $\rho \in \Gamma$. Let $x \leq b$. Then we have $a \leq x\gamma b \leq b\gamma b \in A$ and $a \in A$. Let $x \leq b\rho y$ for some $y \in M$ and $\rho \in \Gamma$. Then $a \leq x\gamma b \leq b\rho y\gamma b \in A\Gamma M\Gamma A \subseteq A$ and $a \in A$.

 $\xleftarrow{} \text{Let } L \text{ be a left ideal of } M. \text{ Then } L \text{ is a bi-ideal of } M. \text{ By hypothesis, } L = M.$ Similarly, M is right simple. \Box

In [1], the authors gave the following definition.

2.5. Definition. Let M be a Γ -semigroup. Then M is called a Γ -group if for every $a, a_1 \in M$ and $\alpha, \alpha_1 \in \Gamma$, there exist $b, b_1 \in M$ and $\beta, \beta_1 \in \Gamma$ such that for all $s \in M$ and $\gamma \in \Gamma$,

 $s = b\beta a\alpha s, \gamma = \gamma b\beta a\alpha, \gamma = \beta_1 b_1 \alpha_1 a_1 \gamma, s = s\beta_1 b_1 \alpha_1 a_1.$

Also, they proved the following proposition.

2.6. Proposition. Let M be a Γ -semigroup. Then M is a Γ -group if and only if both M and Γ are left simple as well as right simple.

2.7. Theorem. Let M be an ordered Γ -group. Then M does not contain proper bi-ideals.

Proof. An ordered Γ -group is a Γ -group. From Proposition 2.6 and Theorem 2.4, it follows that the ordered Γ -groups do not contain proper bi-ideals, as well. Another independent proof is given as follows:

Let A be a bi-ideal of M and $a \in M$. Let $b \in A(A \neq \emptyset)$. Since $b \in M$, there exist $b_1, b_2 \in M$ and $\beta, \alpha, \beta_1, \alpha_1 \in \Gamma$ such that $a = b\beta b_1 \alpha a$, $a = a\beta_1 b_2 \alpha_1 b$. Then we have

$$a = b\beta b_1 \alpha a \beta_1 b_2 \alpha_1 b = b\beta (b_1 \alpha a \beta_1 b_2) \alpha_1 b \in A\Gamma M\Gamma A \subseteq A \text{ and } a \in A.$$

2.8. Definition. A po- Γ -semigroup M is called *left* (resp. *right*) *regular* if for every $a \in M$, there exist $x \in M$, $\gamma, \mu \in \Gamma$ such that $a \leq x\gamma(a\mu a)$ (resp. $a \leq (a\mu a)\gamma x$).

The following are equivalent definitions:

- (1) $a \in (M\Gamma a\Gamma a]$ (resp. $a \in (a\Gamma a\Gamma M]), \forall a \in M$
- (2) $A \subseteq (M\Gamma A\Gamma A]$ (resp. $A \in (A\Gamma A\Gamma M]), \forall A \subseteq M$.

2.9. Lemma. A po- Γ -semigroup M is left regular if and only if every left ideal of M is semiprime.

Proof. \implies . Let *L* be a left ideal of *M* and $a \in M, a\Gamma a \subseteq L$. Since $M\Gamma(a\Gamma a) \subseteq M\Gamma L \subseteq L$, we have $(M\Gamma(a\Gamma a)] \subseteq (L] = L$. Since *M* is left regular, we have $a \in (M\Gamma(a\Gamma a)] \subseteq L$, so $a \in L$.

 \Leftarrow . Let $a \in M$. The set $(M\Gamma(a\Gamma a)]$, as a left ideal of M, is semiprime. Since

 $a\Gamma a\Gamma a\Gamma a = (a\Gamma a)\Gamma(a\Gamma a) \in M\Gamma(a\Gamma a) \subseteq (M\Gamma(a\Gamma a)],$

we have $a\Gamma a \in (M\Gamma(a\Gamma a)]$ and $a \in (M\Gamma(a\Gamma a)]$.

2.10. Definition. A po- Γ -semigroup M is called *completely regular* if it is regular, left regular and right regular.

If M is a po- Γ -semigroup and $\emptyset \neq A \subseteq M$, then one can easily proves that the set $(A \cup A\Gamma A \cup A\Gamma M\Gamma A]$ is the bi-ideal of M generated by A. In particular, for $A = \{a\}$, $(a \in M)$, we write $B(a) = (a \cup a\Gamma a \cup a\Gamma M\Gamma a]$ for the bi-ideal generated by a. If M is regular, then it is clear that: $B(a) = (a\Gamma M\Gamma a]$. We define a relation \mathcal{B} on M as follows:

 $a\mathcal{B}b \iff B(a) = B(b).$

Clearly, \mathcal{B} is an equivalence relation on M.

2.11. Lemma. Let M be a po- Γ -semigroup and B(x), B(y) the bi-ideals of M generated by the elements $x, y \in M$, respectively. Then we have $B(x)\Gamma M\Gamma B(y) \subseteq (x\Gamma M\Gamma y]$.

