
Hacettepe Journal of Mathematics and Statistics
Volume 40 (6) (2011), 819 – 828

CHAIN CONDITIONS ON FUZZY POSITIVE

IMPLICATIVE FILTERS OF BL-ALGEBRAS

H. Hedayati∗†, Y. B. Jun‡

Received 27 : 12 : 2010 : Accepted 29 : 04 : 2011

Abstract

In this paper, we discuss chain conditions of fuzzy positive implicative
filters of BL-algebras. Specially, by using the notions of maximal and
normal fuzzy positive implicative filters, we show that under certain
conditions a fuzzy positive implicative filter is two-valued and takes
the values 0 and 1.
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1. Introduction

BL-algebras are the algebraic structures for Hájek’s basic logic [4]. The main example
of a BL-algebra is the interval [0,1] endowed with the structure induced by a continuous
t-norm. MV-algebras [2], introduced by Chang in 1958, are one of the best known classes
of BL-algebras. In [17], Mundici proved that MV-algebras are categorically equivalent
to the bounded commutative BCK-algebras introduced by Iséki and Tanaka in [11, 12].
Further, Iorgulescu [10] showed that a BL-algebra is a particular case of a reversed left
BCK-algebra. In order to research the logical system whose propositional value is given
in a lattice, Xu [25] proposed the concept of lattice implication algebras. In [23], Wang
proved that lattice implication algebras are categorically equivalent to MV-algebras. For
more details of these algebras, we refer the reader to [7, 18, 20-22].

Up to now, these algebras have been widely studied. In particular, emphasis seems
to have been put on the theory of ideals and filters. In [11], Iséki proposed the notion of
implicative ideals in BCK-algebras, and obtained some results. Subsequently, Hoo and
Sessa [9] proposed the notion of Boolean ideals in MV-algebras and proved that implica-
tive ideals and Boolean ideals are equivalent in MV-algebras. Since the notion of ideal was
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missing in BL-algebras, Turunen [21] generalized these ideals to BL-algebras, proposed
the notions of implicative filters and Boolean filters (Boolean deductive systems), and
proved that implicative filters are equivalent to Boolean filters in BL-algebras. Boolean
filters are important filters, because the quotient algebras induced by Boolean filters are
Boolean algebras, and a BL-algebra is bipartite if and only if it has a proper Boolean
filter.

In 1991, Xi [24] applied the concept of fuzzy sets [28] to BCK-algebras and proposed
the notion of fuzzy implicative ideals. Afterwards, Hoo [8] proved that fuzzy implicative
and fuzzy Boolean ideals are equivalent in MV-algebras. Also, Xu and Qin [26, 27]
proposed the notions of positive implicative filters and fuzzy positive implicative filters
(Xu called them implicative filters and fuzzy implicative filters) in lattice implication
algebras. Jun et al. derived several characterizations of fuzzy positive implicative filters
of lattice implication algebras [13, 14, 19].

In this paper, we discuss chain conditions on fuzzy positive implicative filters in BL-
algebras. Specially, by using the notions of maximal and normal fuzzy positive implicative
filters, we show that under certain conditions a fuzzy positive implicative filter is two-
valued and it takes the values 0 and 1.

2. Preliminaries

In this section, we recall certain definitions and results needed for our purpose.

A BL-algebra [4] is a structure (L,∧,∨,⊙,→, 0, 1) such that (L,∧,∨, 0, 1) is a bounded
lattice, (L,⊙, 1) is an abelian monoid, i.e. ⊙ is commutative and associative and the
following conditions hold for all x, y, z ∈ L:

(B1) x⊙ 1 = x,
(B2) x⊙ y ≤ z if and only if x ≤ y → z,
(B3) x ∧ y = x⊙ (x → y),
(B4) (x → y) ∨ (y → x) = 1.

Let L be a BL-algebra. A subset F of L is called a positive implicative filter if it satisfies
the following conditions for all x, y, z ∈ L:

(F1) 1 ∈ F,
(F2) x → (y → z) ∈ F and x → y ∈ F imply that x → z ∈ F.

A fuzzy set in L is a mapping µ : L −→ [0, 1]. Also, for t ∈ [0, 1], the set µt = {x ∈ L |
µ(x) ≥ t} is called a level subset of µ. For convenience, for any x, y ∈ [0, 1], we denote
max{x, y} and min{x, y} by x ∨ y and x ∧ y, respectively.

