SOME CONVEXITY PROPERTIES FOR TWO NEW *P*-VALENT INTEGRAL OPERATORS

Erhan Deniz^{*†}, Murat Çağlar^{*} and Halit Orhan^{*}

Received 11:11:2010 : Accepted 09:05:2011

Abstract

In this paper, we define two new general *p*-valent integral operators in the unit disc \mathbb{U} , and obtain the convexity properties of these integral operators of *p*-valent functions on some classes of β -uniformly *p*-valent starlike and β -uniformly *p*-valent convex functions of complex order. As special cases, the convexity properties of the operators $\int_0^z \left(\frac{f(t)}{t}\right)^{\mu} dt$ and $\int_0^z (g'(t))^{\mu} dt$ are given.

Keywords: Analytic functions, Integral operators, β -uniformly *p*-valent starlike and β -uniformly *p*-valent convex functions, Complex order.

2000 AMS Classification: Primary 30 C 80. Secondary 30 C 45.

1. Introduction and preliminaries

Let \mathcal{A}_p denote the class of functions of the form

(1.1)
$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \ (p \in \mathbb{N} = \{1, 2, \dots, \}),$$

which are analytic in the open disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}.$

A function $f \in S_p^*(\gamma, \alpha)$ is *p*-valently starlike of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type α ($0 \le \alpha < p$), that is, $f \in S_p^*(\gamma, \alpha)$, if it satisfies the following inequality;

(1.2)
$$\Re\left\{p+\frac{1}{\gamma}\left(\frac{zf'(z)}{f(z)}-p\right)\right\} > \alpha, \ (z \in \mathbb{U}).$$

^{*}Department of Mathematics, Faculty of Science, Atatürk University, TR-25240 Erzurum, Turkey. E-mail: (E. Deniz) edeniz@atauni.edu.tr (M. Çağlar) mcaglar@atauni.edu.tr (H. Orhan) horhan@atauni.edu.tr

[†]Corresponding Author.

Furthermore, a function $f \in \mathcal{C}_p(\gamma, \alpha)$ is *p*-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type α ($0 \leq \alpha < p$), that is, $f \in \mathcal{C}_p(\gamma, \alpha)$ if it satisfies the following inequality;

(1.3)
$$\Re\left\{p+\frac{1}{\gamma}\left(1+\frac{zf''(z)}{f'(z)}-p\right)\right\} > \alpha, \ (z \in \mathbb{U}).$$

In particular cases, for p = 1 in the classes $S_p^*(\gamma, \alpha)$ and $C_p(\gamma, \alpha)$, we obtain the classes $S^*(\gamma, \alpha)$ and $C(\gamma, \alpha)$ of starlike functions of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type α ($0 \leq \alpha < p$), and convex functions of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type α ($0 \leq \alpha < p$), respectively, which were introduced and studied by Frasin [12].

Also, for $\alpha = 0$ in the classes $\mathcal{S}_p^*(\gamma, \alpha)$ and $\mathcal{C}_p(\gamma, \alpha)$, we obtain the classes $\mathcal{S}_p^*(\gamma)$ and $\mathcal{C}_p(\gamma)$, which are called *p*-valently starlike of complex order γ ($\gamma \in \mathbb{C} - \{0\}$), and *p*-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$), respectively.

Setting p = 1 and $\alpha = 0$, we obtain the classes $S^*(\gamma)$ and $C(\gamma)$. The class $S^*(\gamma)$ of starlike functions of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) was defined by Nasr and Aouf (see [18]), while the class $C(\gamma)$ of convex functions of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) was considered earlier by Wiatrowski (see [25]). Note that $S_p^*(1, \alpha) = S_p^*(\alpha)$ and $C_p(1, \alpha) = C_p(\alpha)$ are, respectively, the classes of *p*-valently starlike and *p*-valently convex functions of order α ($0 \leq \alpha < p$) in U. Also, we note that $S_1^*(\alpha) = S^*(\alpha)$ and $C_1(\alpha) = C(\alpha)$ are, respectively, the usual classes of starlike and convex functions of order α ($0 \leq \alpha < 1$) in U. In special cases, $S_1^*(0) = S^*$ and $C_1 = C$ are, respectively, the familiar classes of starlike and convex functions in U.