Proof. We have

$$B(x)\Gamma M\Gamma B(y) = (x \cup x^2 \cup x\Gamma M\Gamma x]\Gamma(M]\Gamma(y \cup y^2 \cup y\Gamma M\Gamma y)$$
$$\subseteq ((x \cup x^2 \cup x\Gamma M\Gamma x)\Gamma M\Gamma(y \cup y^2 \cup y\Gamma M\Gamma y)] = (x\Gamma M\Gamma y). \square$$

2.12. Lemma. A po- Γ -semigroup M is completely regular if and only if for any $a \in M$, there exist $x \in M$, $\mu, \alpha, \beta \in \Gamma$ such that $a \leq (a\mu a)\alpha x\beta(a\mu a)$.

Proof. Assume that M is completely regular. Then for any $a \in M$, there exist $x, y, z \in M, \alpha, \beta, \mu, \rho, \gamma \in \Gamma$ such that

$$a \leq a \alpha x \beta a \leq (a \mu a \gamma y) \alpha x \beta (z \rho a \mu a) = a \mu a \gamma (y \alpha x \beta z) \rho a \mu a.$$

Conversely, suppose that, for any $a \in M$, there exist $x \in M$, $\mu, \alpha, \beta \in \Gamma$ such that $a \leq (a\mu a)\alpha x\beta(a\mu a)$. Then

(1) $a \leq (a\mu a)\alpha x\beta(a\mu a) = a\mu(a\alpha x\beta a)\mu a.$ (2) $a \leq (a\mu a)\alpha x\beta(a\mu a) = (a\mu a\alpha x)\beta a\mu a.$ (3) $a \leq (a\mu a)\alpha x\beta(a\mu a) = a\mu a\alpha(x\beta a\mu a).$

Thus, M is regular, left regular and right regular. Therefore M is completely regular. \Box

From Lemma 2.12, it is obvious that the following lemma holds true:

2.13. Lemma. A po- Γ -semigroup M is completely regular if and only if for every $A \subseteq M$, $A \subseteq ((A\Gamma A)\Gamma M\Gamma(A\Gamma A)]$.

Equivalently, if for every
$$a \in M$$
, $a \in ((a\Gamma a)\Gamma M\Gamma(a\Gamma a)]$.

2.14. Theorem. A po- Γ -semigroup M is completely regular if and only if every bi-ideal B of M is semiprime.

Proof. \implies . Let B be a bi-ideal, $a \in M$ and $a\Gamma a \subseteq B$. Then for some $x, y, z \in M$, $\alpha, \beta, \gamma, \rho, \mu \in \Gamma$,

$$a \leq a\alpha x\beta a \leq (a\gamma a\rho y)\alpha x\beta(z\mu a\gamma a) = a\gamma(a\rho y\alpha x\beta z\mu a)\gamma a \in B\Gamma M\Gamma B \subseteq B.$$

Thus B is semiprime.

 \Leftarrow . Let $a \in M$. Then $(a\Gamma a\Gamma M\Gamma a\Gamma a]$ is a non-empty subset of M. Let $x, y \in (a\Gamma a\Gamma M\Gamma a\Gamma a]$ and $z \in M$. Then for some $u, v \in M, \alpha, \beta, \gamma, \rho, \mu, \delta, \sigma \in \Gamma$,

 $\begin{aligned} x\alpha z\beta y &\leq (a\gamma a\rho u\mu a\gamma a)\alpha z\beta (a\gamma a\delta v\sigma a\gamma a) \\ &= a\gamma a\rho (u\mu a\gamma a\alpha z\beta a\gamma a\delta v)\sigma a\gamma a \in a\Gamma a\Gamma M\Gamma a\Gamma a \end{aligned}$

Thus

 $x \alpha z \beta y \in (a \Gamma a \Gamma M \Gamma a \Gamma a]$ and $(a \Gamma a \Gamma M \Gamma a \Gamma a] \Gamma M \Gamma (a \Gamma a \Gamma M \Gamma a \Gamma a] \subseteq (a \Gamma a \Gamma M \Gamma a \Gamma a]$.

Furthermore, if $x \in (a\Gamma a\Gamma M\Gamma a\Gamma a]$ and $y \leq x$, for some $y \in M$, then

 $y \leq x \in (a\Gamma a\Gamma M\Gamma a\Gamma a]$, so $y \in (a\Gamma a\Gamma M\Gamma a\Gamma a]$.

Hence $(a\Gamma a\Gamma M\Gamma a\Gamma a]$ is a bi-ideal of M, for all $a \in M$. Since $(a\Gamma a\Gamma a\Gamma a\Gamma a\Gamma a\Gamma a\Gamma a\Gamma a\Gamma a) = (a\Gamma a)\Gamma(a\Gamma a\Gamma a\Gamma a)\Gamma(a\Gamma a) \subseteq (a\Gamma a\Gamma M\Gamma a\Gamma a]$ and $(a\Gamma a\Gamma M\Gamma a\Gamma a]$ is semiprime, we get $(a\Gamma a\Gamma a\Gamma a), (a\Gamma a) \subseteq (a\Gamma a\Gamma M\Gamma a\Gamma a]$ and so $a \in (a\Gamma a\Gamma M\Gamma a\Gamma a]$. By Lemma 2.10, M is completely regular.

