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Abstract

In this paper, we suggest and analyze a new extragradient iterative
method, which is suggested by combining a modified extragradient
method with the viscosity approximation method, for finding the com-
mon element of the set of fixed points of a countable family of nonex-
pansive mappings, and the solution set of the variational inequality in a
Hilbert space. This new method includes the extragradient and viscos-
ity methods as special cases. We also consider the strong convergence
of the proposed method under some mild conditions. Several special
cases are also discussed. Results proved in this paper may be viewed
as an improvement and refinement of the previously known results.
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1. Introduction

Variational inequality theory, which was introduced in 1960’s by Stampacchia [28],
has had a great impact and influence in the development of several branches of pure and
applied sciences. The ideas and techniques of this theory are being used in a variety of di-
verse fields and have proved to be productive and innovative, see [1-32] and the references
therein. It is now well-known that variational inequalities are equivalent to fixed-point
problems, the origin of which can be traced back to Lions and Stampacchia [13]. This
alternative formulation has been used to suggest and analyze projection iterative meth-
ods for solving variational inequalities under the conditions that the involved operator
must be strongly monotone and Lipschitz continuous. These conditions are very strict
and rule out its application in several important problems. To overcome this drawback,
Korpelevich [12] suggested and analyzed the extragradient method by using the tech-
nique of updating the solution. It has been shown that if the underlying operator is only
monotone and Lipschitz continuous, then the approximate solution converges to the ex-
act solution. Noor [21] has shown the equivalence between the implicit iterative method
and the extragradient method for solving variational inequalities. This equivalence has
been used to show that the convergence of the extragradient method requires only the
pseudomonotoncity of the operator. Noor’s result is a significant improvement of the
result of Korpelevich [12]. Moudafi [15] suggested and analyzed the so-called viscosity
method for solving variational inequalities, which was modified by Xu [31]. Related to
variational inequalities, we have the problem of finding the fixed points of nonexpansive
mappings, which is of current interest in functional analysis. It is natural to consider a
unified approach to these different problems, see, for example, [1, 5-6, 8-10, 12-14, 18].

Inspired and motivated by the research going on in these fields, we suggest and an-
alyze a new extragradient method for finding the common element of a solution set of
variational inequalities and the set of fixed-points of nonexpansive mappings, by combin-
ing the extragradient method of Noor and the modified viscosity method of Xu [31]. We
consider the convergence analysis of this new method under some suitable conditions.
Several special cases are discussed. Results proved in this paper may be viewed as an
improvement and refinement of the previously known results.

To be more precise, let H be a real Hilbert space, whose inner product and norm are
denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H
and T a mapping from C into H . A classical variational inequality problem, denoted by
VI(T,C), is to find a vector u∗ ∈ C such that

(1.1) 〈u− u∗, T (u∗)〉 ≥ 0, ∀ u ∈ C,

which was introduced by Stampacchia [28] in 1964. For recent applications, numerical
techniques and a physical formulation, see [1-32].

We now recall the following well-known result.

1.1. Lemma. Let C be a closed and convex set in the real Hilbert space H. For a given
z ∈ H, u ∈ C satisfies the inequality

〈u− z, v − u〉 ≥ 0, v ∈ C,

if and only if

u = PCz,

where PC is the projection of H onto the closed convex set C. �

Using Lemma 1.1, one can easily show that the variational inequality (1.1) is equivalent
to a fixed-point problem:
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1.2. Lemma. u ∈ C is a solution of the variational inequality (1.1) if and only if u ∈ C
satisfies the relation

u = PC [u− ρTu],

where ρ > 0 is a constant. �

Lemma 1.2 implies that the variational inequality (1.1) is equivalent to a fixed-point
problem. This equivalent formulation has played a fundamental and significant part in
the study of variational inequalities and related optimization problems. This equivalent
formulation also enables one to study sensitivity analysis as well as the dynamic system
associated with a variational inequality.

Using Lemma 1.2, one can suggest and analyze the following iterative methods for
solving the variational inequality (1.1), the origin of which can be traced back to Lions
and Stampacchia [13].

1.3. Algorithm. For a given u0 ∈ C, compute the approximate solution uk+1 by the
iterative scheme

uk+1 = PC [u
k − ρTuk], k = 0, 1, 2 . . . .

It is well-known [2,7,20,25,27] that the convergence of Algorithm 1.3 requires that the
operator T must be strongly monotone and Lipschitz continuous.

These strict conditions rule out its application to many important problems which
arise in the pure and applied sciences.

We again use Lemma 1.2 to suggest and analyze the following iterative method for
solving the variational inequality (1.1).

1.4. Algorithm. For a given u0 ∈ C, compute the approximate solution uk+1 by the
iterative scheme

uk+1 = PC [u
k − ρTuk+1], k = 0, 1, 2 . . . .

Algorithm ?? is known as the implicit iterative method, which is itself difficult to
implement. Noor [20] has used the predictor-corrector technique to modify the implicit
iterative method by using Algorithm 1.3 as the predictor and Algorithm 1.4 as the cor-
rector. Consequently, we have the following iterative method.

