# SOME CONVEXITY PROPERTIES FOR TWO NEW P-VALENT INTEGRAL OPERATORS 

Erhan Deniz* ${ }^{* \dagger}$, Murat Çağlar* and Halit Orhan*

Received 11:11:2010 : Accepted 09:05:2011


#### Abstract

In this paper, we define two new general $p$-valent integral operators in the unit disc $\mathbb{U}$, and obtain the convexity properties of these integral operators of $p$-valent functions on some classes of $\beta$-uniformly $p$-valent starlike and $\beta$-uniformly $p$-valent convex functions of complex order. As special cases, the convexity properties of the operators $\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\mu} d t$ and $\int_{0}^{z}\left(g^{\prime}(t)\right)^{\mu} d t$ are given.


Keywords: Analytic functions, Integral operators, $\beta$-uniformly $p$-valent starlike and $\beta$-uniformly $p$-valent convex functions, Complex order.

2000 AMS Classification: Primary 30 C 80 . Secondary 30 C 45.

## 1. Introduction and preliminaries

Let $\mathcal{A}_{p}$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k},(p \in \mathbb{N}=\{1,2, \ldots,\}), \tag{1.1}
\end{equation*}
$$

which are analytic in the open disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$.
A function $f \in \mathcal{S}_{p}^{*}(\gamma, \alpha)$ is $p$-valently starlike of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $\alpha(0 \leq \alpha<p)$, that is, $f \in \mathcal{S}_{p}^{*}(\gamma, \alpha)$, if it satisfies the following inequality;

$$
\begin{equation*}
\Re\left\{p+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)\right\}>\alpha,(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

[^0]Furthermore, a function $f \in \mathcal{C}_{p}(\gamma, \alpha)$ is $p$-valently convex of complex order $\gamma(\gamma \in$ $\mathbb{C}-\{0\})$ and type $\alpha(0 \leq \alpha<p)$, that is, $f \in \mathcal{C}_{p}(\gamma, \alpha)$ if it satisfies the following inequality;

$$
\begin{equation*}
\Re\left\{p+\frac{1}{\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right)\right\}>\alpha,(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

In particular cases, for $p=1$ in the classes $\mathcal{S}_{p}^{*}(\gamma, \alpha)$ and $\mathcal{C}_{p}(\gamma, \alpha)$, we obtain the classes $\mathcal{S}^{*}(\gamma, \alpha)$ and $\mathcal{C}(\gamma, \alpha)$ of starlike functions of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $\alpha(0 \leq \alpha<p)$, and convex functions of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $\alpha$ ( $0 \leq \alpha<p$ ), respectively, which were introduced and studied by Frasin [12].

Also, for $\alpha=0$ in the classes $\mathcal{S}_{p}^{*}(\gamma, \alpha)$ and $\mathcal{C}_{p}(\gamma, \alpha)$, we obtain the classes $\mathcal{S}_{p}^{*}(\gamma)$ and $\mathcal{C}_{p}(\gamma)$, which are called $p$-valently starlike of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$, and $p$-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$, respectively.

Setting $p=1$ and $\alpha=0$, we obtain the classes $\mathcal{S}^{*}(\gamma)$ and $\mathcal{C}(\gamma)$. The class $\mathcal{S}^{*}(\gamma)$ of starlike functions of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ was defined by Nasr and Aouf (see [18]), while the class $\mathcal{C}(\gamma)$ of convex functions of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ was considered earlier by Wiatrowski (see [25]). Note that $\mathcal{S}_{p}^{*}(1, \alpha)=\mathcal{S}_{p}^{*}(\alpha)$ and $\mathcal{C}_{p}(1, \alpha)=$ $\mathcal{C}_{p}(\alpha)$ are, respectively, the classes of $p$-valently starlike and $p$-valently convex functions of order $\alpha(0 \leq \alpha<p)$ in $\mathbb{U}$. Also, we note that $\mathcal{S}_{1}^{*}(\alpha)=\mathcal{S}^{*}(\alpha)$ and $\mathcal{C}_{1}(\alpha)=\mathcal{C}(\alpha)$ are, respectively, the usual classes of starlike and convex functions of order $\alpha(0 \leq \alpha<1)$ in $\mathbb{U}$. In special cases, $\mathcal{S}_{1}^{*}(0)=\mathcal{S}^{*}$ and $\mathcal{C}_{1}=\mathcal{C}$ are, respectively, the familiar classes of starlike and convex functions in $\mathbb{U}$.