A fuzzy set µ in L is called a fuzzy positive implicative filter of L, if for all x, y, z ∈ L,
it satisfies the following conditions:

(F3) µ(1) ≥ µ(x),
(F4) µ(x → z) ≥ µ(x → (y → z)) ∧ µ(x → y).

Let L = {0, a, b, 1} be a chain with Cayley tables as follows:

⊙ 0 a b 1

0 0 0 0 0

a 0 a a a

b 0 a b b

1 0 a b 1

→ 0 a b 1

0 1 1 1 1

a 0 1 1 1

b 0 a 1 1

1 0 a b 1
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Define operations ∧ and ∨ on L as min and max, respectively. Then (L,∧,∨,⊙,→, 0, 1)
is a BL-algebra. Define a fuzzy set µ in L by µ(1) = t2 and µ(b) = µ(a) = µ(0) = t1,
where 0 ≤ t1 < t2 ≤ 1. It is easy to verify that µ is a fuzzy positive implicative filter of
L.

2.1. Theorem. [16] Let µ be a fuzzy set of L. Then µ is a fuzzy positive implicative

filter of L if and only if for all t ∈ [0, 1], µt is either empty or a positive implicative filter

of L. �

2.2. Corollary. [16] Let L be a BL-algebra. Then, F is a positive implicative filter of L

if and only if χF is a fuzzy positive implicative filter of L, where χF is the characteristic

function of F. �

3. Fuzzy positive implicative filters

In what follows, L is a BL-algebra unless otherwise specified.

3.1. Lemma. Let µ be a fuzzy positive implicative filter of L and x ∈ L. Then µ(x) = α
if and only if x ∈ µα and x 6∈ µγ for all γ > α.

Proof. Straightforward. �

3.2. Theorem. Let {Fα | α ∈ Λ ⊆ [0, 1]} be a collection of positive implicative filters of

L such that L =
⋃

α∈Λ

Fα, and for every α, β ∈ Λ, α < β if and only if Fβ ⊂ Fα. Then the

fuzzy set µ of L, defined by µ(x) = sup{α ∈ Λ | x ∈ Fα}, is a fuzzy positive implicative

filter of L.

Proof. By Theorem 2.1, it is enough to show that for every α ∈ [0, 1], the non-empty set
µα is a positive implicative filter of L. For this, we consider two cases:

(i) α = sup{δ ∈ Λ | δ < α}, (ii)α 6= sup{δ ∈ Λ | δ < α}.

In the first case

x ∈ µα ⇐⇒ ∀δ < α, x ∈ Fδ ⇐⇒ x ∈
⋂

δ<α

Fδ.

So µα =
⋂

δ<α

Fδ, and hence µα is a positive implicative filter of L.

In the second case, we prove that µα =
⋃

δ≥α

Fδ. If x ∈
⋃

δ≥α

Fδ, then x ∈ Fδ for some

δ ≥ α. Thus µ(x) ≥ δ ≥ α, which means x ∈ µα. Hence
⋃

δ≥α

Fδ ⊆ µα. Also, if x 6∈
⋃

δ≥α

Fδ,

then x 6∈ Fδ for all δ ≥ α. Since α 6= sup{δ ∈ Λ | δ < α}, there exists ε > 0 such that
(α − ε, α) ∩ Λ = φ. Hence x 6∈ Fδ for all δ > α − ε, which means that if x ∈ Fδ then
δ ≤ α− ε. Thus µ(x) ≤ α− ε < α, and so x /∈ µα. Therefore µα =

⋃
δ≥α

Fδ.

We know that
⋃

δ≥α

Fδ is a positive implicative filter of L, which completes the proof. �

3.3. Corollary. If µ is a fuzzy positive implicative filter of L, then

µ(x) = sup{t ∈ [0, 1] | x ∈ µt},

for every x ∈ L.

Proof. Immediate consequence of Theorem 3.2. �

3.4. Theorem. For any chain F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = L of positive implicative

filters of L, there exists a fuzzy positive implicative filter µ of L such that the level subsets

of µ coincide with the chain.
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Proof. Let {αk | k = 0, 1, . . . , n} be a finite decreasing sequence in [0, 1]. Let µ be the
fuzzy set of L, defined by µ(F0) = α0 and µ(Fk�Fk−1) = αk for 0 < k ≤ n. Clearly
1 ∈ F0 and if x → (y → z), x → y ∈ Fk�Fk−1, then x → z ∈ Fk and µ(1) = α0 ≥ µ(x),
µ(x → z) ≥ αk = µ(x → (y → z)) ∧ µ(x → y).