1.5. Algorithm. For a given u0 ∈ C, compute the approximate solution uk+1 by the
iterative schemes

wk = PC [u
k − ρTuk]

uk+1 = PC [u
k − ρTwk], k = 0, 1, 2 . . . ,

which is known as the extragradient method and is due to Korpelevich [12].

We note that the implicit iterative method and extragradient method are equivalent.
This equivalence has been used by Noor [21, 20] to show that the convergence of the
extragradient method requires only pseudomonotonicity. The original result of Korpele-
vich requires that the operator must be monotone Lipschitz continuous. Clearly, Noor’s
result represents a significant improvement of the previously known result.

We also recall the following well-known concepts, which play a crucial part in our
analysis.

Let T be α-inverse-strongly-monotone from C into H , that is, there exists an α > 0
such that

(1.2) 〈T (u)− T (v), u− v〉 ≥ α‖T (u)− T (v)‖2, ∀u, v ∈ C.



842 A. Bnouhachem, M.A. Noor, E. Al-Said, M. Khalfaoui, S. Zhaohan

An operator S is said to be a nonexpansive mapping from C into itself, if and only if,

‖S(u) − S(v)‖ ≤ ‖u− v‖, ∀u, v ∈ C.

We denote by S∗ and F (S) the solution set of Problem (1.1) and the set of fixed points
of S, respectively.

For finding an element of F (S) ∩ S∗ under the assumption that the set C ⊂ H
is nonempty, closed and convex, the mapping S of C into itself is nonexpansive, and
the mapping T of C into H is α-inverse-strongly-monotone, Takahashi and Toyoda [30]
introduced the following iterative scheme:

(1.3) uk+1 = αku
k + (1− αk)S(PC [u

k − ρkT (u
k)]), k ≥ 0,

where u0 = u ∈ C, {αk} is a sequence in (0, 1) and {ρk} a sequence in (0, 2α). They
proved that if F (S)∩S∗ 6= ∅, then the sequence {uk} generated by (1.3) converges weakly
to some z ∈ F (S) ∩ S∗.

Recently, Iiduka and Takahashi [10] presented another iterative scheme for finding an
element of F (S) ∩ S∗ :

uk+1 = αku+ (1− αk)S(PC [u
k − ρkT (u

k)]), k ≥ 1,

where u1 = u ∈ C, {αk} is a sequence in [0, 1) and {ρk} a sequence in [0, 2α]. If {αk}
and {ρk} are chosen that ρk ∈ [a, b] for some a, b with 0 < a < b < 2α,

lim
k→∞

αk = 0,
∞
∑

k=1

αk = ∞,
∞
∑

k=1

|αk+1 − αk| < ∞, and
∞
∑

k=1

|ρk+1 − ρk| < ∞.

They showed that {uk} converges strongly to PF (S)∩S∗ [u].

Using the extragradient method (Algorithm 1.3) of Korpelevich [12], Nadezhkina and
Takahasaki [16] introduced an iterative process for finding an element of F (S) ∩ S∗

and they proved that the sequence converges weakly to a common element of the two
sets, while Zeng and Yao [32] presented another iterative scheme for finding an element
of F (S) ∩ S∗ and they proved that the two sequences generated by method converge
strongly to a common element of the two sets under the following condition

lim
k→∞

‖uk+1 − uk‖ = 0.

Recall that a self-mapping f : C −→ C is said to be a c1-contraction if c1 ∈ [0, 1] and

‖f(u) − f(v)‖ ≤ c1‖u− v‖, ∀u, v ∈ C.

Xu [31] proposed a viscosity approximating method for nonexpansive mappings which
can be viewed as an improved extension of Moudafi’s method [15]. The method of Xu is
as follows:

uk+1 = αkf(u
k) + (1− αk)S(u

k), k ≥ 0,

where u0 ∈ C, {αk} is a sequence in [0, 1). If {αk} satisfies

lim
k→∞

αk = 0,
∞
∑

k=1

αk = ∞,
∞
∑

k=1

|αk+1 − αk| < ∞ or lim
k→∞

αk+1

αk

= 1,

then {uk} converges strongly to u, where u is the unique solution in F (S) of the following
variational inequality:

〈f(u) − u, v − u〉 ≤ 0, ∀ v ∈ F (S).

Chen et al.[3] proposed another iterative scheme for finding an element of F (S) ∩ S∗ :

uk+1 = αkf(u
k) + (1− αk)S(PC [u

k − ρkT (u
k)]), k ≥ 0,
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where u0 ∈ C, {αk} is a sequence in [0, 1) and {ρk} a sequence in [0, 2α]. If {αk} and
{ρk} are chosen such that ρk ∈ [a, b] for some a, b with 0 < a < b < 2α,

lim
k→∞

αk = 0,

∞
∑

k=1

αk = ∞,

∞
∑

k=1

|αk+1 − αk| < ∞ and

∞
∑

k=1

|ρk+1 − ρk| < ∞,

then {uk} converges strongly to u, where u is the unique solution in F (S) ∩ S∗ of the
following variational inequality:

〈f(u) − u, v − u〉 ≤ 0, ∀v ∈ F (S).