A function $f \in \beta-\mathcal{U} \mathcal{S}_{p}(\alpha)$ is $\beta$-uniformly $p$-valently starlike of order $\alpha(-1 \leq \alpha<p)$, that is, $f \in \beta-\mathcal{U} \mathcal{S}_{p}(\alpha)$ if it is satisfies the following inequality;

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|+\alpha,(\beta \geq 0, z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

Furthermore, a function $f \in \beta-\mathcal{C}_{p}(\alpha)$ is $\beta$-uniformly $p$-valently convex of order $\alpha(-1 \leq$ $\alpha<p)$, that is, $f \in \beta-\mathcal{U} \mathfrak{C}_{p}(\alpha)$ if it satisfies the following inequality;

$$
\begin{equation*}
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right|+\alpha,(\beta \geq 0, z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

These classes generalize various other classes which are worthy of mention here. For example for $p=1$, the classes $\beta-\mathcal{U S}(\alpha)$ and $\beta-\mathcal{U}(\alpha)$ introduced by Bharti, Parvatham
 $\beta$-uniformly convex functions [15]. Using an Alexander type relation, we can obtain the class $\beta-\mathcal{U} \mathcal{S}_{p}(\alpha)$ in the following way:

$$
f \in \beta-\mathfrak{U} \mathcal{C}_{p}(\alpha) \Longleftrightarrow \frac{z f^{\prime}}{p} \in \beta-\mathcal{U} \mathcal{S}_{p}(\alpha)
$$

The class $1-\mathcal{U} \varrho_{1}(0)=\mathcal{U C V}$ of uniformly convex functions was defined by Goodman [14], while the class $1-\mathcal{U} \mathcal{S}_{1}(0)=S \mathcal{P}$ was considered by Rønning [24].

For $f \in \mathcal{A}_{p}$ given by (1.1) and $g(z)$ given by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{k=p+1}^{\infty} b_{k} z^{k} \tag{1.6}
\end{equation*}
$$

their convolution (or Hadamard product), denoted by $(f * g)$, is defined as

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z),(z \in \mathbb{U}) \tag{1.7}
\end{equation*}
$$

The $n$-th order Ruscheweyh derivative $R^{n}: \mathcal{A}_{p} \rightarrow \mathcal{A}_{p}$ is defined by

$$
\begin{equation*}
R^{n} f(z)=\frac{z^{p}}{(1-z)^{n+p}} * f(z),(n>-p) \tag{1.8}
\end{equation*}
$$

In terms of the binomial coefficients, we can rewrite (1.8) as follows:

$$
\begin{equation*}
R^{n} f(z)=z^{p}+\sum_{k=p+1}^{\infty}\binom{n+k-1}{k-p} a_{k} z^{k},(n>-p) . \tag{1.9}
\end{equation*}
$$

In particular, when $n=\lambda \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, it is easily observed from (1.8) and (1.9) that

$$
\begin{equation*}
R^{\lambda} f(z)=\frac{z^{p}\left(z^{\lambda-p} f(z)\right)^{(\lambda)}}{\lambda!},\left(\lambda \in \mathbb{N}_{0}, p \in \mathbb{N}\right) \tag{1.10}
\end{equation*}
$$

The symbol $R^{n}$ is called the Ruscheweyh derivative of $n$th order defined by Goel and Sohi [13].

By using the operator $R^{\lambda}\left(\lambda \in \mathbb{N}_{0}\right)$ defined by (1.10), we introduce the new classes $\beta-\mathcal{U} \mathcal{S}_{p}(\lambda, \gamma, \alpha)$ and $\beta-\mathcal{U C} \mathcal{C}_{p}(\lambda, \gamma, \alpha)$ as follows:
1.1. Definition. Let $-1 \leq \alpha<p, \beta \geq 0$ and $\gamma \in \mathbb{C}-\{0\}$. A function $f \in \mathcal{A}_{p}$ is in the class $\beta-\mathcal{U} \mathscr{S}_{p}(\lambda, \gamma, \alpha)$ if and only if for all $z \in \mathbb{U}$,

$$
\begin{equation*}
\Re\left\{p+\frac{1}{\gamma}\left(\frac{z\left(R^{\lambda} f(z)\right)^{\prime}}{R^{\lambda} f(z)}-p\right)\right\}>\beta\left|\frac{1}{\gamma}\left(\frac{z\left(R^{\lambda} f(z)\right)^{\prime}}{R^{\lambda} f(z)}-p\right)\right|+\alpha \tag{1.11}
\end{equation*}
$$

1.2. Definition. Let $-1 \leq \alpha<p, \beta \geq 0$ and $\gamma \in \mathbb{C}-\{0\}$. A function $f \in \mathcal{A}_{p}$ is in the class $\beta-\mathcal{U} \bigodot_{p}(\lambda, \gamma, \alpha)$ if and only if for all $z \in \mathbb{U}$

$$
\begin{equation*}
\Re\left\{p+\frac{1}{\gamma}\left(\frac{z\left(R^{\lambda} f(z)\right)^{\prime \prime}}{\left(R^{\lambda} f(z)\right)^{\prime}}+1-p\right)\right\}>\beta\left|\frac{1}{\gamma}\left(\frac{z\left(R^{\lambda} f(z)\right)^{\prime \prime}}{\left(R^{\lambda} f(z)\right)^{\prime}}+1-p\right)\right|+\alpha \tag{1.12}
\end{equation*}
$$