For i > j, if x → (y → z) ∈ Fi�Fi−1 and x → y ∈ Fj�Fj−1, then µ(x → (y → z)) =
αi = µ(x → y) and x → z ∈ Fi. Thus

µ(x → z) ≥ αi = µ(x → (y → z)) ∧ µ(x → y).

Consequently, µ is a fuzzy positive implicative filter of L.

Note that Imµ = {α0, α1, . . . , αn}. It follows that the level subsets of µ are given by
the chain of positive implicative filters µα0

⊆ µα1
⊆ · · · ⊆ µαn

= L. Clearly µα0
= F0.

We prove that µαk
= Fk for 0 < k ≤ n. Obviously, Fk ⊆ µαk

. If x ∈ µαk
, then µ(x) ≥ αk

and so x 6∈ Fi for i > k. Hence µ(x) ∈ {α0, α1, . . . , αk}, which implies that x ∈ Fi for
some i ≤ k. Since Fi ⊆ Fk, it follows that x ∈ Fk. Therefore µαk

= Fk for every
0 < k ≤ n. �

In the next theorems, we discuss conditions on a BL-algebra so that every descending
chain of positive implicative filters terminates after a finite number of steps.

3.5. Theorem. If every fuzzy positive implicative filter of L has a finite image, then every

descending chain of positive implicative filters of L terminates after a finite number of

steps.

Proof. Suppose that there exists a strictly descending chain F0 ⊃ F1 ⊃ F2 ⊃ · · · of
positive implicative filters of L which does not terminate after a finite number of steps.

We prove that µ defined by µ(x) =
n

n+ 1
if x ∈ Fn�Fn+1 (for n = 0, 1, 2, . . .) and

µ(x) = 1 if x ∈
∞⋂

n=0

Fn, where F0 = L, is a fuzzy positive implicative filter of L with an

infinite image. Since 1 ∈
∞⋂

n=0

Fn, so µ(1) = 1 ≥ µ(x) for all x ∈ L. Let x, y, z ∈ L.

Assume that x → (y → z) ∈ Fn�Fn+1, and x → y ∈ Fk�Fk+1 for some n and
k. Without loss of generality, we can assume that n ≤ k. Then, obviously x → z,
x → y ∈ Fn and

µ(x → z) ≥
n

n+ 1
= µ(x → (y → z)) ∧ µ(x → y).

If x → y, x → (y → z) ∈
∞⋂

n=0

Fn, then x → z ∈
∞⋂

n=0

Fn. Thus

µ(x → z) = 1 = µ(x → y) ∧ µ(x → (y → z)).

If x → y 6∈
∞⋂

n=0

Fn and x → (y → z) ∈
∞⋂

n=0

Fn, then there exists k ∈ N such that

x → y ∈ Fk�Fk+1. So x → z ∈ Fk and

µ(x → z) ≥
k

k + 1
= µ(x → y) ∧ µ(x → (y → z)).

Finally suppose that x → y ∈
∞⋂

n=0

Fn and x → (y → z) 6∈
∞⋂

n=0

Fn. Then x → (y → z) ∈

Fr�Fr+1 for some r ∈ N. Hence x → z ∈ Fr, which implies that

µ(x → z) ≥
r

r + 1
= µ(x → y) ∧ µ(x → (y → z)).

Therefore, µ is a fuzzy positive implicative filter of L with an infinite image. This is a
contradiction. �
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3.6. Theorem. Let every descending chain of positive implicative filters of L terminates

after a finite number of steps. If µ is a fuzzy positive implicative filter of L such that a

sequence of elements of Imµ is strictly increasing, then µ has a finite number of different

values.

Proof. Suppose that Imµ is not finite. Let 0 ≤ α1 < α2 < · · · ≤ 1 be a strictly increasing
sequence of elements of Imµ. Then every µαt

is a positive implicative filter of L. For
x ∈ µαt

we have µ(x) ≥ αt > αt−1, which implies that x ∈ µαt−1
. Hence µαt

⊆ µαt−1
.