A function $f \in \beta$ -US_p(α) is β -uniformly *p*-valently starlike of order α ($-1 \leq \alpha < p$), that is, $f \in \beta$ -US_p(α) if it is satisfies the following inequality;

(1.4)
$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \beta\left|\frac{zf'(z)}{f(z)} - p\right| + \alpha, \ (\beta \ge 0, \ z \in \mathbb{U}).$$

Furthermore, a function $f \in \beta$ - $\mathcal{UC}_p(\alpha)$ is β -uniformly *p*-valently convex of order α $(-1 \leq \alpha < p)$, that is, $f \in \beta$ - $\mathcal{UC}_p(\alpha)$ if it satisfies the following inequality;

(1.5)
$$\Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \beta \left|1 + \frac{zf''(z)}{f'(z)} - p\right| + \alpha, \ (\beta \ge 0, \ z \in \mathbb{U}).$$

These classes generalize various other classes which are worthy of mention here. For example for p = 1, the classes β - $US(\alpha)$ and β - $UC(\alpha)$ introduced by Bharti, Parvatham and Swaminathan (see [2]). Also, the class β - $UC_1(0) = \beta$ -UCV is the known class of β -uniformly convex functions [15]. Using an Alexander type relation, we can obtain the class β - $US_p(\alpha)$ in the following way:

$$f \in \beta \text{-} \mathfrak{UC}_p(\alpha) \iff \frac{zf'}{p} \in \beta \text{-} \mathfrak{US}_p(\alpha).$$

The class $1-\mathcal{UC}_1(0) = \mathcal{UCV}$ of uniformly convex functions was defined by Goodman [14], while the class $1-\mathcal{US}_1(0) = S\mathcal{P}$ was considered by Rønning [24].

For $f \in \mathcal{A}_p$ given by (1.1) and g(z) given by

(1.6)
$$g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k$$

their convolution (or Hadamard product), denoted by (f * g), is defined as

(1.7)
$$(f * g)(z) = z^p + \sum_{k=p+1}^{\infty} a_k b_k z^k = (g * f)(z), \ (z \in \mathbb{U}).$$

The *n*-th order Ruscheweyh derivative $R^n : \mathcal{A}_p \to \mathcal{A}_p$ is defined by

(1.8)
$$R^n f(z) = \frac{z^p}{(1-z)^{n+p}} * f(z), \ (n > -p).$$

In terms of the binomial coefficients, we can rewrite (1.8) as follows:

(1.9)
$$R^n f(z) = z^p + \sum_{k=p+1}^{\infty} \binom{n+k-1}{k-p} a_k z^k, \ (n>-p).$$

In particular, when $n = \lambda \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, it is easily observed from (1.8) and (1.9) that

(1.10)
$$R^{\lambda}f(z) = \frac{z^p \left(z^{\lambda-p}f(z)\right)^{(\lambda)}}{\lambda!}, \ (\lambda \in \mathbb{N}_0, \ p \in \mathbb{N}).$$

The symbol \mathbb{R}^n is called the Ruscheweyh derivative of *n*th order defined by Goel and Sohi [13].

By using the operator R^{λ} ($\lambda \in \mathbb{N}_0$) defined by (1.10), we introduce the new classes β -US_p(λ, γ, α) and β -UC_p(λ, γ, α) as follows:

1.1. Definition. Let $-1 \leq \alpha < p, \beta \geq 0$ and $\gamma \in \mathbb{C} - \{0\}$. A function $f \in \mathcal{A}_p$ is in the class β -US_p $(\lambda, \gamma, \alpha)$ if and only if for all $z \in \mathbb{U}$,

(1.11)
$$\Re\left\{p + \frac{1}{\gamma}\left(\frac{z\left(R^{\lambda}f(z)\right)'}{R^{\lambda}f(z)} - p\right)\right\} > \beta\left|\frac{1}{\gamma}\left(\frac{z\left(R^{\lambda}f(z)\right)'}{R^{\lambda}f(z)} - p\right)\right| + \alpha$$

1.2. Definition. Let $-1 \leq \alpha < p, \beta \geq 0$ and $\gamma \in \mathbb{C} - \{0\}$. A function $f \in \mathcal{A}_p$ is in the class β - $\mathcal{UC}_p(\lambda, \gamma, \alpha)$ if and only if for all $z \in \mathbb{U}$

(1.12)
$$\Re\left\{p+\frac{1}{\gamma}\left(\frac{z\left(R^{\lambda}f(z)\right)''}{\left(R^{\lambda}f(z)\right)'}+1-p\right)\right\}>\beta\left|\frac{1}{\gamma}\left(\frac{z\left(R^{\lambda}f(z)\right)''}{\left(R^{\lambda}f(z)\right)'}+1-p\right)\right|+\alpha.$$

We note that by specializing the parameters λ , p, γ , β and α in the classes β - $\mathcal{US}_p(\lambda, \gamma, \alpha)$ and β - $\mathcal{UC}_p(\lambda, \gamma, \alpha)$, these classes reduces to several well-known subclasses of analytic functions. For example, for p = 1 and $\lambda = 0$ the classes β - $\mathcal{US}_p(\lambda, \gamma, \alpha)$ and β - $\mathcal{UC}_p(\lambda, \gamma, \alpha)$ reduces to the classes β - $\mathcal{US}(\gamma, \alpha)$ and β - $\mathcal{UC}(\gamma, \alpha)$, respectively. The reader can find more information about these classes in Deniz, Orhan and Sokol [10], Orhan, Deniz and Raducanu [19] and Oros [20].