We note that by specializing the parameters $\lambda, p, \gamma, \beta$ and $\alpha$ in the classes $\beta-\mathcal{U} S_{p}(\lambda, \gamma, \alpha)$ and $\beta-\mathcal{U} \mathfrak{C}_{p}(\lambda, \gamma, \alpha)$, these classes reduces to several well-known subclasses of analytic functions. For example, for $p=1$ and $\lambda=0$ the classes $\beta-\mathcal{U} \mathscr{S}_{p}(\lambda, \gamma, \alpha)$ and $\beta-\mathcal{\mathcal { C } _ { p } ( \lambda , \gamma , \alpha )}$ reduces to the classes $\beta-\mathcal{U} \mathcal{S}(\gamma, \alpha)$ and $\beta-\mathcal{U}(\gamma, \alpha)$, respectively. The reader can find more information about these classes in Deniz, Orhan and Sokol [10], Orhan, Deniz and Raducanu [19] and Oros [20].
1.3. Definition. Let $l=\left(l_{1}, l_{2}, \ldots, l_{m}\right) \in \mathbb{N}_{0}^{m}, \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m}$ for all $i=\overline{1, m}, m \in \mathbb{N}$. We define the following general integral operators

$$
\begin{aligned}
& \mathcal{J}_{p, m}^{l, \mu}\left(f_{1}, f_{2}, \ldots, f_{m}\right): \mathcal{A}_{p}^{m} \rightarrow \mathcal{A}_{p} \\
& \mathcal{J}_{p, m}^{l, \mu}\left(f_{1}, f_{2}, \ldots, f_{m}\right)=\mathcal{F}_{p, m, l, \mu}(z) \\
& \mathcal{F}_{p, m, l, \mu}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{m}\left(\frac{R^{l_{i}} f_{i}(t)}{t^{p}}\right)^{\mu_{i}} d t
\end{aligned}
$$

and

$$
\begin{align*}
& \mathcal{J}_{p, m}^{l, \mu}\left(g_{1}, g_{2}, \ldots, g_{m}\right): \mathcal{A}_{p}^{m} \rightarrow \mathcal{A}_{p} \\
& \mathcal{J}_{p, m}^{l, \mu}\left(g_{1}, g_{2}, \ldots, g_{m}\right)=\mathcal{G}_{p, m, l, \mu}(z) \\
& \mathcal{G}_{p, m, l, \mu}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{m}\left(\frac{\left(R^{l_{i}} g_{i}(t)\right)^{\prime}}{p t^{p-1}}\right)^{\mu_{i}} d t \tag{1.14}
\end{align*}
$$

where $f_{i}, g_{i} \in \mathcal{A}_{p}$ for all $i=\overline{1, m}$ and $R^{l}$ is defined by (1.10).
1.4. Remark. We note that if $l_{1}=l_{2}=\cdots=l_{m}=0$ for all $i=\overline{1, m}$, then the integral operator $\mathcal{F}_{p, m, l, \mu}(z)$ reduces to the operator $F_{p}(z)$, which was studied by Frasin (see [11]). Upon setting $p=1$ in the operator (1.13), we can obtain the integral operator $\mathbb{F}_{m}(z)$ which was studied by Oros and Oros (see [21]). For $p=1$ and $l_{1}=l_{2}=\cdots=l_{m}=0$ in (1.13), the integral operator $\mathcal{F}_{p, m, l, \mu}(z)$ reduces to the operator $F_{m}(z)$ which was studied by Breaz and Breaz (see [6]). Observe that when $p=m=1, l_{1}=0$ and $\mu_{1}=\mu$, we obtain the integral operator $I_{\mu}(f)(z)$ which was studied by Pescar and Owa (see [22]), for $\mu_{1}=\mu \in[0,1]$ a special case of the operator $I_{\mu}(f)(z)$ was studied by Miller, Mocanu and Reade (see [17]). For $p=m=1, l_{1}=0$ and $\mu_{1}=1$ in (1.13), we have the Alexander integral operator $I(f)(z)$ in [1].
1.5. Remark. For $l_{1}=l_{2}=\cdots=l_{m}=0$ in (1.14) the integral operator $\mathcal{G}_{p, m n, l, \mu}(z)$ reduces to the operator $G_{p}(z)$ which was studied by Frasin (see [11]). For $p=1$ and $l_{1}=l_{2}=\cdots=l_{m}=0$ in (1.14), the integral operator $\mathcal{G}_{p, m, l, \mu}(z)$ reduces to the operator $G_{\mu_{1}, \mu_{2}, \ldots, \mu_{m}}(z)$ which was studied by Breaz, Owa and Breaz (see [8]). If $p=m=1$, $l_{1}=0$ and $\mu_{1}=\mu$, we obtain the integral operator $G(z)$ which was introduced and studied by Pfaltzgraff (see [23]) and Kim and Merkes (see [16]).