But for αt−1 ∈ Imµ, there exists xt−1 ∈ L such that µ(xt−1) = αt−1. This gives
xt−1 ∈ µαt−1

and xt−1 6∈ µαt
. Thus µαt

$ µαt−1
, and so we obtain a strictly descending

chain µα1
⊃ µα2

⊃ µα3
⊃ · · · of positive implicative filters of L which is not terminating.

This is a contradiction, which completes the proof. �

In the next theorem, we prove an equivalent statement for BL-algebras with an as-
cending chain condition of positive implicative filters.

3.7. Theorem. Every ascending chain of positive implicative filters of L terminates after

a finite number of steps if and only if for any fuzzy positive implicative filter of L, Imµ
is a well-ordered subset of [0, 1].

Proof. Suppose that for a fuzzy positive implicative filter µ, the set of Imµ is not a
well-ordered subset of [0, 1]. Then there exists a strictly decreasing sequence {αn}

∞
n=0

such that αn = µ(xn) for some xn ∈ L. In this case µαn
form a strictly ascending

chain of positive implicative filters of L which is not terminating. This is a contradiction.
Therefore Imµ is a well-ordered subset of [0, 1].

Conversely, suppose that there exists a strictly ascending chain F1 ⊂ F2 ⊂ F3 ⊂ · · · of
positive implicative filters of L which does not terminate after a finite number of steps.

Then F =
∞⋃

k=1

Fk is a positive implicative filter of L. Define µ on L by µ(x) =
1

k
for

x ∈ Fk�Fk−1 and µ(x) = 0 for x 6∈ F, where F0 = φ. Clearly µ(1) = 1 ≥ µ(x) for all
x ∈ L. Let x, y, z ∈ L. We consider the following cases:

(1) x → (y → z), x → y ∈ F. In this case there are m,n such that x → (y →
z) ∈ Fn�Fn−1 and x → y ∈ Fm�Fm−1. Obviously x → z ∈ Fk�Fk−1 ⊂ Fp, where

k ≤ p = m ∨ n. So µ(x → (y → z)) =
1

n
, µ(x → y) =

1

m
and

µ(x → z) =
1

k
≥

1

p
= µ(x → (y → z)) ∧ µ(x → y).

(2) x → (y → z) 6∈ F and x → y ∈ F. In this case x → y ∈ Fm�Fm−1 for some

natural number m. Hence µ(x → (y → z)) = 0 and µ(x → y) =
1

m
, which imply that

µ(x → z) ≥ 0 = µ(x → (y → z)) ∧ µ(x → y).

(3) x → (y → z) ∈ F and x → y 6∈ F. In this case x → (y → z) ∈ Fn�Fn−1 for some

natural n. Hence µ(x → y) = 0 and µ(x → (y → z)) =
1

n
, which imply that

µ(x → z) ≥ 0 = µ(x → (y → z)) ∧ µ(x → y).

(4) x → (y → z), x → y 6∈ F. Obviously,

µ(x → z) ≥ 0 = µ(x → (y → z)) ∧ µ(x → y).

Therefore, µ is a fuzzy positive implicative filter of L. Since the chain F1 ⊂ F2 ⊂ F3 ⊂ · · ·
is not terminating, µ has a strictly descending sequence of values. This contradicts that
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the value set of any fuzzy positive implicative filter of L is well-ordered. This completes
the proof. �

4. Maximal fuzzy positive implicative filters of BL-algebras

4.1. Definition. A fuzzy positive implicative filter µ of L is said to be normal if there
exists an element x0 ∈ L such that µ(x0) = 1.

Clearly, a fuzzy positive implicative filter µ is normal if and only if µ(1) = 1. Also,
any fuzzy positive implicative filter containing a normal fuzzy positive implicative filter
is normal too.

4.2. Example. Let L = {0, a, b, 1} be a chain with Cayley tables as follows:

⊙ 0 a b 1

0 0 0 0 0

a 0 a a a

b 0 a a b

1 0 a b 1

→ 0 a b 1

0 1 1 1 1

a 0 1 1 1

b 0 b 1 1

1 0 a b 1

Define operations ∧ and ∨ on L as min and max, respectively. Then (L,∧,∨,⊙,→, 0, 1)
is a BL-algebra. Define a fuzzy set µ in L by µ(1) = µ(b) = µ(a) = 1 and µ(0) = 1

2
. It

is easy to verify that µ is a normal fuzzy positive implicative filter of L.

