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Abstract

In the present paper, we establish several new Hardy-Hilbert integral
inequalities, and give some applications to other integral inequalities.
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1. Introduction

If f, g are measurable real functions such that
0< f2(:c)d:c<ooand0</ g () dx < oo,
0 0
then we have the following well known Hilbert integral inequality [2],

/0°° /O°° %g;y)d:cdy < W{/Ooo fz(ac)dx/oo<> gz(x)dx}l/z7

where 7 is the best possible.
If f,g>0,p>1, %—i—%:l, and

O</ fp(x)dx<ooand0</ 91(z) dz < oo,
0 0

then the following Hardy-Hilbert integral inequality (see [2]), which is important in anal-
ysis and applications, holds

(1.1) /OOO /Ooo %g;y)d:cdy < m (/Ow f”(m)dm>1/p (/Ow gQ(:c)d:c)l/q,

where the constant factor is the best possible.
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Other mathematicians have presented generalizations or new kinds of the above Hardy-
Hilbert inequalities, as follows:

1.1. Theorem. [7] Let f,g>0. Ifp>1,¢>1, s +2>1,and0<A=2—2+41 <1,
then one has

// x+y dxdy<k</ Pz dx)l/p</ooogq(x)dx>l/q. O

Here, k depends on p and ¢; only if 1 5+ E =1, A=2- % +% = 1, k is the best
possible.

1.2. Theorem. [6] Iffygzo,)\>0,p>1and%+%:1 are such that
0</ tpflf’\fp(:c)d:c<ooand0</ t7 12 g (z) d < oo,
0

0
then one has

/Ow/:o%dmy
< ([Tepwa) ([T emae)”

where the constant factor B is the best possible. O

(1.3)

Recently, Du and Miao [1, 4] have studied the function wc‘flif;im with positive

numbers «, 3,7, and given the following extended analogue of Hilbert’s inequalities,

1.3. Theorem [1] Let f,g be real functions such that 0 < fooo fA(z)dr < 00 and 0 <
15 g% (@)dx < oo. Furthermore, let A € (0,00). Then we have

= [ |logz —logy|”
dod
/O /O am+ﬂy+min{x7y}f(fv)g(y) z dy

oo 1/2 oo 1/2
<A (/ 2(x) d:c) (/ g*(x) dx> ,
0 0
where A is defined as

1 9v+1 ¥ 1 oy+1 ~
A::/ 2 |logtl”. dt+/ 2 llogtl
o Pl+8)+a o Pl+a)+8

Here a, 8,7 are any positive real numbers. O

In the present paper, based on the above works, we establish several new Hardy-Hilbert
integral inequalities. What’s more, as applications, some specific integral inequalities are
deduced.

2. Main results

Before starting our work, we recall some results and definitions about the Gamma
function I'(p) and Beta function B(p, q) as follows,

F(p):/ P=leThdE, p> 0
(2.1) 0

1 [e’s) —1
_ _ tP
B = tpll—tqldt:/ ——dt 0.
(»,q) /0 ( ) . (dtora , P >
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2.1. Lemma. [5] Let p,q > 0. Then

(2.2) F(P)-e/gi%dz—e/lw$dx
B(p7q):/1 (xidm.

x—1)t-»

865

O

Furthermore, for convenience, we state the definition of homogeneous function: The
function F(z,y) is said to be homogeneous of degree A, (A > 0), if F(tz,ty) = t*F(z,y)
for all (z,y) € D and (tx,ty) € D, where D denotes the domain of the function F(x,y).

Now we can give the following main results in this paper.

2.2. Theorem. Assume that f,g,h,k > 0, h = h(z,y) : R+ X R+ — Ry, k = k(t) :

R4+ — R4, h is homogeneous of degree A and k is nondecreasing; p > 1, %—l—%

(a) For k(t) # 1, (or, in general, k(t) # ¢, where ¢ is some constant),

= e-vo-n [ [T f(z) . !
I </ h(w)max{k(g»k(%)}d) W

(2.3)

<o [Tat ),
0
where C = 11 + 12,

1 dx d dx
h :/o R k@) 2 :/1 W k@)

(b) For k(t) =1 (in general a and b are both arbitrary constants),

/°° (b(g—1)+A—1—a](p—1) (/‘X’ f(z) dfﬂ>p d
y
0 0 h(%?/)

< Cp/ x1+b7/\7a(p71)fp(x) dz,
0

(2.4)

11
where C = KV KJ,

< that < et
K, = —, Ko = —.
' / i)’ / h(t,1)
Here we assume that all the integrals on the RHS do exist.

Proof. (a) According to Holder’s inequality, it is easy to see that

/°° flx)dx
o Ma,y)max{k(3), k(3)}

|~

o fP(z)dz Pforee dx
<</ h(:ay)max{k(gm(%)}) (/ () max{R(2). K

which yields

/°° f(x)dz !
o hlw,y)max{k(3), k(4)}

(2.5)

o fP(z)dx o dz
< || g </ (. 9) mac{k( »k(%)})

=1. Then
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We first consider the following integral

o dx
/0 h(x,y) max{k(3), k(£)}
_/y dzx +/°° dzx
~Jo hzy)max{k(2),k(2)} )/, h(z,y)max{k(),k(%)}
= M + M>.