In this paper, we consider the integral operators $\mathcal{F}_{p, m, l, \mu}(z)$ and $\mathcal{G}_{p, m, l, \mu}(z)$ defined by (1.13) and (1.14), respectively, and study their properties on the classes $\beta-\mathcal{U} \mathcal{S}_{p}(\lambda, \gamma, \alpha)$ and $\beta-\mathcal{U} \mathcal{C}_{p}(\lambda, \gamma, \alpha)$. As special cases, the order of convexity of the operators $\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\mu} d t$ and $\int_{0}^{z}\left(g^{\prime}(t)\right)^{\mu} d t$ are given.

## 2. Sufficient conditions on the integral operator $\mathcal{F}_{p, m, l, \mu}(z)$

First, in this section we prove a sufficient condition for the integral operator $\mathcal{F}_{p, m, l, \mu}(z)$ to be $p$-valently convex.
2.1. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots, l_{m}\right) \in \mathbb{N}_{0}^{m}, \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m},-1 \leq \alpha_{i}<p$, $\beta_{i} \geq 0, \gamma \in \mathbb{C}-\{0\}$ and $f_{i} \in \beta_{i}-\mathcal{U} \mathcal{S}_{p}\left(l_{i}, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, m}$. Moreover, suppose that these numbers satisfy the following inequality

$$
\begin{equation*}
0 \leq p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)<p \tag{2.1}
\end{equation*}
$$

Then the integral operator $\mathcal{F}_{p, m, l, \mu}(z)$ defined by (1.13) is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)$.

Proof. From the definition (1.13), we observe that $\mathcal{F}_{p, m, l, \mu}(z) \in \mathcal{A}_{p}$. On the other hand, it is easy to see that

$$
\begin{equation*}
\mathcal{F}_{p, m, l, \mu}^{\prime}(z)=p z^{p-1} \prod_{i=1}^{m}\left(\frac{R^{l_{i}} f_{i}(z)}{z^{p}}\right)^{\mu_{i}} . \tag{2.2}
\end{equation*}
$$

Now we differentiate (2.2) logarithmically and multiply by $z$ to obtain

$$
\begin{equation*}
\frac{z \mathcal{F}_{p, m, l, \mu}^{\prime \prime}(z)}{\mathcal{F}_{p, m, l, \mu}^{\prime}(z)}+1-p=\sum_{i=1}^{m} \mu_{i}\left(\frac{z\left(R^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(R^{l_{i}} f_{i}\right)(z)}-p\right) \tag{2.3}
\end{equation*}
$$

Then multiplying the relation (2.3) with $\frac{1}{\gamma}$,

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z \mathcal{F}_{p, m, l, \mu}^{\prime \prime}(z)}{\mathcal{F}_{p, m, l, \mu}^{\prime}(z)}+1-p\right)=\sum_{i=1}^{m} \mu_{i} \frac{1}{\gamma}\left(\frac{z\left(R^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(R^{l_{i}} f_{i}\right)(z)}-p\right) \tag{2.4}
\end{equation*}
$$

The relation (2.4) is equivalent to

$$
\begin{equation*}
p+\frac{1}{\gamma}\left(\frac{z \mathcal{F}_{p, m, l, \mu}^{\prime \prime}(z)}{\mathcal{F}_{p, m, l, \mu}^{\prime}(z)}+1-p\right)=p+\sum_{i=1}^{m} \mu_{i}\left(p+\frac{1}{\gamma}\left(\frac{z\left(R^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(R^{l_{i}} f_{i}\right)(z)}-p\right)\right)-p \sum_{i=1}^{m} \mu_{i} \tag{2.5}
\end{equation*}
$$

Lastly, we calculate the real part of both sides of (2.5) and obtain

$$
\begin{align*}
& \Re\left\{p+\frac{1}{\gamma}\left(\frac{z \mathcal{F}_{p, m, l, \mu}^{\prime \prime}(z)}{\mathcal{F}_{p, m, l, \mu}^{\prime}(z)}+1-p\right)\right\}  \tag{2.6}\\
& \quad=\sum_{i=1}^{m} \mu_{i} \Re\left\{p+\frac{1}{\gamma}\left(\frac{z\left(R^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(R^{l} f_{i}\right)(z)}-p\right)\right\}-p \sum_{i=1}^{m} \mu_{i}+p .
\end{align*}
$$