4.3. Theorem. Let µ be a fuzzy positive implicative filter of L. Then the fuzzy set µ+,

where µ+(x) = µ(x) + 1− µ(1) for all x ∈ L, is a normal fuzzy positive implicative filter

of L containing µ.

Proof. Clearly µ+(x) ∈ [0, 1] for every x ∈ L and µ+(1) = 1. We prove that µ+ is a
fuzzy positive implicative filter of L. Let x, y, z ∈ L. We have

µ+(x → z) = µ(x → z) + 1− µ(1)

≥
(
µ(x → (y → z)) ∧ µ(x → y)

)
+ 1− µ(1)

=
(
µ(x → (y → z)) + 1− µ(1)

)
∧ (µ(x → y) + 1− µ(1))

= µ+(x → (y → z)) ∧ µ+(x → y),

which proves that µ+ is a fuzzy positive implicative filter of L. Clearly, µ ⊆ µ+, which
completes the proof. �

4.4. Corollary. (µ+)+ = µ+ for any fuzzy positive implicative filter µ of L. If µ is

normal, then µ+ = µ. �

We denote the set of all normal fuzzy positive implicative filters of L by N(L). Clearly,
N(L) is a partially ordered set under fuzzy set inclusion.

4.5. Theorem. A non-constant maximal element µ of N(L) is two-valued and takes

only the values 0 and 1.

Proof. We know that µ(1) = 1. Let x ∈ L be such that µ(x) 6= 1. We claim that
µ(x) = 0. If not, then there exists a ∈ L such that 0 < µ(a) < 1. Let ν be the fuzzy set

of L defined by ν(x) =
1

2

(
µ(x) + µ(a)

)
for all x ∈ L. Clearly, ν is well-defined. For all

x, y, z ∈ L we have

ν(1) =
1

2

(
µ(1) + µ(a)

)
≥

1

2

(
µ(x) + µ(a)

)
= ν(x),
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also

ν(x → z) =
1

2

(
µ(x → z) + µ(a)

)

≥
1

2

(
(µ(x → (y → z)) ∧ µ(x → y)) + µ(a)

)

=
[1
2

(
µ(x → (y → z)) + µ(a)

)]
∧
[1
2

(
µ(x → y)) + µ(a)

)]

= ν(x → (y → z)) ∧ ν(x → y).

This proves that ν is a fuzzy positive implicative filter of L. Now, by Theorem 4.3,

ν+ ∈ N(L). Clearly µ ⊆ ν+, and since ν+(a) =
1

2
(1 + µ(a)) > µ(a), so µ is a proper

subset of ν+. Obviously ν+(a) < 1 = ν+(1). Hence ν+ is non-constant, and µ is not
maximal element of N(L). This is a contradiction. Therefore |Imµ| = 2 and µ takes only
the values 0 and 1. �

4.6. Definition. A non-constant fuzzy positive implicative filter µ of L is called maximal

if µ+ is a maximal element of the poset N(L).

4.7. Theorem. A maximal fuzzy positive implicative filter µ of L is normal and takes

only the values 0 and 1.

Proof. Let µ be a maximal fuzzy positive implicative filter µ of L. Then µ+ is a non-
constant maximal element of the poset N(L) and by Theorem 4.5, µ+ takes only the
values 0 and 1. Clearly µ+(x) = 1 if and only if µ(x) = µ(1) and µ+(x) = 0 if and only
if µ(x) = µ(1)− 1. But µ ⊆ µ+ (by Theorem 4.3). So µ+(x) = 0 implies that µ(x) = 0,
consequently µ(1) = 1. Therefore µ is normal. �

4.8. Theorem. If µ is a maximal fuzzy positive implicative filter of L, then µ1 is a

maximal positive implicative filter of L.

Proof. Let F1 = µ1 = {x ∈ L | µ(x) = 1}. By Theorem 2.1, F1 is a positive implicative
filter of L. Obviously F1 6= L, because µ is two-valued. Let F2( 6= L) be a positive
implicative filter of L containing F1. Then χF1

⊆ χF2
(characteristic functions). But

we know that µ is a maximal fuzzy positive implicative filter of L, so χF1
= µ = χF2

or χF2
(x) = 1 for all x ∈ L. If χF2

(x) = 1 for all x ∈ L, then F2 = L, which is a
contradiction. So µ = χF1

= χF2
, which implies F1 = F2. Therefore F1 is a maximal

positive implicative filter of L. �

4.9. Definition. A normal fuzzy positive implicative filter µ of L is called completely

normal if there exists x ∈ L such that µ(x) = 0.