For the case Mj, since x < y implies

_ v dz
Ml‘/o Rz g)k(E)"

Let u = £, then
y

£ < %, hence k() < k(%), then we have

Mlz/yd—w:ym/ldiu:hym
o Blzy 1y y)E(E) o B, Dk ’

and

e dz
M“/y W(o, ) max{k(Z), (D)}

/Oo dx g /oo du Loy
= T — —— = 12 s

which implies

dx

26) /o h(z,y) max{k(Z), k(£)} =L +L)y "=Cy "

Therefore, from (2.5) and (2.6), we have

>~ f(@)dz Loz [ [P (x)dz
</ h(x,y>max{k<§>,k<g>}> =Cm / h(@, y) max{k(Z), k(Z)}

T

Now since

* - A2 (1-nE [T S (x)da
Yy Cay Q/ = dy
/o o o, y) max(k(Z), K(Z)}

x

_ B hallY et fP(z)dx
i [ Rz, y) max{h(2), (D)} ¥
:Cp71/0 P (x)dz

o hz,y)max{k($),k($)}

=cr! / Cz' ™ fP(z) dx:
0

= C’p/ P () de,
0

then the inequality (2.3) holds.
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(b) Similarly, according to Holder’s inequality, we have

/°° f(z)dx
0 h(xvy)

(2.7)

It is easy to check

< x%dr —ab > z%dx
0 z =Y W, )
h( 0 )

T, Y)Yy ?

_ y(1+afxf%b) /Oo u” du
0 h(u7 1)

= sz(1+aiA7%)7

then we can obtain

< < flz) dl’)p < K%y(lmﬂ\f%)
0 h(£C7y) o 2

Therefore, by the inequality (2.8), we have

[y < [ dw)”
0 o h(z,y)

< /°° YIPa=DFA=1=a](p=1) _ [=b(a=1)=A+1+a)(p—1)
0

p oo P b
.Kz"/ Sy (x)yap dzx dy
o h(z,y)z

EI]
S—
3
=
~
3
—~
8
N
<
) o
ko]
<Y
8

P

— K / / SN gy
fE y T 1

P

:K2q . 1/ 1+b A—a(p— l)fp( )dl}
0

< CP /oo x1+b*>\*a(17*1)fp(x) dz,
0

where C = Kll/pKzl/q. By now ,we have completed the proof of the theorem. O

3. Applications
Firstly, we recall the fact: if 0 < p < 1, then one has

L(p)I'(1-p) = and B(p,1 —p) = il

sin(pm) sin(pm)’

3.1. Corollary. Assume that f >0, p > 1 and % + % =1, then

(3.1) /0 (0 js_;dx) dyg{mrfomf”(m)dx

provided the integrals on the RHS exist.
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Proof. The result is obtained from result (b) in Theorem 2.2 by putting
hay) ety a=~—1, b=+ _1.
q P

Thus we have

PUE)

U () [ e
D] [
g_m] /0 P (2)da

3.2. Corollary. Assume that f,g >0, A>0,p>1 and % + % = 1. Then

< p=1)(A—1) o f(z)dz !
/o y (/O |x—y|1*max{(§)”7(%)2k}> W

<RBON [ 2 ) de

0

(3.2)

Proof. The result is obtained from result (a) in Theorem 2.2 by putting
h(w,y) = le -y, k(z) = 2™

So we get

I 1 tQA d 1 t>\+1t>\71 d 1 tkfl d B )\ A

= _— = _— < _— =

: / TEnE / FEnE t*/o T g 4= BAA,
oo t72A

I, = ——————dt = B()\, ).

o= [ oy = B0

The desired result can now be obtained.

3.3. Corollary. Assume that f,g>0,0<A<2,p>1 and % + % =1. Then

< p—1)(A—1) > f(z) dz )p ]
/O i </O ($A—|—yk)max{(%)1*— ( )171} Y

P
7T 2 1?!* -2 * 1oa

< _.|__/ dy / z " fP(x)dx
[2)\ Ao v2+1 0 ()

In particular, when m : — 2 is a positive integer, we have

=3
(p—1)(A—1) > f(z)dx )7’ .
/0 </0 (z> + y*) max{(%)k* (%)1,%} Y

(3.3)

(3.4)
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Proof. The result is obtained from result (a) in Theorem 2.2 by putting

h(z,y) = 2* + ¢, k(z) =a'" 3.

Il
S

Therefore, we can obtain (by letting y

1 ,1-2 1 4 _o
u 2 2 y/\
I = ——du=— ——d
' /o w1 A/o 1

oo A71 oo
u?2 2 1 T
? /1 w1 )\/1 1Y T on

4 _9
which yields C' = % —&—% 01 % dy. In particular, when m := % — 2 is a positive integer,

on the basis of the table of integrals, we have

2 [t oym 2 & A 1
L=2 dy =25 (—1)f ——
L A/O 21 ,\kzzo( TRy

So the proof of the desired result can be completed. O
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