1.3. Definition. Let $l = (l_1, l_2, \ldots, l_m) \in \mathbb{N}_0^m$, $\mu = (\mu_1, \mu_2, \ldots, \mu_m) \in \mathbb{R}_+^m$ for all $i = \overline{1, m}, m \in \mathbb{N}$. We define the following general integral operators

$$\begin{aligned}
\mathcal{J}_{p,m}^{l,\mu}(f_{1},f_{2},\ldots,f_{m}) &: \mathcal{A}_{p}^{m} \to \mathcal{A}_{p} \\
\mathcal{J}_{p,m}^{l,\mu}(f_{1},f_{2},\ldots,f_{m}) &= \mathcal{F}_{p,m,l,\mu}(z), \\
(1.13) \quad \mathcal{F}_{p,m,l,\mu}(z) &= \int_{0}^{z} pt^{p-1} \prod_{i=1}^{m} \left(\frac{R^{l_{i}}f_{i}(t)}{t^{p}}\right)^{\mu_{i}} dt
\end{aligned}$$

and

$$\begin{aligned}
\mathcal{J}_{p,m}^{l,\mu}(g_1, g_2, \dots, g_m) &: \mathcal{A}_p^m \to \mathcal{A}_p, \\
\mathcal{J}_{p,m}^{l,\mu}(g_1, g_2, \dots, g_m) &= \mathcal{G}_{p,m,l,\mu}(z), \\
(1.14) \quad \mathcal{G}_{p,m,l,\mu}(z) &= \int_0^z p t^{p-1} \prod_{i=1}^m \left(\frac{\left(R^{l_i} g_i(t)\right)'}{p t^{p-1}}\right)^{\mu_i} dt,
\end{aligned}$$

where $f_i, g_i \in \mathcal{A}_p$ for all $i = \overline{1, m}$ and \mathbb{R}^l is defined by (1.10).

1.4. Remark. We note that if $l_1 = l_2 = \cdots = l_m = 0$ for all $i = \overline{1, m}$, then the integral operator $\mathcal{F}_{p,m,l,\mu}(z)$ reduces to the operator $F_p(z)$, which was studied by Frasin (see [11]). Upon setting p = 1 in the operator (1.13), we can obtain the integral operator $\mathbb{F}_m(z)$ which was studied by Oros and Oros (see [21]). For p = 1 and $l_1 = l_2 = \cdots = l_m = 0$ in (1.13), the integral operator $\mathcal{F}_{p,m,l,\mu}(z)$ reduces to the operator $F_m(z)$ which was studied by Breaz and Breaz (see [6]). Observe that when p = m = 1, $l_1 = 0$ and $\mu_1 = \mu$, we obtain the integral operator $I_{\mu}(f)(z)$ which was studied by Pescar and Owa (see [22]), for $\mu_1 = \mu \in [0, 1]$ a special case of the operator $I_{\mu}(f)(z)$ was studied by Miller, Mocanu and Reade (see [17]). For p = m = 1, $l_1 = 0$ and $\mu_1 = 1$ in (1.13), we have the Alexander integral operator I(f)(z) in [1].

1.5. Remark. For $l_1 = l_2 = \cdots = l_m = 0$ in (1.14) the integral operator $\mathcal{G}_{p,mn,l,\mu}(z)$ reduces to the operator $G_p(z)$ which was studied by Frasin (see [11]). For p = 1 and $l_1 = l_2 = \cdots = l_m = 0$ in (1.14), the integral operator $\mathcal{G}_{p,m,l,\mu}(z)$ reduces to the operator $G_{\mu_1,\mu_2,\ldots,\mu_m}(z)$ which was studied by Breaz, Owa and Breaz (see [8]). If p = m = 1, $l_1 = 0$ and $\mu_1 = \mu$, we obtain the integral operator G(z) which was introduced and studied by Pfaltzgraff (see [23]) and Kim and Merkes (see [16]).

In this paper, we consider the integral operators $\mathcal{F}_{p,m,l,\mu}(z)$ and $\mathcal{G}_{p,m,l,\mu}(z)$ defined by (1.13) and (1.14), respectively, and study their properties on the classes β - $\mathcal{US}_p(\lambda, \gamma, \alpha)$ and β - $\mathcal{UC}_p(\lambda, \gamma, \alpha)$. As special cases, the order of convexity of the operators $\int_0^z \left(\frac{f(t)}{t}\right)^{\mu} dt$ and $\int_0^z (g'(t))^{\mu} dt$ are given.