2.15. Lemma. Let M be a po- Γ -semigroup. Then the following are equivalent:

- (1) M is completely regular;
- (2) $B(a) = B(a\Gamma a) = B(a\Gamma a\Gamma M\Gamma a\Gamma a), \forall a \in M;$
- (3) $a \mathcal{B} a \Gamma a$.

Proof. (1) \implies (2). Since M is completely regular, M is regular and we have $B(a) = (a\Gamma M\Gamma a]$. Then $B(a\Gamma a) = (a\Gamma a\Gamma M\Gamma a\Gamma a]$. Since M is regular, left regular and right regular, we have for all $a \in M$:

 $a \in (a\Gamma M\Gamma a] \subseteq ((a\Gamma a\Gamma M]\Gamma M\Gamma (M\Gamma a\Gamma a]] \subseteq (a\Gamma a\Gamma M\Gamma a\Gamma a] \subseteq (a\Gamma M\Gamma a].$

Therefore

 $B(a) = (a\Gamma M\Gamma a] = (a\Gamma a\Gamma M\Gamma a\Gamma a] = B(a\Gamma a).$

798

Also, since for all $a \in M$,

 $a \in (a\Gamma M\Gamma a] \subseteq ((a\Gamma a\Gamma M\Gamma a\Gamma a]\Gamma M\Gamma (a\Gamma a\Gamma M\Gamma a\Gamma a]]$ $\subseteq (a\Gamma a\Gamma M\Gamma a\Gamma a] \subseteq (a\Gamma M\Gamma a],$

we have $B(a) = B(a\Gamma a) = B(a\Gamma a\Gamma M\Gamma a\Gamma a)$.

(2) \Longrightarrow (3). Clear since $B(a) = B(a\Gamma a), \forall a \in M$.

(3) \Longrightarrow (1). If $a \mathcal{B} a \Gamma a$, then $B(a) = B(a \Gamma a)$. We have

 $a \in B(a) = B(a\Gamma a) = (a\Gamma a \cup a\Gamma a\Gamma a\Gamma a \cup a\Gamma a\Gamma M\Gamma a\Gamma a].$

Then $a \leq y$ for some $y \in a\Gamma a \cup a\Gamma a\Gamma a \Gamma a \cup a\Gamma a\Gamma M\Gamma a\Gamma a$.

If $y \in a\Gamma a$, then for some $\gamma \in \Gamma$,

$$a \leq y = a\gamma a \leq (a\gamma a)\gamma(a\gamma a) = a\gamma a\gamma(a\gamma a) \leq (a\gamma a)\gamma a\gamma(a\gamma a) \in (a\Gamma a)\Gamma M\Gamma(a\Gamma a)$$

and $a \in (a\Gamma a\Gamma M\Gamma a\Gamma a]$.

If $y \in a\Gamma a\Gamma a\Gamma a$, then for some $\gamma \in \Gamma$,

 $a \leq y = a^4 = ((a\gamma)^3 a) = a\gamma a\gamma (a\gamma a) \leq a^4\gamma a\gamma (a\gamma a) \in a\Gamma a\Gamma M\Gamma a\Gamma a,$

and $a \in (a\Gamma a\Gamma M\Gamma a\Gamma a]$.

If $y \in a\Gamma a\Gamma M\Gamma a\Gamma a$, then $a \in (a\Gamma a\Gamma M\Gamma a\Gamma a]$.

2.16. Theorem. A po- Γ -semigroup M is completely regular if and only if for each biideal B of M, we have

 $B = (B\Gamma B].$

Proof. \implies . Since B is a sub- Γ -semigroup of M, we have $B\Gamma B \subseteq B$. Then since B is an ideal of M, we have $(B\Gamma B] \subseteq (B] = B$. By Lemma 2.13, we have

 $B \subseteq ((B\Gamma B)\Gamma M\Gamma (B\Gamma B)].$

Then, by the definition of bi-ideal, we have

 $B \subseteq (B\Gamma(B\Gamma M\Gamma B)\Gamma B] \subseteq (B\Gamma B\Gamma B] \subseteq (B\Gamma B].$

Thus, $B = (B\Gamma B]$.