On the other hand, while finding a common fixed point of a countable family of non-
expansive mappings in a Banach space, Aoyama et al. [1] introduced a Halpern type
iteration for such family as follows:

u1 = u ∈ C, uk+1 = αku+ (1− αk)Sk(u
k), k ≥ 2,

where C is a nonempty closed convex subset of a Banach space, {αk} is a sequence in [0, 1)
and {Sk} a sequence of nonexpansive mappings of C into itself with some appropriate
conditions, and then they proved that the sequence {uk} converges strongly to a common
fixed point of {Sk}.

Inspired and motivated by the above research, we suggest and analyze a new iterative
scheme for finding a common element of the set of fixed points of a countable family
of nonexpansive mappings and the solution set of a variational inequality for an inverse
strongly monotone mapping in a Hilbert space. Under mild assumptions, we obtain a
strong convergence theorem for two sequences generated by the proposed method. We
would like to mention that our proposed method is quite general and flexible and includes
the iterative methods considered by Takahashi and Toyoda [30], Iiduka and Takahashi
[10], Nadezhkina and Takahasaki [16], Zeng and Yao [32], Chen et al. [3], Aoyama et
al.[1], and several other iterative methods as special cases. The results proved in this
paper continue to hold for these problems.

2. Preliminaries

In this section, we list some fundamental lemmas that are useful in the consequent
analysis. The first lemma provides some basic properties of projections onto C.

2.1. Lemma. Let PC denote the projection of H onto C. Then, we have the following
inequalities.

〈z − PC [z], PC [z]− v〉 ≥ 0, ∀ z ∈ H, v ∈ C;(2.1)

‖PC [u]− PC [v]‖ ≤ ‖u− v‖, ∀ u, v ∈ H ;(2.2)

‖u− PC [z]‖
2 ≤ ‖z − u‖2 − ‖z − PC [z]‖

2, ∀z ∈ H, u ∈ C. �(2.3)

2.2. Lemma. If T is α-inverse-strongly monotone in H and 0 < λ ≤ 2α, then I − λT
is a nonexpansive mapping in H.

Proof. For all u, v ∈ H , we have

‖(I − λT )(u)− (I − λT )(v)‖2 = ‖(u− v)− λ(T (u)− T (v))‖2

= ‖u− v‖2 − 2λ〈u− v, T (u)− T (v)〉

+ λ2‖T (u)− T (v)‖2

≤ ‖u− v‖2 + λ(λ− 2α)‖T (u)− T (v)‖2

≤ ‖u− v‖2. �
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2.3. Lemma. [29] Let {xk} and {yk} be bounded sequences in a Banach space X and let
{βk} be a sequence in [0, 1] with 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1. Suppose that
xk+1 = (1− βk)yk + βkxk for all integers k ≥ 0 and lim supk→∞(‖yk+1 − yk‖ − ‖xk+1 −
xk‖) ≤ 0. Then, limk→∞ ‖yk − xk‖ = 0. �

2.4. Lemma. [14] Let H be a real Banach space. Then the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H. �

2.5. Lemma. [31] Assume {ak} is a sequence of nonnegative real numbers such that

ak+1 ≤ (1− σk)ak + δk,

where {σk} is a sequence in (0, 1) and δk is a sequence such that

(1)
∞
∑

k=1

σk = ∞;

(2) lim supk→∞ δk/σk ≤ 0 or
∞
∑

k=1

|δk| < ∞.

Then limk→∞ ak = 0. �

2.6. Lemma. [1] Let C be a nonempty closed convex subset of a Banach space E. Let

S1, S2, . . . be a sequence of mappings of C into itself. Suppose that
∞
∑

k=1

sup{‖Sk+1(x) −

Sk(x)|‖ : x ∈ C} < ∞. Then for each y ∈ C, {Sk(y)} converges strongly to some point of
C. Moreover, let S be the mapping of C into itself defined by Sy = limk→∞ Sk(y) ∀ y ∈ C.
Then lim supk→∞{‖S(x)− Sk(x)|‖ : x ∈ C} = 0. �

A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, u ∈ T (x)
and v ∈ T (y) imply 〈x− y, u− v〉 ≥ 0. A monotone mapping T : H → 2H is maximal if
its graph G(T ) is not properly contained in the graph of any other monotone mapping. It
is known that a monotone mapping T is maximal if and only if, for (x, u) ∈ H ×H, 〈x−
y, u− v〉 ≥ 0 for every (y, v) ∈ G(T ) implies u ∈ T (x).

Let T be a monotone mapping of C into H and let NC( · ) be the normal cone operator
to C defined by

NC(v) := {w ∈ H : 〈w, v − u〉 ≥ 0, ∀u ∈ C}.

Define

A(v) =

{

T (v) +NC(v), ∀ v ∈ C,

∅, otherwise.

Then A is maximal monotone and 0 ∈ A(v) if and only if v ∈ S∗ (see [27]).

It is also known that H satisfies Opial’s condition [24], i.e., for any sequence {uk}
with uk ⇀ u, the inequality

lim inf
k→∞

‖ũk − u‖ < lim inf
k→∞

‖ũk − v‖

holds for every v ∈ H with u 6= v.