2. Sufficient conditions on the integral operator $\mathcal{F}_{p,m,l,\mu}(z)$

First, in this section we prove a sufficient condition for the integral operator $\mathcal{F}_{p,m,l,\mu}(z)$ to be *p*-valently convex.

2.1. Theorem. Let $l = (l_1, l_2, ..., l_m) \in \mathbb{N}_0^m$, $\mu = (\mu_1, \mu_2, ..., \mu_m) \in \mathbb{R}_+^m$, $-1 \le \alpha_i < p$, $\beta_i \ge 0, \gamma \in \mathbb{C} - \{0\}$ and $f_i \in \beta_i - \mathfrak{US}_p(l_i, \gamma, \alpha_i)$ for all $i = \overline{1, m}$. Moreover, suppose that these numbers satisfy the following inequality

(2.1)
$$0 \le p + \sum_{i=1}^{m} \mu_i (\alpha_i - p) < p.$$

Then the integral operator $\mathfrak{F}_{p,m,l,\mu}(z)$ defined by (1.13) is p-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type $p + \sum_{i=1}^{m} \mu_i (\alpha_i - p)$.

Proof. From the definition (1.13), we observe that $\mathcal{F}_{p,m,l,\mu}(z) \in \mathcal{A}_p$. On the other hand, it is easy to see that

(2.2)
$$\mathcal{F}'_{p,m,l,\mu}(z) = p z^{p-1} \prod_{i=1}^{m} \left(\frac{R^{l_i} f_i(z)}{z^p} \right)^{\mu_i}$$

Now we differentiate (2.2) logarithmically and multiply by z to obtain

(2.3)
$$\frac{z\mathcal{F}_{p,m,l,\mu}'(z)}{\mathcal{F}_{p,m,l,\mu}'(z)} + 1 - p = \sum_{i=1}^{m} \mu_i \left(\frac{z\left(R^{l_i} f_i \right)'(z)}{\left(R^{l_i} f_i \right)(z)} - p \right).$$

Then multiplying the relation (2.3) with $\frac{1}{\gamma}$,

(2.4)
$$\frac{1}{\gamma} \left(\frac{z \mathcal{F}_{p,m,l,\mu}'(z)}{\mathcal{F}_{p,m,l,\mu}'(z)} + 1 - p \right) = \sum_{i=1}^{m} \mu_i \frac{1}{\gamma} \left(\frac{z \left(R^{l_i} f_i \right)'(z)}{\left(R^{l_i} f_i \right)(z)} - p \right).$$

The relation (2.4) is equivalent to

(2.5)
$$p + \frac{1}{\gamma} \left(\frac{z \mathcal{F}_{p,m,l,\mu}'(z)}{\mathcal{F}_{p,m,l,\mu}'(z)} + 1 - p \right) = p + \sum_{i=1}^{m} \mu_i \left(p + \frac{1}{\gamma} \left(\frac{z \left(R^{l_i} f_i \right)'(z)}{\left(R^{l_i} f_i \right)(z)} - p \right) \right) - p \sum_{i=1}^{m} \mu_i$$

Lastly, we calculate the real part of both sides of (2.5) and obtain

(2.6)
$$\Re \left\{ p + \frac{1}{\gamma} \left(\frac{z \mathcal{F}_{p,m,l,\mu}''(z)}{\mathcal{F}_{p,m,l,\mu}'(z)} + 1 - p \right) \right\} \\ = \sum_{i=1}^{m} \mu_i \Re \left\{ p + \frac{1}{\gamma} \left(\frac{z \left(R^{l_i} f_i \right)'(z)}{\left(R^{l_i} f_i \right)(z)} - p \right) \right\} - p \sum_{i=1}^{m} \mu_i + p.$$

Since $f_i \in \beta_i - \mathfrak{US}_p(l_i, \gamma, \alpha_i)$ for all $i = \overline{1, m}$, from (1.11) and (2.6), we have

(2.7)
$$\Re \left\{ p + \frac{1}{\gamma} \left(\frac{z \mathcal{F}_{p,m,l,\mu}'(z)}{\mathcal{F}_{p,m,l,\mu}'(z)} + 1 - p \right) \right\} \\ > \sum_{i=1}^{m} \frac{\mu_i \beta_i}{|\gamma|} \left| \frac{z \left(R^{l_i} f_i \right)'(z)}{(R^{l_i} f_i)(z)} - p \right| + p + \sum_{i=1}^{m} \mu_i \left(\alpha_i - p \right).$$