 \leftarrow Let *L* be a left ideal of *M*. Then $M\Gamma L \subseteq L$ and $L\Gamma(M\Gamma L) \subseteq M\Gamma L \subseteq L$. Thus *L* is a bi-ideal of *M*. Let $x \in M$ be such that $x^2 \in L$. Then $x \in L$. Indeed: We consider the bi-ideal of *M* generated by *x*. That is, the set $B(x) = (x \cup x^2 \cup x\Gamma M\Gamma x]$. By hypothesis, we have $x \in B(x) = (B(x)\Gamma B(x)]$. On the other hand, $(B(x)\Gamma B(x)] \subseteq L$. In fact: We have

$$B(x)\Gamma B(x) = (x \cup x^2 \cup x\Gamma M\Gamma x]\Gamma(x \cup x^2 \cup x\Gamma M\Gamma x]$$

$$\subseteq ((x \cup x^2 \cup x\Gamma M\Gamma x)\Gamma(x \cup x^2 \cup x\Gamma M\Gamma x)]$$

$$= (x^2 \cup x^3 \cup x\Gamma M\Gamma x^2 \cup x^4 \cup x\Gamma M\Gamma x^3 \cup x^2\Gamma M\Gamma x \cup x^3\Gamma M\Gamma x$$

$$\cup x\Gamma M\Gamma x^2\Gamma M\Gamma x]$$

Since $x^2 \in L, x^3 \in M\Gamma L \subseteq L, (x\Gamma M)\Gamma x^2 \subseteq M\Gamma L \subseteq L, x^4 \in M\Gamma L \subseteq L$, we have $B(x)\Gamma B(x) \subseteq (L \cup L\Gamma M] = (L] = L.$

Then we have $(B(x)\Gamma B(x)] \subseteq ((L)] = (L) = L$ and $x \in L$. In a similar way, we prove that every right ideal of M is semiprime. That is, by Lemma 2.9, M is left and right

regular. So, M is a regular po- Γ -semigroup. Indeed: Now let $a \in M$. Let B(a) be the bi-ideal generated by a. Then by hypothesis and Lemma 2.11, we have

$$a \in B(a) = (B(a)\Gamma B(a)] = ((B(a)\Gamma B(a)]\Gamma B(a)] = (B(a)\Gamma B(a)\Gamma B(a)]$$
$$\subseteq (B(a)\Gamma M\Gamma B(a)] \subseteq (a\Gamma M\Gamma a]$$

That is, M is completely regular.

Let M be a po- Γ -semigroup. Then M is called a B-simple po- Γ -semigroup if M does not contain proper bi-ideals.

2.17. Theorem. Let M be a po- Γ -semigroup. Then the following are equivalent:

- (1) M is completely regular;
- (2) $\forall a \in M, a \in (a\Gamma M\Gamma a] = (a\Gamma a\Gamma M\Gamma a\Gamma a];$
- (3) Every \mathbb{B} -class of M is a B-simple sub- Γ -semigroup of M;
- (4) Every \mathbb{B} -class of M is a sub- Γ -semigroup of M;
- (5) *M* is a union of disjoint *B*-simple sub- Γ -semigroups of *M*;
- (6) M is a union of disjoint sub- Γ -semigroups of M;
- (7) Every bi-ideal of M is semiprime;
- (8) The set $\{(x)_{\mathcal{B}}|x \in M\}$ coincides with the set of all maximal B-simple sub- Γ -semigroups of M.

Proof. (1) \implies (2) Let M be completely regular. Then M is regular, left regular and right regular. We have for all $a \in M$:

$$a \in (a\Gamma M\Gamma a] \subseteq ((a\Gamma a\Gamma M]\Gamma M\Gamma (M\Gamma a\Gamma a]] \subseteq (a\Gamma a\Gamma M\Gamma a\Gamma a] \subseteq (a\Gamma M\Gamma a].$$

Therefore,

 $a \in (a\Gamma M\Gamma a] = (a\Gamma a\Gamma M\Gamma a\Gamma a].$

 $(2) \Longrightarrow (3)$ We have that $(x)_{\mathcal{B}}$ is a sub- Γ -semigroup of M. Indeed: First, $\emptyset \neq (x)_{\mathcal{B}} \subseteq M$, $\forall x \in (x)_{\mathcal{B}}$. Let $a, b \in (x)_{\mathcal{B}}$. Since $a\mathcal{B}x, b\mathcal{B}x$, we have B(a) = B(x) = B(b). Now, by hypothesis, we have:

 $a\Gamma b \subseteq \left(\left((a\Gamma b\Gamma a\Gamma b)\Gamma M\Gamma (a\Gamma b\Gamma a\Gamma b) \right] \\ \subseteq \left(B(a)\Gamma M\Gamma B(b) \right] = \left(B(b)\Gamma M\Gamma B(b) \right] \subseteq B(b).$

Then

$$a\Gamma b \subseteq B(b) = B(x).$$

Hence

$$B(a\Gamma b) \subseteq B(b) = B(x)$$

On the other hand, let $y \in B(x)$. By hypothesis, we have:

 $(a\Gamma M\Gamma y] \subseteq ((a\Gamma a\Gamma M\Gamma a\Gamma a]\Gamma M\Gamma y]$

 $\subseteq (a\Gamma a\Gamma M\Gamma a\Gamma a\Gamma M\Gamma y] \subseteq (a\Gamma B(a)\Gamma M\Gamma B(b)]$

