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Abstract

In this paper, we define two new general p-valent integral operators in
the unit disc U, and obtain the convexity properties of these integral
operators of p-valent functions on some classes of S-uniformly p-valent
starlike and S-uniformly p-valent convex functions of complex order. As

2 I
special cases, the convexity properties of the operators fo (@) dt
and foz (g’ ()" dt are given.
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1. Introduction and preliminaries

Let A, denote the class of functions of the form

(11)  fe)=2"+ > az", peN={1,2,....}),

k=p+1
which are analytic in the open disc U= {z € C: |z| < 1}.

A function f € 8;(v,a) is p—valently starlike of complex order v (y € C — {0}) and
type o (0 < o < p), that is, f € 8, (v, a), if it satisfies the following inequality;

(1.2) éR{p—F% (Z;(,S) —p)} >a, (z€0).
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Furthermore, a function f € Cp(y,«) is p—valently convex of complex order v (v €
C — {0}) and type a (0 < «a < p), that is, f € Cp(y,a) if it satisfies the following
inequality;

()
1.3 R p+—<1+ -p >a, (z€0).
0y o+ (10575 et
In particular cases, for p = 1 in the classes 8, (v, ) and €,(y, ), we obtain the classes
8*(y,a) and C(v, @) of starlike functions of complex order v (y € C — {0}) and type
a (0 < a < p), and convex functions of complex order v (y € C — {0}) and type «
(0 < a < p), respectively, which were introduced and studied by Frasin [12].

Also, for a = 0 in the classes 8, (v, a) and Cp(7, ), we obtain the classes 8;(y) and
Cp(7), which are called p-valently starlike of complex order v (y € C—{0}), and p-valently
convex of complex order v (y € C — {0}), respectively.

Setting p = 1 and o = 0, we obtain the classes 8*(v) and C(vy). The class 8*(v) of
starlike functions of complex order v (y € C — {0}) was defined by Nasr and Aouf (see
[18]), while the class C(y) of convex functions of complex order v (y € C — {0}) was
considered earlier by Wiatrowski (see [25]). Note that 8;(1,a) = 8;(a) and €p(1, ) =
Cp(«) are, respectively, the classes of p-valently starlike and p-valently convex functions
of order @ (0 < o < p) in U. Also, we note that 87(a) = 8*(a) and Ci(c) = C(a) are,
respectively, the usual classes of starlike and convex functions of order o (0 < @ < 1)
in U. In special cases, 8](0) = 8* and C; = C are, respectively, the familiar classes of
starlike and convex functions in U.

A function f € 8-US,(a) is B-uniformly p-valently starlike of order o (—1 < a < p),
that is, f € B-USp(«) if it is satisfies the following inequality;

zf'(2) } 2f'(2)
1.4 R >
ao {5503
Furthermore, a function f € S-UC, () is S-uniformly p-valently convex of order a (—1 <
a < p), that is, f € B-UC,(«) if it satisfies the following inequality;

—p’+a7 (B3>0, z€U).

(1.5) 8%{1 + ZJ{C(S)} > 8 ‘1 + Z;(S) —p‘ +a, (>0, z€U).

These classes generalize various other classes which are worthy of mention here. For
example for p = 1, the classes 5-US(a) and S-UC(«) introduced by Bharti, Parvatham
and Swaminathan (see [2]). Also, the class S-UC;(0) = B-UCV is the known class of
B-uniformly convezr functions [15]. Using an Alexander type relation, we can obtain the
class B-US,(«) in the following way:

zf’
p

The class 1-UC1(0) = UCY of uniformly convex functions was defined by Goodman [14],
while the class 1-U81(0) = 8P was considered by Rgnning [24].

For f € A, given by (1.1) and ¢(z) given by

f € BUCH(a) = € BUSH(a).

(1.6) gz)=2"+ Z by 2"

k=p+1

their convolution (or Hadamard product), denoted by (f * g), is defined as

(L7 (F*9)(z)=2"+ Y axbez" = (g% f)(2), (z€ ).

k=p+1
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The n-th order Ruscheweyh derivative R" : A, — A, is defined by
P

(18)  R"f(z) = W «f(2), (n>—p).

In terms of the binomial coefficients, we can rewrite (1.8) as follows:

(1.9) R"f(2)=2"+ Z <n+k_1>akzk, (n>-p).

k=p+1
In particular, when n = X\ € Ng = NU {0}, it is easily observed from (1.8) and (1.9) that

2P (z’\fpf(z)) *)
—

(1.10) R f(z) = , (AeNy, peEN).

The symbol R" is called the Ruscheweyh derivative of nth order defined by Goel and
Sohi [13)].