Because $\sum_{i=1}^{m} \frac{\mu_i \beta_i}{|\gamma|} \left| \frac{z(R^{l_i} f_i)'(z)}{(R^{l_i} f_i)(z)} - p \right| > 0$, for all $i = \overline{1, m}$, from (2.7), we obtain $\Re \left\{ p + \frac{1}{\gamma} \left(\frac{z \mathcal{F}_{p,m,l,\mu}'(z)}{\mathcal{F}_{p,m,l,\mu}'(z)} + 1 - p \right) \right\} > p + \sum_{i=1}^{m} \mu_i (\alpha_i - p).$

Therefore, the operator $\mathcal{F}_{p,m,l,\mu}(z)$ is *p*-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type $p + \sum_{i=1}^{m} \mu_i (\alpha_i - p)$. This evidently completes the proof of Theorem 2.1.

2.2. Remark.

- (1) Letting $\gamma = 1$ and $l_i = 0$ for all $i = \overline{1, m}$ in Theorem 2.1, we obtain [11, Theorem 2.1].
- (2) Letting p = 1, $\gamma = 1$ and $l_i = 0$ for all $i = \overline{1, m}$ in Theorem 2.1, we obtain [4, Theorem 1].
- (3) Letting p = 1, $\gamma = 1$ and $\alpha_i = l_i = 0$ for all $i = \overline{1, m}$ in Theorem 2.1, we obtain [7, Theorem 2.5]
- (4) Letting p = 1, $\beta = 0$ and $l_i = 0$ for all $i = \overline{1, m}$ in Theorem 2.1, we obtain [3, Theorem 1].
- (5) Letting p = 1, $\beta = 0$, $\alpha_i = \mu$ and $l_i = 0$ for all $i = \overline{1, m}$ in Theorem 2.1, we obtain [9, Theorem 1].
- (6) Letting p = 1, $\beta = 0$, $\alpha_i = 0$ and $l_i = 0$ for all $i = \overline{1, m}$ in Theorem 2.1, we obtain [5, Theorem 1].

Putting p = m = 1, $l_1 = 0$, $\mu_1 = \mu$, $\alpha_1 = \alpha$, $\beta_1 = \beta$ and $f_1 = f$ in Theorem 2.1, we have

2.3. Corollary. Let $\mu > 0$, $-1 \le \alpha < 1$, $\beta \ge 0$, $\gamma \in \mathbb{C} - \{0\}$ and $f \in \beta$ -US (γ, α) . If $0 \le 1 + \mu (\alpha - 1) < 1$, then $\int_0^z \left(\frac{f(t)}{t}\right)^{\mu} dt$ is convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type $\mu(\alpha - 1) + 1$ in \mathbb{U} .

2.4. Theorem. Let $l = (l_1, l_2, ..., l_m) \in \mathbb{N}_0^m$, $\mu = (\mu_1, \mu_2, ..., \mu_m) \in \mathbb{R}_+^m$, $-1 \le \alpha_i < p$, $\beta_i > 0, \ \gamma \in \mathbb{C} - \{0\}$ for all $i = \overline{1, m}$ and

(2.8)
$$\left| \frac{z \left(R^{l_i} f_i \right)'(z)}{\left(R^{l_i} f_i \right)(z)} - p \right| > - \frac{p + \sum_{i=1}^m \mu_i \left(\alpha_i - p \right)}{\sum_{i=1}^m \frac{\mu_i \beta_i}{|\gamma|}}$$

for all $i = \overline{1, m}$, then the integral operator $\mathfrak{F}_{p,m,l,\mu}(z)$ defined by (1.13) is p-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$).

Proof. From (2.7) and (2.8) we easily get $\mathcal{F}_{p,m,l,\mu}(z)$ is *p*-valently convex of complex order γ .

From Theorem 2.4, we easily get

2.5. Corollary. Let $l = (l_1, l_2, ..., l_m) \in \mathbb{N}_0^m$, $\mu = (\mu_1, \mu_2, ..., \mu_m) \in \mathbb{R}_+^m$, $-1 \le \alpha_i < p$, $\beta_i > 0, \ \gamma \in \mathbb{C} - \{0\}$ for all $i = \overline{1, m}$ and

$$\Re\left(\frac{z\left(R^{l_{i}}f_{i}\right)'\left(z\right)}{\left(R^{l_{i}}f_{i}\right)\left(z\right)}\right) > p - \frac{p + \sum_{i=1}^{m} \mu_{i}\left(\alpha_{i} - p\right)}{\sum_{i=1}^{m} \frac{\mu_{i}\beta_{i}}{|\gamma|}},$$

that is $R^{l_i}f_i \in S_p^*(\sigma)$, where $\sigma = p - \left(p + \sum_{i=1}^m \mu_i \left(\alpha_i - p\right)\right) / \sum_{i=1}^m \frac{\mu_i \beta_i}{|\gamma|}$; $0 \le \sigma < p$ for all $i = \overline{1, m}$, then the integral operator $\mathcal{F}_{p,m,l,\mu}(z)$ is p-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$).