 $= (a\Gamma B(b)\Gamma M\Gamma B(b)] \subseteq (a\Gamma B(b)] \subseteq (a\Gamma b\Gamma M\Gamma b]$

and

$$\begin{aligned} (y\Gamma M\Gamma b] &\subseteq (y\Gamma M\Gamma (b\Gamma b\Gamma M\Gamma b\Gamma b]] \subseteq (y\Gamma M\Gamma b\Gamma b\Gamma b\Gamma M\Gamma b\Gamma b] \subseteq (B(x)\Gamma M\Gamma B(b)\Gamma b] \\ &= (B(a)\Gamma M\Gamma B(b)\Gamma b] = (B(a)\Gamma M\Gamma B(a)\Gamma b] \subseteq (B(a)\Gamma b] \subseteq (a\Gamma M\Gamma a\Gamma b]. \end{aligned}$$

 \mathbf{So}

$$\begin{split} y &\in (y\Gamma y\Gamma M\Gamma y\Gamma y] \subseteq (y\Gamma (y\Gamma y\Gamma M\Gamma y\Gamma y]\Gamma M\Gamma y\Gamma y]\Gamma (y\Gamma y\Gamma y\Gamma M\Gamma B(b)] \\ &\subseteq (B(a)\Gamma M\Gamma y\Gamma y\Gamma M\Gamma B(b)] \subseteq ((B(a)\Gamma M\Gamma y)\Gamma (y\Gamma M\Gamma B(b))] \\ &\subseteq ((a\Gamma M\Gamma y)\Gamma (y\Gamma M\Gamma b)] \subseteq ((a\Gamma b\Gamma M\Gamma b)\Gamma (a\Gamma M\Gamma a\Gamma b)] \\ &\subseteq (a\Gamma b\Gamma M\Gamma b\Gamma a\Gamma M\Gamma a\Gamma b] \subseteq (B(a\Gamma b)\Gamma M\Gamma b\Gamma a\Gamma M\Gamma B(a\Gamma b)) \end{split}$$

 $\subseteq (B(a\Gamma b)] = B(a\Gamma b).$

Thus, $y \in B(a\Gamma b)$, so $B(x) \subseteq B(a\Gamma b)$. Therefore $B(x) = B(a\Gamma b)$. Moreover, $(x)_{\mathcal{B}}$ is a sub- Γ -semigroup of M.

Let B be a bi-ideal of $(x)_{\mathcal{B}}$. Then $B = (x)_{\mathcal{B}}$. Indeed: For any $y \in (x)_{\mathcal{B}}$, suppose that $z \in B$. Since $z \in B \subseteq (x)_{\mathcal{B}} = (y)_{\mathcal{B}}$, then we have

$$y \in B(y) = B(z) = B(x).$$

By the hypothesis and Lemma 2.15, then

$$y \in B(z) \subseteq B(z\Gamma z\Gamma z\Gamma z) = (z\Gamma M\Gamma z] \subseteq (B\Gamma M\Gamma B] \subseteq (B] = B$$

Therefore $B = (x)_{\mathcal{B}}$, that is, $(x)_{\mathcal{B}}$ is a *B*-simple sub- Γ -semigroup of *M*.

 $(3) \Longrightarrow (4)$ Clear.

(3) \Longrightarrow (5) It is clear that $M = \bigcup \{ (x)_{\mathcal{B}} | x \in M \}$, and M is a union of disjoint B-simple sub- Γ -semigroups of M.

(5) \Longrightarrow (6) Clear. (6) \Longrightarrow (7) Let $M = \bigcup \{ S_{\alpha} | \alpha \in Y \},\$

where S_{α} is a *B*-simple sub- Γ -semigroup of *M* for all $\alpha \in Y, Y$ is an index set. Then every bi-ideal is semiprime. Indeed: Let *B* be a bi-ideal of *M*, $\forall \alpha \in M$ such that $a\Gamma a \subseteq B$. Since $a \in M$, then there exists $\alpha \in Y$ such that $a \in S_{\alpha}$. On the other hand, $B \cap S_{\alpha}$ is a bi-ideal of S_{α} . In fact:

$$\emptyset \neq B \bigcap S_{\alpha} \subseteq S_{\alpha}(a\Gamma a \subseteq B, a\Gamma a \subseteq S_{\alpha}),$$
$$(B \bigcap S_{\alpha})\Gamma S_{\alpha}\Gamma (B \bigcap S_{\alpha}) \subseteq B\Gamma S_{\alpha}\Gamma B \bigcap B\Gamma S_{\alpha}\Gamma S_{\alpha} \bigcap S_{\alpha}\Gamma S_{\alpha}\Gamma B \bigcap S_{\alpha}\Gamma S_{\alpha} \Gamma S_{\alpha}$$
$$\subseteq B\Gamma M\Gamma B \bigcap B\Gamma S_{\alpha}\Gamma S_{\alpha} \bigcap S_{\alpha}\Gamma S_{\alpha}\Gamma B \bigcap S_{\alpha}$$
$$\subseteq (B \bigcap S_{\alpha}) \bigcap B\Gamma S_{\alpha}\Gamma S_{\alpha} \bigcap S_{\alpha}\Gamma S_{\alpha}\Gamma B \subseteq B \bigcap S_{\alpha}.$$

Let

 $y \in B \bigcap S_{\alpha}, S_{\alpha} \ni z \le y.$

Since $z \leq y \in B$ and B is a bi-ideal of M, we have $z \in B$. Thus $z \in B \cap S_{\alpha}$. By hypothesis, we have $B \cap S_{\alpha} = S_{\alpha}$, that is $a \in B$.