Since $f_{i} \in \beta_{i}-\mathcal{U} \mathcal{S}_{p}\left(l_{i}, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, m}$, from (1.11) and (2.6), we have

$$
\begin{align*}
& \Re\left\{p+\frac{1}{\gamma}\left(\frac{z \mathcal{F}_{p, m, l, \mu}^{\prime \prime}(z)}{\mathcal{F}_{p, m, l, \mu}^{\prime}(z)}+1-p\right)\right\}  \tag{2.7}\\
& \quad>\sum_{i=1}^{m} \frac{\mu_{i} \beta_{i}}{|\gamma|}\left|\frac{z\left(R^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(R^{l_{i}} f_{i}\right)(z)}-p\right|+p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)
\end{align*}
$$

Because $\sum_{i=1}^{m} \frac{\mu_{i} \beta_{i}}{|\gamma|}\left|\frac{z\left(R^{l} i f_{i}\right)^{\prime}(z)}{\left(R^{l} f_{i}\right)(z)}-p\right|>0$, for all $i=\overline{1, m}$, from (2.7), we obtain

$$
\Re\left\{p+\frac{1}{\gamma}\left(\frac{z \mathcal{F}_{p, m, l, \mu}^{\prime \prime}(z)}{\mathcal{F}_{p, m, l, \mu}^{\prime}(z)}+1-p\right)\right\}>p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right) .
$$

Therefore, the operator $\mathcal{F}_{p, m, l, \mu}(z)$ is $p$-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)$. This evidently completes the proof of Theorem 2.1.

### 2.2. Remark.

(1) Letting $\gamma=1$ and $l_{i}=0$ for all $i=\overline{1, m}$ in Theorem 2.1, we obtain [11, Theorem 2.1].
(2) Letting $p=1, \gamma=1$ and $l_{i}=0$ for all $i=\overline{1, m}$ in Theorem 2.1, we obtain [4, Theorem 1].
(3) Letting $p=1, \gamma=1$ and $\alpha_{i}=l_{i}=0$ for all $i=\overline{1, m}$ in Theorem 2.1, we obtain [7, Theorem 2.5]
(4) Letting $p=1, \beta=0$ and $l_{i}=0$ for all $i=\overline{1, m}$ in Theorem 2.1, we obtain [3, Theorem 1].
(5) Letting $p=1, \beta=0, \alpha_{i}=\mu$ and $l_{i}=0$ for all $i=\overline{1, m}$ in Theorem 2.1, we obtain [ 9 , Theorem 1].
(6) Letting $p=1, \beta=0, \alpha_{i}=0$ and $l_{i}=0$ for all $i=\overline{1, m}$ in Theorem 2.1, we obtain [5, Theorem 1].
Putting $p=m=1, l_{1}=0, \mu_{1}=\mu, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $f_{1}=f$ in Theorem 2.1, we have
2.3. Corollary. Let $\mu>0,-1 \leq \alpha<1, \beta \geq 0, \gamma \in \mathbb{C}-\{0\}$ and $f \in \beta-\mathcal{U S}(\gamma, \alpha)$. If $0 \leq 1+\mu(\alpha-1)<1$, then $\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\mu} d t$ is convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $\mu(\alpha-1)+1$ in $\mathbb{U}$.
2.4. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots, l_{m}\right) \in \mathbb{N}_{0}^{m}, \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m},-1 \leq \alpha_{i}<p$, $\beta_{i}>0, \gamma \in \mathbb{C}-\{0\}$ for all $i=\overline{1, m}$ and

$$
\begin{equation*}
\left|\frac{z\left(R^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(R^{l_{i}} f_{i}\right)(z)}-p\right|>-\frac{p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)}{\sum_{i=1}^{m} \frac{\mu_{i} \beta_{i}}{|\gamma|}} \tag{2.8}
\end{equation*}
$$

for all $i=\overline{1, m}$, then the integral operator $\mathcal{F}_{p, m, l, \mu}(z)$ defined by (1.13) is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.

Proof. From (2.7) and (2.8) we easily get $\mathcal{F}_{p, m, l, \mu}(z)$ is $p$-valently convex of complex order $\gamma$.

From Theorem 2.4, we easily get
2.5. Corollary. Let $l=\left(l_{1}, l_{2}, \ldots, l_{m}\right) \in \mathbb{N}_{0}^{m}, \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m},-1 \leq \alpha_{i}<p$, $\beta_{i}>0, \gamma \in \mathbb{C}-\{0\}$ for all $i=\overline{1, m}$ and

$$
\Re\left(\frac{z\left(R^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(R^{l_{i}} f_{i}\right)(z)}\right)>p-\frac{p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)}{\sum_{i=1}^{m} \frac{\mu_{i} \beta_{i}}{|\gamma|}}
$$

that is $R^{l_{i}} f_{i} \in \mathcal{S}_{p}^{*}(\sigma)$, where $\sigma=p-\left(p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)\right) / \sum_{i=1}^{m} \frac{\mu_{i} \beta_{i}}{|\gamma|} ; 0 \leq \sigma<p$ for all $i=\overline{1, m}$, then the integral operator $\mathcal{F}_{p, m, l, \mu}(z)$ is $p$-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.