Putting p = m = 1, $l_1 = 0$, $\mu_1 = \mu$, $\alpha_1 = \alpha$, $\beta_1 = \beta$ and $f_1 = f$ in Corollary 2.5, we have

2.6. Corollary. Let $\mu > 0, -1 \le \alpha < 1, \beta > 0, \gamma \in \mathbb{C} - \{0\}$ and $f \in S^*(\rho)$, where $\rho = [\mu(\beta + (1 - \alpha) |\gamma|) - |\gamma|] \nearrow \mu\beta; \ 0 \le \rho < 1$, then the integral operator $\int_0^z \left(\frac{f(t)}{t}\right)^{\mu} dt$ is convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) in \mathbb{U} .

3. Sufficient conditions on the integral operator $\mathcal{G}_{p,m,l,\mu}(z)$

Next, in this section we give a sufficient condition for the integral operator $\mathcal{G}_{p,m,l,\mu}(z)$ to be *p*-valently convex.

3.1. Theorem. Let $l = (l_1, l_2, ..., l_m) \in \mathbb{N}_0^m$, $\mu = (\mu_1, \mu_2, ..., \mu_m) \in \mathbb{R}_+^m$, $-1 \le \alpha_i < p$, $\beta_i \ge 0, \gamma \in \mathbb{C} - \{0\}$ and $f_i \in \beta_i$ - $\mathfrak{UC}_p(l_i, \gamma, \alpha_i)$ for all $i = \overline{1, m}$. Moreover, suppose that these numbers satisfy the following inequality

$$0 \le p + \sum_{i=1}^{m} \mu_i \left(\alpha_i - p \right) < p.$$

Then the integral operator $\mathfrak{G}_{p,m,l,\mu}(z)$ defined by (1.14) is p-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type $p + \sum_{i=1}^{m} \mu_i (\alpha_i - p)$.

Proof. From the definition (1.14), we observe that $\mathcal{G}_{p,m,l,\mu}(z) \in \mathcal{A}_p$. On the other hand, it is easy to see that

(3.1)
$$G'_{p,m,l,\mu}(z) = pz^{p-1} \prod_{i=1}^{m} \left(\frac{\left(R^{l_i} g_i(z) \right)'}{pz^{p-1}} \right)^{\mu_i}$$

Now, we differentiate (3.1) logarithmically to obtain

(3.2)
$$\frac{\mathcal{G}_{p,m,l,\mu}''(z)}{\mathcal{G}_{p,m,l,\mu}'(z)} = \frac{p-1}{z} + \sum_{i=1}^{m} \mu_i \left(\frac{\left(R^{l_i} g_i \right)''(z)}{\left(R^{l_i} g_i \right)'(z)} - \frac{p-1}{z} \right).$$

Then multiplying this relation (3.2) with $\frac{z}{\gamma}$, we obtain

$$\frac{1}{\gamma} \left(\frac{z \mathcal{G}_{p,m,l,\mu}'(z)}{\mathcal{G}_{p,m,l,\mu}'(z)} + 1 - p \right) = \sum_{i=1}^{m} \mu_i \frac{1}{\gamma} \left(\frac{z \left(R^{l_i} g_i \right)''(z)}{\left(R^{l_i} g_i \right)'(z)} + 1 - p \right)$$

or

(3.3)
$$p + \frac{1}{\gamma} \left(\frac{z \mathcal{G}_{p,m,l,\mu}'(z)}{\mathcal{G}_{p,m,l,\mu}'(z)} + 1 - p \right) = p + \sum_{i=1}^{m} \mu_i \frac{1}{\gamma} \left(\frac{z \left(R^{l_i} g_i \right)''(z)}{\left(R^{l_i} g_i \right)'(z)} + 1 - p \right).$$