3. New extragradient method

In this Section, we suggest and analyze a modified extragradient method for finding
the common element of the set of fixed points of a countable family of nonexpansive
mappings {Sk} and the solution set of the corresponding variational inequalities. Let
T be α-inverse-strongly-monotone from C into H and {Sk} a sequence of nonexpansive

mapping from C into itself. Suppose that
∞
∑

k=1

sup{‖Sk+1(x) − Sk(x)|‖ : x ∈ C} < ∞.
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Let S be the mapping of C into itself defined by Sy = limk→∞ Sk(y), ∀y ∈ C, such that

F (S) =
∞
⋂

k=1

F (Sk) and F (S) ∩ S∗ 6= ∅.

3.1. Algorithm. For a given u0 ∈ C, find the approximate solution uk+1 by the iterative
schemes;

ũk = PC [u
k − ρkT (u

k)],(3.1)

uk+1 = αkf(u
k) + βku

k + γkSk

(

PC [u
k − ρkT (ũ

k)]
)

,(3.2)

where f : C −→ C is a c1-contraction and the sequences {ρk}, {αk}, {βk} in (0, 1) satisfy
the following conditions:

(i) limk→∞ αk = 0,
∞
∑

k=1

αk = ∞;

(ii) {ρk/α} ⊂ (τ, 1− δ) for some τ, δ ∈ (0, 1), limk→∞ ρk = 0;
(iii) 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1.
(iv) αk + βk + γk = 1.

Clearly for αk = βk = γk = 0, Algorithm 3.1 is exactly Algorithm 1.3, and for
αk = βk = 0, γk = 1 and Sk ≡ I , the identity operator, Algorithm 3.1 is just the
extragradient method (Algorithm 1.5). In a similar way for different choices of the
parameters, one can obtain several iterative methods for solving variational inequalities
and nonexpansive mappings. This show that Algorithm 3.1 is quite general and unifying.

3.2. Lemma. Let ūk = PC [u
k − ρkT (ũ

k)] and u∗ ∈ F (S) ∩ S∗. Then we have

‖ūk − u∗‖2 ≤ ‖uk − u∗‖2 + (
ρ2k
α2

− 1)‖uk − ũk‖2(3.3)

≤ ‖uk − u∗‖2,(3.4)

and {uk} is bounded.

Proof. Since u∗ ∈ F (S) ∩ S∗, then u∗ = PC [u
∗ − ρkT (u

∗)]. It follows from (2.3) that

‖ūk − u∗‖2 ≤ ‖uk − ρkT (ũ
k)− u∗‖2 − ‖uk − ρkT (ũ

k)− ūk‖2

= ‖uk − u∗‖2 − ‖uk − ūk‖2 + 2ρk〈T (ũ
k), u∗ − ūk〉

= ‖uk − u∗‖2 − ‖uk − ūk‖2 + 2ρk〈T (ũ
k)− T (u∗), u∗ − ũk〉

+ 2ρk〈T (u
∗), u∗ − ũk〉+ 2ρk〈T (ũ

k), ũk − ūk〉

≤ ‖uk − u∗‖2 − ‖uk − ūk‖2 + 2ρk〈T (ũ
k), ũk − ūk〉

= ‖uk − u∗‖2 − ‖uk − ũk‖2 − 2〈uk − ũk, ũk − ūk〉 − ‖ũk − ūk‖2

+ 2ρk〈T (ũ
k), ũk − ūk〉

= ‖uk − u∗‖2 − ‖uk − ũk‖2 − ‖ũk − ūk‖2 + 2〈uk − ρkT (ũ
k)− ũk,

ūk − ũk〉,

where the second inequality follows because T is α-inverse-strongly-monotone and u∗ is
a solution of (1.1).
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By using (2.1), we have

〈uk − ρkT (ũ
k)− ũk, ūk − ũk〉 = 〈uk − ρkT (u

k)− ũk, ūk − ũk〉+ 〈ρkT (u
k)

− ρkT (ũ
k), ūk − ũk〉

≤ 〈ρkT (u
k)− ρkT (ũ

k), ūk − ũk〉

≤
ρk
α
‖uk − ũk‖‖ūk − ũk‖.

Then, we obtain

‖ūk − u∗‖2 ≤ ‖uk − u∗‖2 − ‖uk − ũk‖2 − ‖ũk − ūk‖2 + 2
ρk
α
‖uk − ũk‖‖ūk − ũk‖

≤ ‖uk − u∗‖2 − ‖uk − ũk‖2 − ‖ũk − ūk‖2 +
ρ2k
α2

‖uk − ũk‖2

+ ‖ūk − ũk‖2

≤ ‖uk − u∗‖2 + (
ρ2k
α2

− 1)‖uk − ũk‖2

≤ ‖uk − u∗‖2.(3.5)

Now, we prove the second part of the lemma. Since Sk is a nonexpansive mapping from
C into itself and, from (3.2) and (3.5), we get

‖uk+1 − u∗‖ = ‖αk(f(u
k)− u∗) + βk(u

k − u∗) + γk(Sk(ū
k)− u∗)‖

≤ αk‖f(u
k)− f(u∗)‖+ αk‖f(u

∗)− u∗‖+ βk‖u
k − u∗‖

+ γk‖ū
k − u∗‖

≤ αkc1‖u
k − u∗‖+ αk‖f(u

∗)− u∗‖+ βk‖u
k − u∗‖

+ (1− βk − αk)‖u
k − u∗‖

≤ (1− (1− c1)αk)‖u
k − u∗‖+ αk‖f(u

∗)− u∗‖

≤ max{‖uk − u∗‖,
1

1− c1
‖f(u∗)− u∗‖}.