Putting $p=m=1, l_{1}=0, \mu_{1}=\mu, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $f_{1}=f$ in Corollary 2.5, we have
2.6. Corollary. Let $\mu>0,-1 \leq \alpha<1, \beta>0, \gamma \in \mathbb{C}-\{0\}$ and $f \in \mathcal{S}^{*}(\rho)$, where $\rho=[\mu(\beta+(1-\alpha)|\gamma|)-|\gamma|] / \mu \beta ; 0 \leq \rho<1$, then the integral operator $\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\mu} d t$ is convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ in $\mathbb{U}$.

## 3. Sufficient conditions on the integral operator $\mathcal{G}_{p, m, l, \mu}(z)$

Next, in this section we give a sufficient condition for the integral operator $\mathcal{G}_{p, m, l, \mu}(z)$ to be $p$-valently convex.
3.1. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots, l_{m}\right) \in \mathbb{N}_{0}^{m}, \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m},-1 \leq \alpha_{i}<p$, $\beta_{i} \geq 0, \gamma \in \mathbb{C}-\{0\}$ and $f_{i} \in \beta_{i}-\mathcal{Z} \complement_{p}\left(l_{i}, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, m}$. Moreover, suppose that these numbers satisfy the following inequality

$$
0 \leq p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)<p
$$

Then the integral operator $\mathcal{G}_{p, m, l, \mu}(z)$ defined by (1.14) is p-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)$.

Proof. From the definition (1.14), we observe that $\mathcal{G}_{p, m, l, \mu}(z) \in \mathcal{A}_{p}$. On the other hand, it is easy to see that

$$
\begin{equation*}
\mathcal{G}_{p, m, l, \mu}^{\prime}(z)=p z^{p-1} \prod_{i=1}^{m}\left(\frac{\left(R^{l_{i}} g_{i}(z)\right)^{\prime}}{p z^{p-1}}\right)^{\mu_{i}} \tag{3.1}
\end{equation*}
$$

Now, we differentiate (3.1) logarithmically to obtain

$$
\begin{equation*}
\frac{\mathcal{G}_{p, m, l, \mu}^{\prime \prime}(z)}{\mathcal{G}_{p, m, l, \mu}^{\prime}(z)}=\frac{p-1}{z}+\sum_{i=1}^{m} \mu_{i}\left(\frac{\left(R^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(R^{l_{i}} g_{i}\right)^{\prime}(z)}-\frac{p-1}{z}\right) . \tag{3.2}
\end{equation*}
$$

Then multiplying this relation (3.2) with $\frac{z}{\gamma}$, we obtain

$$
\frac{1}{\gamma}\left(\frac{z \mathcal{G}_{p, m, l, \mu}^{\prime \prime}(z)}{\mathcal{G}_{p, m, l, \mu}^{\prime}(z)}+1-p\right)=\sum_{i=1}^{m} \mu_{i} \frac{1}{\gamma}\left(\frac{z\left(R^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(R^{l_{i}} g_{i}\right)^{\prime}(z)}+1-p\right)
$$

or

$$
\begin{equation*}
p+\frac{1}{\gamma}\left(\frac{z \mathcal{G}_{p, m, l, \mu}^{\prime \prime}(z)}{\mathcal{G}_{p, m, l, \mu}^{\prime}(z)}+1-p\right)=p+\sum_{i=1}^{m} \mu_{i} \frac{1}{\gamma}\left(\frac{z\left(R^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(R^{l_{i}} g_{i}\right)^{\prime}(z)}+1-p\right) . \tag{3.3}
\end{equation*}
$$

Taking the real part of both sides of (3.3), we have

$$
\begin{align*}
& \Re\left\{p+\frac{1}{\gamma}\left(\frac{z \mathcal{G}_{p, n, l, \mu}^{\prime \prime}(z)}{\mathcal{G}_{p, n, l, \mu}^{\prime}(z)}+1-p\right)\right\} \\
& \quad=p+\sum_{i=1}^{m} \mu_{i} \Re \frac{1}{\gamma}\left(\frac{z\left(R^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(R^{l_{i}} g_{i}\right)^{\prime}(z)}+1-p\right)  \tag{3.4}\\
& \quad=p-p \sum_{i=1}^{m} \mu_{i}+\sum_{i=1}^{m} \mu_{i} \Re\left\{p+\frac{1}{\gamma}\left(\frac{z\left(R^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(R^{l_{i}} g_{i}\right)^{\prime}(z)}+1-p\right)\right\} .
\end{align*}
$$