 $(7) \iff (1)$ Clear by Theorem 2.14.

(1) \implies (8) Let $x \in M$. By (2) \implies (3), $(x)_{\mathcal{B}}$ is a *B*-simple sub- Γ -semigroup of *M*. By (1) \implies (2) and the proof of Theorem 2.14, we have $(x\Gamma x\Gamma M\Gamma x\Gamma x] = (x\Gamma M\Gamma x]$ is a bi-ideal of M. Let T be a B-simple sub- Γ -semigroup of M such that $T \supseteq (x)_{\mathcal{B}}$, then $(x\Gamma M\Gamma x] \cap T$ is a bi-ideal of T. Indeed:

$$\emptyset \neq (x\Gamma M\Gamma x] \bigcap T \subseteq T(x\Gamma x\Gamma x \subseteq (x\Gamma M\Gamma x], x\Gamma x\Gamma x \subseteq T),$$

$$((x\Gamma M\Gamma x] \bigcap T) \Gamma T ((x\Gamma M\Gamma x] \bigcap T) \subseteq (x\Gamma M\Gamma x] \Gamma T \Gamma T (x\Gamma M\Gamma x] \cap T \Gamma T T T$$

$$\cap T \Gamma T \Gamma (x\Gamma M\Gamma x] \cap T \Gamma T T T$$

$$\cap T \Gamma T \Gamma (x\Gamma M\Gamma x] \cap T T T T$$

$$= ((x\Gamma M\Gamma x] \cap T) \cap (x\Gamma M\Gamma x] \Gamma T \Gamma T$$

$$\cap T \Gamma T \Gamma (x\Gamma M\Gamma x] \cap T T$$

$$\cap T \Gamma T \Gamma (x\Gamma M\Gamma x] \cap T T T$$

$$\cap T \Gamma T \Gamma (x\Gamma M\Gamma x) \cap T T T T$$

If $a \in (x\Gamma M\Gamma x] \cap T, T \ni b \leq a \in (x\Gamma M\Gamma x] \cap T$, by $b \leq a \in (x\Gamma M\Gamma x]$, $(x\Gamma M\Gamma x]$ is a bi-ideal of M, we have $b \in (x\Gamma M\Gamma x]$, that is $b \in (x\Gamma M\Gamma x] \cap T$. Since T is B-simple, we have $(x\Gamma M\Gamma x] \cap T = T$. Let $y \in T$. We have

 $B(y) \ni y \in (x \Gamma M \Gamma x] \subseteq B(x) \Gamma M \Gamma B(x) \subseteq B(x),$

then $B(y) \subseteq B(x)$. Similarly, $y \in T$ implies that $(y\Gamma M\Gamma y] \cap T$ is a bi-ideal of T and $(y\Gamma M\Gamma y] \cap T = T$. Since $x \in T$, we get

 $B(x) \ni x \in (y \Gamma M \Gamma y] \subseteq B(y) \Gamma M \Gamma B(y) \subseteq B(y) \text{ and } B(y) \subseteq B(x).$

Therefore, we have $y \in (x)_{\mathcal{B}}$, that is $T = (x)_{\mathcal{B}}$, thus $(x)_{\mathcal{B}}$ is a maximal *B*-simple sub- Γ -semigroup of *M*.

On the other hand, let T be a maximal B-simple sub- Γ -semigroup of M and $x \in T$. Since $T \subseteq (x)_{\mathcal{B}}$ (from the above proof), we have $T = (x)_{\mathcal{B}}(x \in M)$. That is $T \subseteq \{(x)_{\mathcal{B}} \mid x \in M\}$.

(8) \Longrightarrow (4) For any $x \in M$, by (8), we have $(x)_{\mathcal{B}}$ is a *B*-simple sub- Γ -semigroup of *M*.

(4) \Longrightarrow (1) Since $(x)_{\mathcal{B}}$ is a sub- Γ -semigroup of $M, \forall x \in M$, then $x\Gamma x\Gamma x\Gamma x\Gamma x\Gamma x \subseteq (x)_{\mathcal{B}}$ and we have

$$x \in B(x) = B(x\Gamma x\Gamma x\Gamma x\Gamma x\Gamma x) \subseteq B(x\Gamma x\Gamma M\Gamma x\Gamma x).$$

It is easy to see that M is regular, left regular and right regular.