It follows from induction that

‖uk+1 − u∗‖ ≤ max{‖u0 − u∗‖,
1

1− c1
‖f(u∗)− u∗‖}.

Therefore, {uk} is bounded. Hence {ūk}, {T (uk)} and {T (ũk)} are also bounded. �

3.3. Lemma. The sequence {uk} generated by Algorithm 3.1 satisfies the following con-
dition:

(3.6) lim
k→∞

‖uk+1 − uk‖ = 0.
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Proof. From (2.2) and Lemma 2.2, we have

‖ūk+1 − ūk‖ ≤ ‖PC [u
k+1 − ρk+1T (ũ

k+1)]− PC [u
k − ρkT (ũ

k)]‖

≤ ‖(uk+1 − ρk+1T (ũ
k+1))− (uk − ρkT (ũ

k))‖

≤ ‖(uk+1 − ρk+1T (u
k+1))− (uk − ρk+1T (u

k)) + ρk+1{T (u
k+1)

− T (uk)− T (ũk+1)}+ ρkT (ũ
k)‖

≤ ‖(uk+1 − ρk+1T (u
k+1))− (uk − ρk+1T (u

k))‖

+ ρk+1{‖T (u
k+1)‖+ ‖T (uk)‖+ ‖T (ũk+1)‖}+ ρk‖T (ũ

k)‖

≤ ‖uk+1 − uk‖+ ρk+1{‖T (u
k+1)‖+ ‖T (uk)‖+ ‖T (ũk+1)‖}

+ ρk‖T (ũ
k)‖.

(3.7)

Define a sequence {vk} by vk = uk+1−βku
k

1−βk
, ∀ k ≥ 1. Then we have

∥

∥vk+1 − vk
∥

∥ =

∥

∥

∥

∥

uk+2 − βk+1u
k+1

1− βk+1
−

uk+1 − βku
k

1− βk

∥

∥

∥

∥

=

∥

∥

∥

∥

αk+1f(u
k+1) + (1− αk+1 − βk+1)Sk+1(ū

k+1)

1− βk+1

−
αkf(u

k) + (1− αk − βk)Sk(ū
k)

1− βk

∥

∥

∥

∥

≤
αk+1

1− βk+1

(

‖f(uk+1)‖+ ‖Sk+1(ū
k+1)‖

)

+
αk

1− βk

(

‖f(uk)‖

+ ‖Sk(ū
k)‖

)

+ ‖Sk+1(ū
k+1)− Sk(ū

k+1)‖
(3.8)

and from (3.7), we obtain

‖Sk+1(ū
k+1)− Sk(ū

k)‖ = ‖Sk+1(ū
k+1)− Sk+1(ū

k)‖+ ‖Sk+1(ū
k)− Sk(ū

k)‖

≤ ‖ūk+1 − ūk‖+ ‖Sk+1(ū
k)− Sk(ū

k)‖

≤ ‖uk+1 − uk‖+ ρk+1

{

‖T (uk+1)‖+ ‖T (uk)‖

+ ‖T (ũk+1)‖
}

+ ρk‖T (ũ
k)‖+ ‖Sk+1(ū

k)− Sk(ū
k)‖

≤ ‖uk+1 − uk‖+ (ρk+1 + ρk)M + ‖Sk+1(ū
k)− Sk(ū

k)‖,(3.9)

where M = supk≥1{‖T (u
k+1)‖+‖T (uk)‖+‖T (ũk+1)‖+‖T (ũk)‖}. Combining (3.8) and

(3.9), we get

‖vk+1 − vk‖ − ‖uk+1 − uk‖

≤
αk+1

1− βk+1

(

‖f(uk+1)‖+ ‖Sk+1(ū
k+1)‖

)

+
αk

1− βk

(‖f(uk)‖+ ‖Sk(ū
k)‖)

+ (ρk+1 + ρk)M + ‖Sk+1(ū
k)− Sk(ū

k)‖

≤
αk+1

1− βk+1

(

‖f(uk+1)‖+ ‖Sk+1(ū
k+1)‖

)

+
αk

1− βk

(

‖f(uk)‖+ ‖Sk(ū
k)‖

)

+ (ρk+1 + ρk)M + sup
{

‖Sk+1(x)− Sk(x)‖ : x ∈ {ūk}
}

,

which implies that

lim sup
k→∞

(‖vk+1 − vk‖ − ‖uk+1 − uk‖) ≤ 0.

And by Lemma 2.3, we obtain ‖vk − uk‖ → 0 as k → ∞. Therefore,

lim
k→∞

‖uk+1 − uk‖ = lim
k→∞

(1− βk)‖v
k − uk‖ = 0. �
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4. Convergence analysis

In this section, convergence of the new method is proved under mild assumptions.
The following theorem plays an important role in the convergence analysis.