By using the operator R* (A € Np) defined by (1.10), we introduce the new classes
B-USp (A, v, ) and B-UC, (A, 7, a) as follows:

1.1. Definition. Let —1 < a <p, 8> 0 and v € C— {0}. A function f € A, is in the
class B-USp(A, v, ) if and only if for all z € U,

L(2(”Rf(2) L2 (R ()
i %{pW(W‘p)}”;(W‘p
1.2. Definition. Let -1 < a <p, 8> 0and v € C— {0}. A function f € A, is in the

class B-UCp (A, 7, @) if and only if for all z € U
z(RM(2)" z (Rf(2)"
(1.12) §Rp+— 74—1— >,3 7—6-1—
v\ (BM(2) T\ (RM(2))

We note that by specializing the parameters A, p, v, 8 and « in the classes 8-USp (A, vy, &)
and S-UCp (A, 7, @), these classes reduces to several well-known subclasses of analytic func-
tions. For example, for p = 1 and A = 0 the classes S-US,(A,7, @) and B-UC, (A, v, @)
reduces to the classes 5-US(y, &) and S-UC(~, a), respectively. The reader can find more

information about these classes in Deniz, Orhan and Sokol [10], Orhan, Deniz and Rad-
ucanu [19] and Oros [20].

+ a.

=+ a.

1.3. Definition. Let | = (l1,l2,...,lm) € N§°, p = (1,2, .., tm) € R for all
i =1,m, m € N. We define the following general integral operators

Tt (1, f2r ooy fn) T A — Ay
I;,7n(f17f2,...,fm): p,ml,u()

z Li f. Hq
(1.13) :ﬂ,,m,l,u(z):/o ptP*H(R t{j(t)) dt

i=1

and
gi;,l:n (917927 R gm) : ‘A;n — ‘AIH
gi;f:n (917927 sy gm) = gp,m l,u( )

L Rl gl Hi
(L.14)  Spm.u(2) :/0 2 H< ptP—1 ) dt,

i=1

where fi, gi € A, for all i = T,m and R' is defined by (1.10).
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1.4. Remark. We note that if [; =ly = --- =[,, = 0 for all i = 1, m, then the integral
operator Fp m 1, (2) reduces to the operator Fj(z), which was studied by Frasin (see [11]).
Upon setting p = 1 in the operator (1.13), we can obtain the integral operator F,(z)
which was studied by Oros and Oros (see [21]). Forp=1landly =lo=---=1, =0in
(1.13), the integral operator Fy m i,.(z) reduces to the operator Fp,(z) which was studied
by Breaz and Breaz (see [6]). Observe that when p = m =1, I; = 0 and pu1 = p, we
obtain the integral operator I,,(f)(z) which was studied by Pescar and Owa (see [22]),
for 11 = p € [0, 1] a special case of the operator I, (f)(z) was studied by Miller, Mocanu
and Reade (see [17]). Forp=m =1, 1; =0 and g1 = 1 in (1.13), we have the Alexander
integral operator I(f)(z) in [1].

1.5. Remark. For Iy =1l = --- = l;, = 0 in (1.14) the integral operator Gp mn,i,.(2)
reduces to the operator G,(z) which was studied by Frasin (see [11]). For p = 1 and
li =1l ="+ =1y =0in (1.14), the integral operator G, m.i,.(z) reduces to the operator
Gy pg,....um (2) which was studied by Breaz, Owa and Breaz (see [8]). If p = m = 1,
Iy = 0 and g1 = p, we obtain the integral operator G(z) which was introduced and
studied by Pfaltzgraff (see [23]) and Kim and Merkes (see [16]).

In this paper, we consider the integral operators Fy m.i,.(2) and Gp m,i,.(z) defined by
(1.13) and (1.14), respectively, and study their properties on the classes S-US, (A, 7, @)

and B-UC, (A, 7, a). As special cases, the order of convexity of the operators [, (@) o
and [ (g'(t))" dt are given.

2. Sufficient conditions on the integral operator Fp 1., (2)

First, in this section we prove a sufficient condition for the integral operator Fp .1, (2)
to be p-valently convex.

2.1. Theorem. Letl = (l1,l2,...,lm) € NG, = (p1,p2,.. ., tm) € RT, =1 < s < p,

Bi >0,v€C—{0} and f; € Bi — USp(ls,y, ) for all i =1, m. Moreover, suppose that
these numbers satisfy the following inequality

(21)  0<p+> (o —p) <p.

i=1
Then the integral operator Fp m.i,.(2) defined by (1.18) is p-valently convex of complex
order v (v € C—{0}) and type p+ 3 i~ pi (@ — p).