2.18. Definition. A po- Γ -semigroup M is called *strongly regular* if for every $a \in M$, there exist $x \in M$, $\alpha, \beta \in \Gamma$ such that $a \leq a\alpha x \beta a$ and $a\gamma x = x\gamma a$ for all $\gamma \in \Gamma$.

2.19. Lemma. Let M be a po- Γ -semigroup. The following are equivalent :

- (1) M is strongly regular
- (2) M is left regular, right regular, and $(M\Gamma a\Gamma M]$ is a strongly regular sub- Γ -semigroup of M, for every $a \in M$.
- (3) For every $a \in M$, we have $a \in (M\Gamma a] \cap (a\Gamma M]$ and $(M\Gamma a\Gamma M]$ is a strongly regular sub- Γ -semigroup of M.

Proof. (1) \implies (2) Let $a \in M$. Since M is strongly regular, then there exist $x \in M$, $\alpha, \beta \in \Gamma$ such that $a \leq a\alpha x\beta a = a\alpha a\beta x$. This shows that M is left regular. Similarly, M is right regular. We also have $(M\Gamma a\Gamma M]$ is strongly regular. Indeed:

A) Let $a \in M$. Then there exists $x \in M$, such that $a \in (a\Gamma x\Gamma a]$ and $a\Gamma x = x\Gamma a$. Then

 $a \in (a\Gamma x \Gamma a] \subseteq ((a\Gamma x \Gamma a)\Gamma x \Gamma a] = (a\Gamma (x\Gamma a \Gamma x)\Gamma a].$

We put $Y = x\Gamma a\Gamma x$. Then we have

$$\begin{split} & a \in (a\Gamma Y\Gamma a], \\ & Y = x\Gamma a\Gamma x \\ & \subseteq (x\Gamma(a\Gamma x\Gamma a)\Gamma x] = ((x\Gamma a\Gamma x)\Gamma a\Gamma x] = (Y\Gamma a\Gamma x] \subseteq (Y\Gamma(a\Gamma x\Gamma a)\Gamma x] \\ & = (Y\Gamma a\Gamma(x\Gamma a\Gamma x)) = (Y\Gamma a\Gamma Y], \\ & a\Gamma Y = a\Gamma(x\Gamma a\Gamma x) = a\Gamma(x\Gamma a)\Gamma(x\Gamma a) = (x\Gamma a\Gamma x)\Gamma a = Y\Gamma a \end{split}$$

B) Let L be a left ideal and R a right ideal of M. Then $(L\Gamma R]$ is a strongly regular sub- Γ -semigroup of M. Indeed: By Lemma 1.4(6), we have $(L\Gamma R]$ is an ideal of M, i.e. a sub- Γ -semigroup of M. Let $a \in (L\Gamma R] \subseteq M$. Since M is strongly regular, by A) there exist $z \in Y \subseteq M$ such that $a \leq (a\alpha z\beta a), z \leq (z\delta a\rho z)$ for some $\alpha, \beta, \delta, \rho \in \Gamma$ and $z\gamma a = a\gamma z$ for all $\gamma \in \Gamma$.

Since $a \in (L\Gamma R]$, there exist $y \in L, x \in R, \mu \in \Gamma$ such that $a \leq y\mu x$. Then $z\delta a\rho z \leq z\delta y\mu x\rho z$ for some $\mu \in \Gamma$. Since $z\delta y \in M\Gamma L \subseteq L$ and $x\rho z \in R\Gamma M \subseteq R$, we have $z\delta y\mu x\rho zt \in L\Gamma R$ and $z\delta a\rho z \in (L\Gamma R]$. Since $z \leq z\delta a\rho z \in (L\Gamma R]$, then $z \in (L\Gamma R]$.

C) Let $a \in M$, then $(M\Gamma a]$ is a left ideal and $(a\Gamma M]$ is a right ideal of M. Moreover, $(M\Gamma a\Gamma M] = ((M\Gamma a]\Gamma (a\Gamma M])$. Indeed:

$$M\Gamma a\Gamma M \subseteq M\Gamma(M\Gamma a\Gamma a]\Gamma M = (M]\Gamma(M\Gamma a\Gamma a]\Gamma(M] \subseteq (M\Gamma M\Gamma a\Gamma a\Gamma M]$$
$$\subseteq (M\Gamma a\Gamma a\Gamma M] = ((M\Gamma a)\Gamma(a\Gamma M)] = ((M\Gamma a)\Gamma(a\Gamma M)],$$

hence $(M\Gamma M] \subseteq (((M\Gamma a]\Gamma(a\Gamma M)]) = ((M\Gamma a]\Gamma(a\Gamma M)])$. On the other hand,

$$((M\Gamma a]\Gamma(a\Gamma M)] = ((M\Gamma a)\Gamma(a\Gamma M)] = (M\Gamma a\Gamma a\Gamma M] \subseteq (M\Gamma a\Gamma M).$$

By B), $(M\Gamma a\Gamma M]$ is a strongly regular sub- Γ -semigroup.