4.1. Theorem. Let ũk be defined by (3.1). Then we have

lim
k→∞

‖S(ũk)− ũk‖ = 0.

Proof. Since Sk is a nonexpansive mapping from C into itself, from Lemma 3.2 and (3.2),
we obtain

‖uk+1 − u∗‖2 = ‖αk(f(u
k)− u∗) + βk(u

k − u∗) + γk(S(ū
k)− u∗)‖2

≤ αk‖f(u
k)− u∗‖2 + βk‖u

k − u∗‖2 + γk‖ū
k − u∗‖2

≤ αk‖f(u
k)− u∗‖2 + βk‖u

k − u∗‖2 + γk‖u
k − u∗‖2

+ γk

(

ρ2k
α2

− 1

)

‖uk − ũk‖2

= αk‖f(u
k)− u∗‖2 + (1− αk)‖u

k − u∗‖2

+ γk

(

ρ2k
α2

− 1

)

‖uk − ũk‖2,

which implies that

γkδ‖u
k − ũk‖2 ≤ γk

(

1−
ρ2k
α2

)

‖uk − ũk‖2

≤ αk

(

‖f(uk)− u∗‖2 − ‖uk − u∗‖2
)

+ ‖uk − u∗‖2 − ‖uk+1 − u∗‖2

= αk

(

‖f(uk)− u∗‖2 − ‖uk − u∗‖2
)

+
(

‖uk − u∗‖+ ‖uk+1 − u∗‖
)

×
(

‖uk − u∗‖ − ‖uk+1 − u∗‖
)

≤ αk

(

‖f(uk)− u∗‖2 − ‖uk − u∗‖2
)

+
(

‖uk − u∗‖+ ‖uk+1 − u∗‖
)

× ‖uk − uk+1‖.

Since limk→∞ ‖uk+1 − uk‖ = 0, {uk} is bounded and limk→∞ αk = 0, we have

(4.1) lim
k→∞

‖ũk − uk‖ = 0.

Note that

‖ūk − ũk‖ = ‖PC [u
k − ρkT (ũ

k)]− PC [u
k − ρkT (u

k)]‖

≤ ρk‖T (ũ
k)− T (uk)‖

≤
ρk
α
‖ũk − uk‖.

Then, we get

(4.2) lim
k→∞

‖ūk − ũk‖ = 0.

It follows from (3.2) that

‖uk − Sk(ū
k)‖ ≤ ‖uk+1 − uk‖+ ‖uk+1 − Sk(ū

k)‖

≤ ‖uk+1 − uk‖+ αk‖f(u
k)− Sk(ū

k)‖+ βk‖u
k − Sk(ū

k)‖,

which implies that

‖uk − Sk(ū
k)‖ ≤

1

1− βk

(

‖uk+1 − uk‖+ αk‖f(u
k)− Sk(ū

k)‖
)

.
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Since limk→∞ ‖uk+1 − uk‖ = 0 and limk→∞ αk = 0, we have

(4.3) lim
k→∞

‖uk − Sk(ū
k)‖ = 0.

Also

‖Sk(ũ
k)− ũk‖ ≤ ‖Sk(ũ

k)− Sk(ū
k)‖+ ‖Sk(ū

k)− uk‖+ ‖uk − ũk‖

≤ ‖ũk − ūk‖+ ‖Sk(ū
k)− uk‖+ ‖uk − ũk‖,

and we can conclude that ‖Sk(ũ
k)− ũk‖ → 0 as k → ∞. Using Lemma 2.6 and (4.3), we

obtain

‖S(ũk)− ũk‖ ≤ ‖S(ũk)− Sk(ũ
k)‖+ ‖Sk(ũ

k)− ũk‖

≤ sup{‖S(x) − Sk(x)‖ : x ∈ {ũk}}+ ‖Sk(ũ
k)− ũk‖,

which implies that ‖S(ũk)− ũk‖ → 0 as k → ∞. �

4.2. Theorem. The sequences {uk} and {ũk} generated by the proposed method converge
strongly to the same point u = PF (S)∩S∗ [f(u)].

Proof. First we show that

lim sup
k→∞

〈f(u) − u, ũk − u〉 ≤ 0.

In order to show the above result, we choose a subsequence {ũki} of {ũk} such that

lim sup
k→∞

〈f(u) − u, S(ũk)− u〉 = lim
i→∞

〈f(u) − u, S(ũki)− u〉.

As ũki is bounded, we have that a subsequence {ũ
kij } of {ũki} converges weakly to û.

We may assume without loss of generality that ũki ⇀ û. Since ‖S(ũk) − ũk‖ → 0, we

obtain S(ũki) ⇀ û as i → ∞.

Now, we show that û ∈ F (S) ∩ S∗. First we prove that û ∈ S∗.

Let

A(v) =

{

T (v) +NC(v), ∀ v ∈ C,

∅, otherwise.