Taking the real part of both sides of (3.3), we have

Since $g_i \in \beta_i$ - $\mathcal{UC}_p(l_i, \gamma, \alpha_i)$ for all $i = \overline{1, m}$, from (1.12) and (3.4), we have

$$\begin{aligned} \Re\left\{p + \frac{1}{\gamma} \left(\frac{z \mathcal{G}_{p,m,l,\mu}'(z)}{\mathcal{G}_{p,m,l,\mu}'(z)} + 1 - p\right)\right\} \\ > p - p \sum_{i=1}^{m} \mu_{i} + \sum_{i=1}^{m} \mu_{i} \left\{\beta_{i} \left|\frac{1}{\gamma} \left(\frac{z \left(R^{l_{i}}g_{i}\right)''(z)}{\left(R^{l_{i}}g_{i}\right)'(z)} + 1 - p\right)\right| + \alpha_{i}\right\} \\ = p + \sum_{i=1}^{m} \mu_{i} \left(\alpha_{i} - p\right) + \sum_{i=1}^{m} \frac{\mu_{i}\beta_{i}}{|\gamma|} \left|\frac{z \left(R^{l_{i}}g_{i}\right)''(z)}{\left(R^{l_{i}}g_{i}\right)'(z)} + 1 - p\right| \\ > p + \sum_{i=1}^{m} \mu_{i} \left(\alpha_{i} - p\right). \end{aligned}$$

Therefore, the operator $\mathfrak{G}_{p,m,l,\mu}(z)$ is *p*-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) and type $p + \sum_{i=1}^{m} \mu_i (\alpha_i - p)$. This evidently completes the proof of Theorem 3.1. \Box

3.2. Remark.

- (1) Letting $\gamma = 1$ and $l_i = 0$ for all $i = \overline{1, m}$ in Theorem 3.1, we obtain [11, Theorem 3.1].
- (2) Letting p = 1, $\beta = 0$ and $l_i = 0$ for all $i = \overline{1, m}$ in Theorem 3.1, we obtain [3, Theorem 3].
- (3) Letting p = 1, $\beta = 0$, $\alpha_i = \mu$ and $l_i = 0$ for all $i = \overline{1, m}$ in Theorem 3.1, we obtain [9, Theorem 3].
- (4) Letting p = 1, $\beta = 0$, $\alpha_i = 0$ and $l_i = 0$ for all $i = \overline{1, m}$ in Theorem 3.1, we obtain [5, Theorem 2].

Putting p = m = 1, $l_1 = 0$, $\mu_1 = \mu$, $\alpha_1 = \alpha$, $\beta_1 = \beta$ and $g_1 = g$ in Theorem 3.1, we have

3.3. Corollary. Let $\mu > 0$, $-1 \le \alpha < 1$, $\beta \ge 0$, $\gamma \in \mathbb{C} - \{0\}$ and $g \in \beta$ -UC(γ, α). If $0 \le 1 + \mu (\alpha - 1) < 1$, then $\int_0^z (g'(t))^{\mu} dt$ is convex of complex order $\gamma (\gamma \in \mathbb{C} - \{0\})$ and type $\mu (\alpha - 1) + 1$ in \mathfrak{U} .

3.4. Theorem. Let $l = (l_1, l_2, ..., l_m) \in \mathbb{N}_0^m$, $\mu = (\mu_1, \mu_2, ..., \mu_m) \in \mathbb{R}_+^m$, $-1 \le \alpha_i < p$, $\beta_i > 0, \gamma \in \mathbb{C} - \{0\}$ for all $i = \overline{1, m}$ and

(3.5)
$$\left| \frac{z \left(R^{l_i} g_i \right)''(z)}{\left(R^{l_i} g_i \right)'(z)} + 1 - p \right| > -\frac{p + \sum_{i=1}^{m} \mu_i \left(\alpha_i - p \right)}{\sum_{i=1}^{m} \frac{\mu_i \beta_i}{|\gamma|}}$$

for all $i = \overline{1, m}$, then the integral operator $\mathfrak{g}_{p,m,l,\mu}(z)$ defined by (1.14) is p-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$).

Proof. From the proof of Theorem 3.1 and (3.5) we easily get $\mathcal{G}_{p,m,l,\mu}(z)$ is *p*-valently convex of complex order γ .

From Theorem 3.4, we easily get

3.5. Corollary. Let $l = (l_1, l_2, \ldots, l_m) \in \mathbb{N}_0^m$, $\mu = (\mu_1, \mu_2, \ldots, \mu_m) \in \mathbb{R}_+^m$, $-1 \leq \alpha_i < p$, $\beta_i > 0$, $\gamma \in \mathbb{C} - \{0\}$ for all $i = \overline{1,m}$ and $R^{l_i}g_i \in \mathcal{C}_p(\sigma)$, where $\sigma = p - (p + \sum_{i=1}^m \mu_i(\alpha_i - p)) / \sum_{i=1}^m \frac{\mu_i\beta_i}{|\gamma|}; 0 \leq \sigma < p$ for all $i = \overline{1,m}$, then the integral operator $\mathcal{G}_{p,m,l,\mu}(z)$ is p-valently convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$). \Box