(2) \implies (3). Let $a \in M$. Since M is left and right regular, then $a \in (M\Gamma a\Gamma a]$ and $a \in (a\Gamma a\Gamma M]$, there exist $x, y \in M$ such that $a \leq x\alpha a\gamma a, a \leq a\gamma a\beta y, \alpha, \beta, \gamma \in \Gamma$. We have:

 $a \leq x \alpha(a \gamma a) \leq x \alpha(a \gamma a \beta y) \gamma a = (x \alpha(a \gamma a) \beta y) \gamma a \in (M \Gamma a]$

 $a \leq (a\gamma a)\beta y \leq a\gamma(x\alpha a\gamma a)\beta y = a\gamma(x\alpha(a\gamma a)\beta y) \in (a\Gamma M].$

So, $\forall a \in M$, we have $a \in (M\Gamma a] \cap (a\Gamma M]$.

(3) \Longrightarrow (1) Let $a \in M$. Since $a \in (M\Gamma a] \cap (a\Gamma M]$, we have $a \leq x\alpha a, a \leq a\beta y$ for some $x, y \in M, \alpha, \beta \in \Gamma$. Then

 $a \leq a\beta y \leq (x\alpha a)\beta y = x\alpha(a\beta y) \in M\Gamma a\Gamma M$, and $a \in (M\Gamma a\Gamma M]$.

Since $(M\Gamma a\Gamma M]$ is strongly regular, there exist $t \in (M\Gamma a\Gamma M](\subseteq M)$, $\delta, \rho \in \Gamma$ such that $a \leq a\delta t\rho a$ and $a\gamma t = t\gamma a, \forall \gamma \in \Gamma$. That is, M is strongly regular.

It is clear that the strongly regular po- Γ -semigroups are completely regular. By Theorem 2.16 and Lemma 2.19, we have the following:

2.20. Theorem. A po- Γ -semigroup M is strongly regular if and only if the following conditions hold true:

- (1) For every bi-ideal B of M, we have $B = (B\Gamma B]$.
- (2) $(M\Gamma a\Gamma M]$ is a strongly regular sub- Γ -semigroup of $M, \forall a \in M$.

References

- Dutta, T.K. and Adhikari, N.C. On Γ-semigroup with the right and left unities, Soochow Journal of Mathematics 19 (4), 461–474, 1993.
- [2] Hila, K. On regular, semiprime and quasi-reflexive Γ-semigroup and minimal quasi-ideals, Lobachevskii Journal of Mathematics 29 (3), 141–152, 2008.
- [3] Hila, K. On quasi-prime, weakly quasi-prime left ideals in ordered Γ-semigroups, Mathematica Slovaca 60 (2), 195–212, 2010.
- [4] Hila, K. Filters in ordered Γ-semigroups, Rocky Mountain J. Math. 41 (1), 189–203, 2011.
- [5] Hila, K. On prime, weakly prime ideals and prime radical in ordered Γ-semigroups, submitted.
- [6] Hila, K. and Dine, J. Study on the structure of periodic Γ-semigroups, Math. Reports 13 (63) 3, 271–284, 2011.
- [7] Hila, K. and Pisha, E. Characterizations on ordered Γ-semigroups, International Journal of Pure and Applied Mathematics 28 (3), 423–440, 2006.
- [8] Hila, K. and Pisha, E. Generalized ideal elements in le-Γ-semigroups, Communications of Korean Math. Soc. 26 (3), 373–384, 2011.
- [9] Hila, K. and Pisha, E. On lattice-ordered Rees matrix Γ-semigroups, An. Stiint. Univ. Al. I. Cuza Iasi, Mat., to appear.
- [10] Kehayopulu, N., Ponizovskii, J. S. and Tsingelis, M. Note on bi-ideals in ordered semigroups and in ordered groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 265 (1999), Vopr. Teor. Predst. Algebr i Grupp. 6, 198-û201, 327(2000); translation in J. Math. Sci. (New York) **112** (4), 4353–4354, 2002.
- [11] Kehayopulu, N. and Tsingelis, M. Fuzzy bi-ideals in ordered semigroups, Inform. Sci. 171 (1-3), 13–28, 2005.
- [12] Kwon, Y.I. Characterizations of regular ordered Γ-semigroups II, Far East Journal of Mathematical Sciences (FJMS), 11 (3), 281–287, 2003.
- [13] Kwon, Y.I. and Lee, S.K. Some special elements in ordered Γ-semigroups, Kyungpook Math. J. 35, 679–685, 1996.
- [14] Kwon, Y.I. and Lee, S.K. The weakly semi-prime ideals of po-Γ-semigroups, Kangweon-Kyungki Math. Jour. 5 (2), 135–139, 1997.
- [15] Sen, M.K. On Γ-semigroups (Proceedings of the International Conference on Algebra and its Applications, Dekker Publications, New York, 1981), pp. 301.
- [16] Sen, M. K. and Saha, N. K. On Γ-semigroup-I, Bull. Cal. Math. Soc. 78, 180–186, 1986.