Then A is maximal monotone. Let (v, w) ∈ G(A). Since w − T (v) ∈ NC(v) and ũk ∈ C,
we have 〈v − ũk, w − T (v)〉 ≥ 0. On the other hand, from ũk = PC [u

k − ρkT (u
k)], we

have 〈v − ũk, ũk − (uk − ρkT (u
k)〉 ≥ 0, then

〈

v − ũk,
ũk − uk

ρk
+ T (uk)

〉

≥ 0.
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Therefore, we have
〈

v − ũki , w
〉

≥
〈

v − ũki , T (v)
〉

≥
〈

v − ũki , T (v)
〉

−

〈

v − ũki ,
ũki − uki

ρki

+ T (uki)

〉

=

〈

v − ũki , T (v)− T (uki)−
ũki − uki

ρki

〉

=
〈

v − ũki , T (v)− T (ũki)
〉

+
〈

v − ũki , T (ũki)− T (uki)
〉

−

〈

v − ũki ,
ũki − uki

ρki

〉

≥
〈

v − ũki , T (ũki)− T (uki)
〉

−

〈

v − ũki ,
ũki − uki

ρki

〉

.

Hence, we obtain 〈v − û, w〉 ≥ 0 as i → ∞. Since A is maximal monotone, we have
û ∈ A−1(0) and hence û ∈ S∗. Let us now show that û ∈ F (S). Assume û 6∈ F (S). From
Opial’s condition, we have

lim inf
i→∞

‖ũki − û‖ < lim inf
i→∞

‖ũki − S(û)‖

= lim inf
i→∞

‖ũki − S(ũki) + S(ũki)− S(û)‖

≤ lim inf
i→∞

‖S(ũki)− S(û)‖

≤ lim inf
i→∞

‖ũki − û‖.

This is a contradiction. Thus, we obtain û ∈ F (S). Then, we have

lim sup
k→∞

〈f(u) − u, ũk − u〉 = lim sup
k→∞

〈

f(u)− u, S(ũk)− u
〉

= lim
i→∞

〈

f(u) − u, S(ũki)− u
〉

= 〈f(u) − u, û− u〉

≤ 0.

Therefore, from (4.1) we have

(4.4) lim sup
k→∞

〈f(u) − u, uk − u〉 ≤ 0.

It follows from Lemma 2.4 and Lemma 3.2 that

‖uk+1 − u‖2 = ‖αk(f(u
k)− u) + βk(u

k − u) + γk(S(ū
k)− u)‖2

≤ ‖βk(u
k − u) + γk(S(ū

k)− u)‖2 + 2αk〈f(u
k)− u, uk+1 − u〉

≤ [βk‖u
k − u‖+ γk‖ū

k − u‖]2 + 2αk〈f(u
k)− u, uk+1 − u〉

≤ [βk‖u
k − u‖+ γk‖u

k − u‖]2 + 2αk〈f(u
k)− f(u), uk+1 − u〉

+ 2αk〈f(u)− u, uk+1 − u〉

≤ (1− αk)
2‖uk − u‖2 + 2αkc1‖u

k − u‖‖uk+1 − u‖

+ 2αk〈f(u)− u, uk+1 − u〉

≤ (1− αk)
2‖uk − u‖2 + αkc1(‖u

k − u‖2 + ‖uk+1 − u‖2)

+ 2αk〈f(u)− u, uk+1 − u〉
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‖uk+1 − u‖2 ≤
(1− αk)

2

1− αkc1
‖uk − u‖2 +

αkc1
1− αkc1

‖uk − u‖2

+
2αk

1− αkc1
〈f(u) − u, uk+1 − u〉

≤ (1−
2αk(1− c1)

1− αkc1
)‖uk − u‖2 +

2αk(1− c1)

1− αkc1
{

αk

2(1− c1)
‖uk − u‖2

+
1

1− c1
〈f(u)− u, uk+1 − u〉}

≤ (1− σk)‖u
k − u‖2 + δk,

where σk = 2αk(1−c1)
1−αkc1

and δk = 2αk(1−c1)
1−αkc1

{

αk

2(1−c1)
‖uk −u‖2 + 1

1−c1

〈

f(u)−u, uk+1−u
〉}

.

It easily seen that
∞
∑

k=1

σk = ∞ and from (4.4) we get

lim sup
k→∞

δk/σk ≤ 0.

Then by Lemma 2.5, we have ‖uk − u0‖ → 0 as k → ∞. Since limk→∞ ‖uk − ũk‖ = 0
(see (4.1)), we obtain ũk → u0. �

5. Applications

In this section, we obtain three results by using special cases of the proposed method.

5.1. Theorem. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T be α-inverse-strongly-monotone from C into itself such that S∗ 6= ∅. For given u0 ∈ C
arbitrarily. Let {uk} be the sequence generated by

{

ũk = PC [u
k − ρkT (u

k)],

uk+1 = αkf(u
k) + βku

k + γkPC(u
k − ρkT (ũ

k)), ∀ k ≥ 0,

where f : C −→ C is a c1-contraction and the sequences {ρk}, {αk}, {βk}, {γk} in (0, 1)
satisfy the following conditions:

(i) limk→∞ αk = 0,
∞
∑

k=1

αk = ∞;

(ii) {ρk/α} ⊂ (τ, 1− δ) for some τ, δ ∈ (0, 1), limk→∞ ρk = 0;
(iii) 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1.
(iv) αk + βk + γk = 1.