Since $g_{i} \in \beta_{i}-\mathcal{U} \mathcal{C}_{p}\left(l_{i}, \gamma, \alpha_{i}\right)$ for all $i=\overline{1, m}$, from (1.12) and (3.4), we have

$$
\begin{aligned}
& \Re\left\{p+\frac{1}{\gamma}\left(\frac{z \mathcal{G}_{p, m, l, \mu}^{\prime \prime}(z)}{\mathcal{G}_{p, m, l, \mu}^{\prime}(z)}+1-p\right)\right\} \\
& \quad>p-p \sum_{i=1}^{m} \mu_{i}+\sum_{i=1}^{m} \mu_{i}\left\{\beta_{i}\left|\frac{1}{\gamma}\left(\frac{z\left(R^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(R^{l_{i}} g_{i}\right)^{\prime}(z)}+1-p\right)\right|+\alpha_{i}\right\} \\
& \quad=p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)+\sum_{i=1}^{m} \frac{\mu_{i} \beta_{i}}{|\gamma|}\left|\frac{z\left(R^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(R^{l_{i}} g_{i}\right)^{\prime}(z)}+1-p\right| \\
& \quad>p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right) .
\end{aligned}
$$

Therefore, the operator $\mathcal{G}_{p, m, l, \mu}(z)$ is $p$-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)$. This evidently completes the proof of Theorem 3.1.

### 3.2. Remark.

(1) Letting $\gamma=1$ and $l_{i}=0$ for all $i=\overline{1, m}$ in Theorem 3.1, we obtain [11, Theorem 3.1].
(2) Letting $p=1, \beta=0$ and $l_{i}=0$ for all $i=\overline{1, m}$ in Theorem 3.1, we obtain [3, Theorem 3].
(3) Letting $p=1, \beta=0, \alpha_{i}=\mu$ and $l_{i}=0$ for all $i=\overline{1, m}$ in Theorem 3.1, we obtain [ 9 , Theorem 3].
(4) Letting $p=1, \beta=0, \alpha_{i}=0$ and $l_{i}=0$ for all $i=\overline{1, m}$ in Theorem 3.1, we obtain [5, Theorem 2].

Putting $p=m=1, l_{1}=0, \mu_{1}=\mu, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $g_{1}=g$ in Theorem 3.1, we have
3.3. Corollary. Let $\mu>0,-1 \leq \alpha<1, \beta \geq 0, \gamma \in \mathbb{C}-\{0\}$ and $g \in \beta-\mathcal{U}(\gamma, \alpha)$. If $0 \leq 1+\mu(\alpha-1)<1$, then $\int_{0}^{z}\left(g^{\prime}(t)\right)^{\mu} d t$ is convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ and type $\mu(\alpha-1)+1$ in $\mathcal{U}$.
3.4. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots, l_{m}\right) \in \mathbb{N}_{0}^{m}, \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m},-1 \leq \alpha_{i}<p$, $\beta_{i}>0, \gamma \in \mathbb{C}-\{0\}$ for all $i=\overline{1, m}$ and

$$
\begin{equation*}
\left|\frac{z\left(R^{l_{i}} g_{i}\right)^{\prime \prime}(z)}{\left(R^{l_{i}} g_{i}\right)^{\prime}(z)}+1-p\right|>-\frac{p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)}{\sum_{i=1}^{m} \frac{\mu_{i} \beta_{i}}{|\gamma|}} \tag{3.5}
\end{equation*}
$$

for all $i=\overline{1, m}$, then the integral operator $\mathcal{G}_{p, m, l, \mu}(z)$ defined by (1.14) is $p$-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.

Proof. From the proof of Theorem 3.1 and (3.5) we easily get $\mathcal{G}_{p, m, l, \mu}(z)$ is $p$-valently convex of complex order $\gamma$.

From Theorem 3.4, we easily get
3.5. Corollary. Let $l=\left(l_{1}, l_{2}, \ldots, l_{m}\right) \in \mathbb{N}_{0}^{m}, \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m},-1 \leq$ $\alpha_{i}<p, \beta_{i}>0, \gamma \in \mathbb{C}-\{0\}$ for all $i=\overline{1, m}$ and $R^{l_{i}} g_{i} \in \mathcal{C}_{p}(\sigma)$, where $\sigma=p-$ $\left(p+\sum_{i=1}^{m} \mu_{i}\left(\alpha_{i}-p\right)\right) / \sum_{i=1}^{m} \frac{\mu_{i} \beta_{i}}{|\gamma|} ; 0 \leq \sigma<p$ for all $i=\overline{1, m}$, then the integral operator $\mathcal{G}_{p, m, l, \mu}(z)$ is $p$-valently convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$.