Proof. From the definition (1.13), we observe that Fp m,i,.(2) € Ap. On the other hand,
it is easy to see that

(2.2)  Fpman(z) =ptt ﬁ (my :

zb
i=1

Now we differentiate (2.2) logarithmically and multiply by z to obtain

(23) M—l—l—pzzm <%_p>'

p,m,l,u(z) i=1
Then multiplying the relation (2.3) with %,

1 (255 muu(2) Y 1 2 (R f) (2) 3
24 7<?’ @ 7! p) ;“w( (") () p)'

p,m,lp
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The relation (2.4) is equivalent to
1 (28 n(2) = 1(2(R"f) (2) d
(25) pt— | 5 +1l-p|=p+t) wi|p+= | —Zmrmrn —P| | =D Hi
Y\ T (2) ; v\ (Rfi)(2) ;

Lastly, we calculate the real part of both sides of (2.5) and obtain

1 Zgjg,m,l,u(z) _
m 1 o Rllfl / P m
“Sonnloed (G o)} oS

Since f; € i — US8p(li, v, ;) for all i =1, m, from (1.11) and (2.6), we have

1 (25 i nu(2)
Rip+ - | 72— +1-p
{ Y <g:;,m,l,u(z)

(2.6)

(2.7) v |2 (R (2) m
i Bi z T z
: pl+p+ ) pilo—p)
2 h | ) () 2
moowis; |2(B5) () L .
Because 1" | NN COAE p| >0, for all 4 = 1, m, from (2.7), we obtain
1 (295 m,1,u(2) -
Rep+— | =L+ 1—p|p>p+ Y wila —p).
{ v < :'Fp,m,l,u(z) 12::1

Therefore, the operator Fp m,1,,.(2) is p-valently convex of complex order v (v € C— {0})
and type p+ Y ", pi (cs — p). This evidently completes the proof of Theorem 2.1. O

2.2. Remark.

(1) Letting v = 1 and I; = 0 for all i = 1,m in Theorem 2.1, we obtain [11,
Theorem 2.1].

(2) Letting p=1,v=1and l; =0 for all i = T,m in Theorem 2.1, we obtain [4,
Theorem 1].

(3) Lettingp=1,v=1and o; =1; =0 for all i = T, m in Theorem 2.1, we obtain
[7, Theorem 2.5]

(4) Letting p=1, 8=0and l; =0 for all ¢ = 1,m in Theorem 2.1, we obtain [3,
Theorem 1].

(5) Lettingp=1,8=0, a; = g and I; = 0 for all i = 1,m in Theorem 2.1, we
obtain [9, Theorem 1].

(6) Letting p =1, 8=0, a; = 0 and I; = 0 for all i = T,m in Theorem 2.1, we
obtain [5, Theorem 1].

Puttingp=m=1,11 =0, p1 = p, a1 = o, f1 = B and fi = f in Theorem 2.1, we
have
2.3. Corollary. Let p >0, -1 <a <1, 38>0,v€C—{0} and f € B-US(y,). If
0<1+p(a—1)<1, then [; (@)H dt is convex of complex order v (v € C — {0})
and type p(ao — 1) + 1 in U. O

2.4. Theorem. Letl = (l1,l2,...,lm) € NG, = (p1,p2,...,tm) € RT, =1 < a; < p,
Bi >0,v€C—{0} foralli=1,m and
. ! m
Z(Rfi) (2) CpA 2 i (ai — p)
m p B
Zi:lu\T\

(R' fi) (2)

(2.8) p| >
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for all i = 1,m, then the integral operator Fp mi,.(z) defined by (1.18) is p-valently
convez of complex order v (v € C — {0}).

Proof. From (2.7) and (2.8) we easily get Fp m.1,,.(2) is p-valently convex of complex order
V- ]

From Theorem 2.4, we easily get

2.5. Corollary. Letl = (l1,l2,...,lm) € NT', = (1, pi2, ..., um) € R, =1 < a; < p,
Bi >0,v€C—{0} foralli=1,m and

§R<,2'(Rl¢fi)’(z)>>p p+ >, pi (o —p)

(1) (2) S B
that is R'i f; € 8%(c), where 0 = p — (p+> i (o —p)) />0, “‘Zﬁl ;0< 0 <p for
all i = T, m, then the integral operator Fpm.1,.(2) is p-valently convez of complex order
v (y € C—{0}). O

Puttingp=m=1,11 =0, y1 = u, a1 = o, f1 = B and fi = f in Corollary 2.5, we
have

2.6. Corollary. Let p >0, -1 <a <1, 8>0,v€ C—{0} and f € 8 (p), where
p=[uB+ 1 —=a)ly) =7 uB; 0<p <1, then the integral operator [; (@)# dt is
convez of complex order v (v € C —{0}) in U. O

3. Sufficient conditions on the integral operator Gy m 1. (2)

Next, in this section we give a sufficient condition for the integral operator Gy, m.1,..(2)
to be p-valently convex.