Putting p = m = 1, $l_1 = 0$, $\mu_1 = \mu$, $\alpha_1 = \alpha$, $\beta_1 = \beta$ and $g_1 = g$ in Corollary 3.5, we have

3.6. Corollary. Let $\mu > 0, -1 \le \alpha < 1, \beta > 0, \gamma \in \mathbb{C} - \{0\}$ and $g \in \mathbb{C}(\rho)$, where $\rho = [\mu(\beta + (1 - \alpha) |\gamma|) - |\gamma|] \not \mu\beta; \ 0 \le \rho < 1$, then the integral operator $\int_0^z (g'(t))^{\mu} dt$ is convex of complex order γ ($\gamma \in \mathbb{C} - \{0\}$) in \mathbb{U} .

Acknowledgement

The present investigation was supported by Atatürk University Rectorship under BAP Project (The Scientific and Research Project of Atatürk University) Project No: 2010/28.

References

- Alexander, J. W. Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics 17 (1), 12–22, 1915.
- [2] Bharti, R., Parvatham, R. and Swaminathan, A. On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1), 17–32, 1997.
- [3] Bulut, S. A note on the paper of Breaz and Güney, J. Math. Ineq. 2(4), 549–553, 2008.
- [4] Breaz, D. A convexity properties for an integral operator on the classes S_p(α), Gen. Math. 15 (2-3), 177–183, 2007.
- [5] Breaz, D., Aouf, M. K. and Breaz, N. Some properties for integral operators on some analytic functions with complex order, Acta. Math. Acad. Paedagog. Nyhazi. 25, 39–43, 2009.
- [6] Breaz, D. and Breaz, N. Two integral operators, Stud. Univ. Babes-Bolyai Math. 47 (3), 13-19, 2002.
- [7] Breaz, D. and Breaz, N. Some convexity properties for a general integral operator, J. Ineq. Pure Appl. Math. 7 (5), Art. 177, 2006.
- [8] Breaz, D., Owa, S. and Breaz, N. A new integral univalent operator, Acta Univ. Apulensis Math. Inform. 16, 11–16, 2008.
- [9] Breaz, D. and Güney, H.Ö. The integral operator on the classes S^{*}_α(b) and C_α(b), J. Math. Ineq. 2 (1), 97–100, 2008.
- [10] Deniz, E., Orhan, H. and Sokol, J. Classes of analytic functions defined by a differential operator related to conic domains, submitted.
- [11] Frasin, B. A. Convexity of integral operators of p-valent functions, Math. Comput. Model. 51, 601–605, 2010.
- [12] Frasin, B.A. Family of analytic functions of complex order, Acta Math. Acad. Paed. Ny. 22, 179–191, 2006.
- [13] Goel, R. M. and Sohi, N.S. A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78, 353–357, 1980.
- [14] Goodman, A.W. On uniformly convex functions, Ann. Polon. Math. 56, 87–92, 1991.
- [15] Kanas, S. and Wisniowska, A. Conic regions and k-uniform convexity, Comput. Appl. Math. 105, 327–336, 1999.
- [16] Kim, Y. J. and Merkes, E. P. On an integral of powers of a spirallike function, Kyungpook Math. J. 12, 249–252, 1972.

- [17] Miller, S.S., Mocanu, P.T. and Reade, M.O. Starlike integral operators, Pacific J. Math. 79 (1), 157–168, 1978.
- [18] Nasr, M. A. and Aouf, M. K. Starlike function of complex order, J. Natur. Sci. Math. 25 (1), 1–12, 1985.
- [19] Orhan, H., Deniz, E. and Răducanu, D. The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. 59 (1), 283-295, 2010.
- [20] Oros, G.I. New results related to the convexity and starlikeness of the Bernardi integral operator, Hacet. J. Math. Stat. 38 (2), 137–143, 2009.
- [21] Oros, G. I. and Oros, G. A convexity property for an integral operator \mathbb{F}_m , Stud. Univ. Babes-Bolyai Math. 55 (3), 169–177, 2010.
- [22] Pescar, V. and Owa, S. Sufficient conditions for univalence of certain integral operators, Indian J. Math. 42 (3), 347–35, 2000.
- [23] Pfaltzgraff, J. A. Univalence of the integral of $(f'(z))^{\lambda}$, Bull. London Math. Soc. 7 (3), 254–256, 1975.
- [24] Rønning, F. On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-SkÃlodowska Sect. A. 45 (14), 117–122, 1991.
- [25] Wiatrowski, P. The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw.Lodz. Nauki Mat. Pryrod. Ser. 3, 75–85, 1971.