Putting $p=m=1, l_{1}=0, \mu_{1}=\mu, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $g_{1}=g$ in Corollary 3.5, we have
3.6. Corollary. Let $\mu>0,-1 \leq \alpha<1, \beta>0, \gamma \in \mathbb{C}-\{0\}$ and $g \in \mathcal{C}(\rho)$, where $\rho=[\mu(\beta+(1-\alpha)|\gamma|)-|\gamma|] / \mu \beta ; 0 \leq \rho<1$, then the integral operator $\int_{0}^{z}\left(g^{\prime}(t)\right)^{\mu} d t$ is convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$ in $\mathbb{U}$.

## Acknowledgement

The present investigation was supported by Atatürk University Rectorship under BAP Project (The Scientific and Research Project of Atatürk University) Project No: 2010/28.

## References

[1] Alexander, J. W. Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics 17 (1), 12-22, 1915.
[2] Bharti, R., Parvatham, R. and Swaminathan, A. On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1), 17-32, 1997.
[3] Bulut, S. A note on the paper of Breaz and Güney, J. Math. Ineq. 2 (4), 549-553, 2008.
[4] Breaz, D. A convexity properties for an integral operator on the classes $S_{p}(\alpha)$, Gen. Math. 15 (2-3), 177-183, 2007.
[5] Breaz, D., Aouf, M. K. and Breaz, N. Some properties for integral operators on some analytic functions with complex order, Acta. Math. Acad. Paedagog. Nyhazi. 25, 39-43, 2009.
[6] Breaz, D. and Breaz, N. Two integral operators, Stud. Univ. Babes-Bolyai Math. 47 (3), 13-19, 2002.
[7] Breaz, D. and Breaz, N. Some convexity properties for a general integral operator, J. Ineq. Pure Appl. Math. 7 (5), Art. 177, 2006.
[8] Breaz, D., Owa, S. and Breaz, N. A new integral univalent operator, Acta Univ. Apulensis Math. Inform. 16, 11-16, 2008.
[9] Breaz, D. and Güney, H. Ö. The integral operator on the classes $S_{\alpha}^{*}(b)$ and $C_{\alpha}(b)$, J. Math. Ineq. $2(1), 97-100,2008$.
[10] Deniz, E., Orhan, H. and Sokol, J. Classes of analytic functions defined by a differential operator related to conic domains, submitted.
[11] Frasin, B. A. Convexity of integral operators of p-valent functions, Math. Comput. Model. 51, 601-605, 2010.
[12] Frasin, B. A. Family of analytic functions of complex order, Acta Math. Acad. Paed. Ny. 22, 179-191, 2006.
[13] Goel, R. M. and Sohi, N. S. A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78, 353-357, 1980.
[14] Goodman, A. W. On uniformly convex functions, Ann. Polon. Math. 56, 87-92, 1991.
[15] Kanas, S. and Wisniowska, A. Conic regions and $k$-uniform convexity, Comput. Appl. Math. 105, 327-336, 1999.
[16] Kim, Y. J. and Merkes, E. P. On an integral of powers of a spirallike function, Kyungpook Math. J. 12, 249-252, 1972.
[17] Miller, S. S., Mocanu, P. T. and Reade, M. O. Starlike integral operators, Pacific J. Math. 79 (1), 157-168, 1978.
[18] Nasr, M. A. and Aouf, M. K. Starlike function of complex order, J. Natur. Sci. Math. 25 (1), 1-12, 1985.
[19] Orhan, H., Deniz, E. and Răducanu, D. The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. 59 (1), 283-295, 2010.
[20] Oros, G. I. New results related to the convexity and starlikeness of the Bernardi integral operator, Hacet. J. Math. Stat. 38 (2), 137-143, 2009.
[21] Oros, G. I. and Oros, G. A convexity property for an integral operator $\mathbb{F}_{m}$, Stud. Univ. Babes-Bolyai Math. 55 (3), 169-177, 2010.
[22] Pescar, V. and Owa, S. Sufficient conditions for univalence of certain integral operators, Indian J. Math. 42 (3), 347-35, 2000.
[23] Pfaltzgraff, J. A. Univalence of the integral of $\left(f^{\prime}(z)\right)^{\lambda}$, Bull. London Math. Soc. 7 (3), 254256, 1975.
[24] Rønning, F. On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-SkÃlodowska Sect. A. 45 (14), 117-122, 1991.
[25] Wiatrowski, P. The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw.Lodz. Nauki Mat. Pryrod. Ser. 3, 75-85, 1971.


[^0]:    *Department of Mathematics, Faculty of Science, Atatürk University, TR-25240 Erzurum, Turkey. E-mail: (E. Deniz) edeniz@atauni.edu.tr (M. Çağlar) mcaglar@atauni.edu.tr (H. Orhan) horhan@atauni.edu.tr
    ${ }^{\dagger}$ Corresponding Author.