We denote the set of completely normal fuzzy positive implicative filters of L by C(L).
It is obvious that C(L) ⊆ N(L).

4.10. Theorem. A non-constant element of N(L) is a maximal element of C(L).

Proof. Let µ be a non-constant maximal element of N(L). By Theorem 4.5, µ is two-
valued and takes only the values 0 and 1. Let µ(x0) = 1 and µ(x1) = 0 for some
x0, x1 ∈ L. Hence µ ∈ C(L). Assume that there exists ν ∈ C(L) such that µ ⊆ ν in
N(L). Since µ is maximal in N(L) and since ν is non-constant, thus µ = ν. Therefore µ
is a maximal element of C(L). �

4.11. Theorem. Every maximal fuzzy positive implicative filter µ of L is completely

normal.
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Proof. Let µ be a maximal fuzzy positive implicative filter of L. Then by Theorem 4.7
and Corollary 4.4, µ is normal, µ = µ+ and µ is two-valued. Since µ is non-constant, it
follows that µ(1) = 1 and µ(0) = 0. Therefore µ is completely normal. �

4.12. Theorem. Let f : [0, 1] −→ [0, 1] be a strictly increasing function and µ a fuzzy set

of L. Then µf , defined by µf (x) = f(µ(x)) for all x ∈ L, is a fuzzy positive implicative

filter of L if and only if µ is a fuzzy positive implicative filter of L.

Proof. Let µf be a fuzzy positive implicative filter of L. Then

f(µ(1)) = µf (1) ≥ µf (x) = f(µ(x)).

This gives f(µ(1)) ≥ f(µ(x)) for all x ∈ L. Since f is strictly increasing, it implies that
µ(1) ≥ µ(x). Also we have

f
(
µ(x → z)

)
= µf (x → z)

≥ µf (x → (y → z)) ∧ µf (x → y)

= f
(
µ(x → (y → z))

)
∧ f

(
µ(x → y)

)
.

Hence,

f
(
µ(x → z)

)
≥ f

(
µ(x → (y → z))

)
∧ f

(
µ(x → y)

)

for all x, y, z ∈ L. Since f is strictly increasing, it implies that

µ(x → z) ≥ µ(x → (y → z)) ∧ µ(x → y).

Conversely, if µ is a fuzzy positive implicative filter of L, then for all x, y, z ∈ L we have

µf (1) = f(µ(1)) ≥ f(µ(x)) = µf (x).

This gives µf (1) ≥ µf (x). Also we have

µf (x → z) = f
(
µ(x → z)

)

≥ f
(
µ(x → (y → z))

)
∧ f

(
µ(x → y)

)

= µf (x → (y → z)) ∧ µf (x → y).

Hence,

µf (x → z) ≥ µf

(
x → (y → z)

)
∧ µf (x → y).

Therefore µf is a fuzzy positive implicative filter of L. �

4.13. Theorem. Let µ be a fuzzy positive implicative filter of L, µ(0) 6= 0 and let µ̃

be the fuzzy set of L defined by µ̃(x) =
µ(x)

µ(0)
for all x ∈ L. Then µ̃ is a normal fuzzy

positive implicative filter of L and µ ⊆ µ̃.

Proof. Let x, y, z ∈ L. We have

µ̃(1) =
µ(1)

µ(0)
≥

µ(x)

µ(0)
= µ̃(x).
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This gives µ̃(1) ≥ µ̃(x). Also we have

µ̃(x → z) =
µ(x → z)

µ(0)

≥
µ(x → (y → z)) ∧ µ(x → y)

µ(0)

=
µ(x → (y → z))

µ(0)
∧

µ(x → y)

µ(0)

= µ̃(x → (y → z)) ∧ µ̃(x → y).

Hence,

µ̃(x → z) ≥ µ̃(x → (y → z)) ∧ µ̃(x → y).

Therefore µ̃ is a fuzzy positive implicative filter of L. Clearly, µ̃ is normal and µ ⊆ µ̃. �
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