Then the sequences {uk} and {ũk} generated by the proposed method converge strongly
to the same point u = PS∗ [f(u)].

Proof. Set Sk = I in Algorithm 3.1. By using Theorems 4.1 and 4.2, we obtain the
desired result. �

5.2. Theorem. Let H be a real Hilbert space. Let T : H −→ H be α-inverse-strongly-
monotone and {Sk} a sequence of nonexpansive mapping from H into itself. Suppose
that

∞
∑

k=1

sup{‖Sk+1(x)− Sk(x)|‖ : x ∈ C} < ∞.

Let S be the mapping of H into itself defined by Sy = limk→∞ Sk(y), ∀ y ∈ C such that

F (S) =
∞
⋂

k=1

F (Sk) and F (S) ∩ T−1(0) 6= ∅. For given u0 ∈ H, let {uk} be a sequence
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generated by
{

ũk = uk − ρkT (u
k),

uk+1 = αkf(u
k) + βku

k + γkSk(u
k − ρkT (ũ

k)), ∀ k ≥ 0,

where f : H −→ H is a c1-contraction and the sequences {ρk}, {αk}, {βk}, {γk} in (0, 1)
satisfy to the following conditions:

(i) limk→∞ αk = 0,
∞
∑

k=1

αk = ∞;

(ii) {ρk/α} ⊂ (τ, 1− δ) for some τ, δ ∈ (0, 1), limk→∞ ρk = 0;
(iii) 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1.
(iv) αk + βk + γk = 1.

Then the sequences {uk} and {ũk} generated by the proposed method converge strongly
to the same point u = PF (S)∩T−1(0)[f(u)].

Proof. We have T−1(0) = S∗ and PH = I . By using Theorems 4.1 and 4.2, we obtain
the desired result. �

5.3. Definition. Let H be a Hilbert space and C a nonempty closed convex subset of
H . A mapping B : C −→ C is called strictly L-pseudocontractive if there exists L ∈ [0, 1[
such that

‖B(u) −B(v)‖2 ≤ ‖u− v‖2 + L‖(I −B)(u)− (I −B)(v)‖2, ∀ u, v ∈ C.

Note that if B : C −→ C is strictly L-pseudocontractive, then the mapping T := I−B
is 1−L

2
-inverse-strongly-monotone. Moreover, we have

(5.1) 〈u− v, T (u)− T (v)〉 ≥
1− L

2
‖T (u)− T (v)‖2, ∀u, v ∈ C.

Then from Theorems 4.1 and 4.2, we can obtain now a strong convergence theorem for the
common fixed point of a nonexpansive mapping and strictly pseudocontractive mapping.

5.4. Theorem. Let H be a real Hilbert space and C a nonempty closed convex subset of
H. Let B : C −→ C be strictly L-pseudocontractive and {Sk} a sequence of nonexpansive
mapping from C into itself.

Suppose that
∞
∑

k=1

sup{‖Sk+1(x) − Sk(x)|‖ : x ∈ C} < ∞. Let S be the mapping of

C into itself defined by Sy = limk→∞ Sk(y), ∀ y ∈ C such that F (S) =
∞
⋂

k=1

F (Sk) and

F (S) ∩ F (B) 6= ∅. For given u0 ∈ C let {uk} be a sequence generated by
{

ũk = (1− ρk)u
k + ρkB(uk),

uk+1 = αkf(u
k) + βku

k + γkSk(u
k − ρk(ũ

k −B(ũk)) ∀ k ≥ 0,

where f : C −→ C is a c1-contraction and the sequences {ρk}, {αk}, {βk}, {γk} in (0, 1)
satisfy to the following conditions:

(i) limk→∞ αk = 0,
∞
∑

k=1

αk = ∞;

(ii) {2ρk/(1− L)} ⊂ (τ, 1− δ) for some τ, δ ∈ (0, 1), limk→∞ ρk = 0;
(iii) 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1.
(iv) αk + βk + γk = 1.

Then the sequences {uk} and {ũk} generated by the proposed method converge strongly
to the same point u = PF (S)∩F (B)[f(u)].
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Proof. Setting T = I −B, from (5.1) we have that T is 1−L

2
-inverse-strongly-monotone.

Since F (B) = S∗ we have PC [u
k −ρkT (u

k)] = uk −ρkT (u
k) = (I−ρk)u

k +ρkB(uk) and
PC [u

k − ρkT (ũ
k)] = uk − ρk(ũ

k −B(ũk)). By using Theorems 4.1 and 4.2, we obtain the
desired result. �

6. Conclusions

This paper contributes a new extragradient iterative method obtained by combining a
modified extragradient method with the viscosity approximation method iterative scheme
for finding a common element of the set of the fixed points of a countable family of
nonexpansive mappings and the solution set of the variational inequality for an inverse
strongly monotone mapping on a Hilbert space. The proposed method is quite general
and flexible and includes some existing methods (e.g. [1, 32, 10, 16, 25, 27]) as special
cases. Therefore, the proposed method is expected to be widely applicable.
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