3.1. Theorem. Letl = (l1,l2,...,lm) € N, p = (p1, 2, .-, tm) € RT, =1 < oy < p,
Bi >0,v€C—{0} and f; € B:-UCp(li,7y, ;) for all i = 1,m. Moreover, suppose that
these numbers satisfy the following inequality

O§p+Zm(ai—p <p
Then the integral operator Gp m.1,.(z) defined by (1.14) is p-valently convex of complex
order v (v € C — {0} )and type p+ >~ pi (s — p).

Proof. From the definition (1.14), we observe that G, m,i,.(2) € Ap. On the other hand,
it is easy to see that

(31) 9;,m,l,u<z>—pzmn<w> |

Now, we differentiate (3.1) logarithmically to obtain

(3.2) Spomtu(z) _ ‘*‘Zm < (R'g)"(2) p-— 1) ‘

Syt (%) (Rligi)' (2) z

Then multiplying this relation (3.2) with £ <, we obtain

L pman(® 2 (R19)" () ) _
;(,7(2)4-1 P) Zﬂl,y< (Rligy) (2) +1 p)

p,m,lp
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or

1(28min® Y= 1 (z(Rhe)"(»)
By <9’mz,u<>+1 >_p+;“’7<<mgi>’(z> ! p)’

Taking the real part of both sides of (3.3), we have
?R p+_ ng,nl,u(z)+1_p
p,n l,M(Z)
- 1(z(Rg:)" (2)
3.4 =p—+ R | ———2 -~ 41— D
4 2R < (i) (2)
m m 1 5 (Rligi)” (Z)
=p-—pQ) pit ) R p+ - | —m—r—~+1-p]|.
IDLEDS { Y < (Rrig) (2)
Since g; € Bi-UCy(l3,7, o) for all ¢ = 1, m, from (1.12) and (3.4), we have
§R p+ l thp,m,l,y.(z) + 1 —p
Y p,m,l ;J,(Z)
SR OWIES I {ﬂz
S PO I L R
et il
>p+ Y (o —p)
i=1

Therefore, the operator Gp m,1,.(2) is p-valently convex of complex order v (v € C —{0})
and type p+ > v, pti (s — p). This evidently completes the proof of Theorem 3.1. O

1 (Rl 92) (2) _

<<Rhg>(> o )
2 (R'igi)" (2)
Rlzg> )

+Oéi}

+1-—p

3.2. Remark.
(1) Letting v = 1 and I; = 0 for all ¢ = 1,m in Theorem 3.1, we obtain [11,
Theorem 3.1].
(2) Letting p=1,8=0and l; =0 for all ¢ = 1,m in Theorem 3.1, we obtain [3,
Theorem 3].

(3) Lettingp=1,8=0, a; = g and I; = 0 for all i = 1,m in Theorem 3.1, we
obtain [9, Theorem 3].

(4) Lettingp=1,8=0, a; =0 and Il; = 0 for all i = T,m in Theorem 3.1, we
obtain [5, Theorem 2].

Puttingp=m=1,11 =0, p1 =, a1 = o, p1 = f and g1 = g in Theorem 3.1, we
have

3.3. Corollary. Letu>0—1<a<16>0 v € C—{0} and g € B-UC(v,a). If
0<1+p(a—1)<1,then [; (g'(t)" dt is convex of complex order v (v € C—{0}) and
typeu(oz—l)—i—lmu O

3.4. Theorem. Letl = (l1,l2,...,lm) € NG, p= (p1,p2,.. ., tm) € RT, =1 < s < p,
Bi >0,v€C—{0} foralli=1,m and
. " m
z(R'gi)" (2) 1| s PE X (o p)
(Rg) () o

i=1 [v]

(3.5)
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for alli =1, m, then the integral operator Sp.m.i,.(2) defined by (1.14) is p-valently convex
of complex order v (v € C—{0}).

Proof. From the proof of Theorem 3.1 and (3.5) we easily get Sp,m.i,u(2) is p—valently
convex of complex order ~. |

From Theorem 3.4, we easily get

3.5. Corollary. Let I = (l1,l2,...,lm) € NG°, p = (p1,p2,.-.,4m) € R, =1 <
a < p, Bi >0, v C—{0} for all i = T,m and Rig; € Cp(c), where 0 = p —
(p + 300 i (o — p)) o H\lﬁl ;0 <0 <p foralli=T1,m, then the integral opera-
tor Gp.m,i,u(2) is p-valently convex of complex order v (v € C — {0}). |

Puttingp=m=1,11 =0, p1 =, a1 = a, f1 = B and g1 = g in Corollary 3.5, we
have

3.6. Corollary. Let u >0, -1 < a <1, 8>0,v€ C—{0} and g € C(p), where

p= B+ (1—a)ly) =] /mb; 0 < p <1, then the integral operator [ (¢'(t))" dt is
convez of complex order v (v € C —{0}) in U. O
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