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Abstract

Some common fixed point theorems for Banach operator pairs with

Ćirić type nonexpansive mappings, and the existence of common fixed
points of best approximation have been proved in the framework of
convex metric spaces. The results proved in the paper generalize and
extend some of the results of N. Hussain (Common fixed points in best

approximation for Banach operator pairs with Ćirić type I-contractions,
J. Math. Anal. Appl. 338, 1351–1363, 2008) from the Banach space
framework into the framework of convex metric spaces.
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1. Introduction and Preliminaries

For a metric space (X, d), a continuous mapping W : X ×X × [0, 1] → X is said to
be a convex structure on X if for all x, y ∈ X and λ ∈ [0, 1],

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

holds for all u ∈ X. The metric space (X, d) together with a convex structure is called a
convex metric space [27].

A subset K of a convex metric space (X, d) is said to be a convex set [27] if W (x, y, λ) ∈
K for all x, y ∈ K and λ ∈ [0, 1]. The set K is said to be p-starshaped [13] if there exists
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a p ∈ K such that W (x, p, λ) ∈ K for all x ∈ K and λ ∈ [0, 1] i.e. the segment
[p, x] = {W (x, p, λ) : λ ∈ [0, 1]} joining p to x is contained in K for all x ∈ K.

Clearly, each convex set is starshaped but not conversely.

A convex metric space (X, d) is said to satisfy Property (I) [13] if for all x, y, q ∈ X
and λ ∈ [0, 1],

d(W (x, q, λ),W (y, q, λ)) ≤ λd(x, y).

A normed linear space and each of its convex subsets are simple examples of convex
metric spaces. There are many convex metric spaces which are not normed linear spaces
(see [4, 13, 27]). Property (I) is always satisfied in a normed linear space.

1.1. Example. [20] Consider a closed subset X of the unit ball S = {‖x‖ = 1} in a
Hilbert space H , such that X has diameter δ(X) ≤ √

2 and is geodesically connected,

i.e., the point W (x, y, λ) = λx+(1−λ)y
‖λx+(1−λ)y‖

lies in X whenever x, y ∈ X and λ ∈ [0, 1]. The

metric space we obtain by measuring distances in X through central angles, i.e., with
the metric d[x, y] = cos−1(x, y) for every x, y ∈ X, turns out be a convex metric space
(whose convex sets are exactly the goedesically connected subsets of X).

For a non-empty subset M of a metric space (X, d) and x ∈ X, an element y ∈ M is
said to be a best approximant to x or a best M-approximant to x if d(x, y) = dist(x,M) ≡
inf{d(x, y) : y ∈ M}. The set of all such y ∈ M is denoted by PM (x).

For a convex subset M of a convex metric space (X, d), a mapping g : M → X is
said to be affine if for all x, y ∈ M , g(W (x,y, λ)) = W (gx, gy, λ) for all λ ∈ [0, 1]. g is
said to be affine with respect to p ∈ M if g(W (x, p, λ)) = W (gx, gp, λ) for all x ∈ M and
λ ∈ [0, 1].

Suppose (X, d) is a metric space, M a nonempty subset of X, and S, T self mappings
of M . T is said to be

(i) An S-contraction if there exists a k ∈ [0, 1) such that d(Tx, Ty) ≤ kd(Sx, Sy),
(ii) S-nonexpansive if d(Tx, Ty) ≤ d(Sx, Sy) for all x, y ∈ M .

If S = identity mapping, then T is called a contraction, nonexpansive respectively in (i)
and (ii).

A point x ∈ M is a common fixed (coincidence) point of S and T if x = Sx = Tx
(Sx = Tx). The set of fixed points (respectively, coincidence points) of S and T is
denoted by F (S,T ) (respectively, C(S, T )). The pair (S, T ) is said to be commuting on
M if STx = TSx for all x ∈ M .

The ordered pair (T, I) of two self maps of a metric space (X, d) is called a Banach
operator pair [5], if the set F (I) of fixed points of I is T -invariant, i.e. T (F (I)) ⊆ F (I).
Obviously, a commuting pair (T, I) is a Banach operator pair but not conversely (see
[5]). If (T, I) is a Banach operator pair then (I, T ) need not be a Banach operator pair
(see [5]). If the self maps T and I of X satisfy d(ITx,Tx) ≤ kd(Ix, x), for all x ∈ X
and for some k ≥ 0, ITx = TIx whenever x ∈ F (I) i.e. Tx ∈ F (I), then (T, I) is a
Banach operator pair. In particular, when I = T the above inequality can be rewritten
as d(T 2x, Tx) ≤ kd(Tx, x) for all x ∈ X. Such a T is called a Banach operator of type k
(see [25, 26]).

This class of non-commuting mappings is different from the known classes of non-
commuting mappings viz. R-weakly commuting, R-subweakly commuting, compatible,
weakly compatible and Cq-commuting etc. (see [5, 16]). Hence the concept of Banach
operator pair is of basic importance for the study of common fixed points.
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1.2. Example. Let X = R with its usual metric and K = [1,∞). Let T (x) = x3 and
I(x) = 2x − 1, for all x ∈ K. Then F (I) = {1}. Here (T, I) is a Banach operator pair
but T and I are not commuting.

W.G. Dotson Jr. [10] proved some results concerning the existence of fixed points
of nonexpansive mappings on a certain class of nonconvex sets. In order to prove these
results, which extended his previous work [9] on starshaped sets, he introduced the fol-
lowing class of nonconvex sets:

Suppose M is a subset of a normed linear space E, and let F = {fα}α∈M be a family of
functions from [0, 1] into M having the property that for each α ∈ M we have fα(1) = α.
Such a family F is said to be contractive provided there exists a function ϕ : (0, 1) → (0, 1)
such that for all α, β in M and for all t in (0, 1) we have

‖fα(t)− fβ(t)‖ ≤ ϕ(t) ‖α− β‖ .

Such a family ℑ is said to be jointly continuous provided that if t → t◦ in [0, 1] and
α → α◦ in M then fα(t) → fα◦(t◦) in M .

Suppose that H = {fα}α∈M is a family of functions from [0, 1] into M having the
property that for each sequence 〈λn〉 in (0, 1], with λn → 1, we have

(1.1) fα(λn) = λnα.

We observe that H ⊆ F and it has the additional property that it is contractive and
jointly continuous.

If for a subset M of E, there exists a contractive jointly continuous family of functions
F = {fα}α∈M (respectively, a family of functions satisfying (1.1)), then we say that S
has the property of contractiveness and joint continuity (respectively, the property (1.1))
(see [3, 19]).

1.3. Example. Any subspace, a convex set with 0, a starshaped subset with center 0
and a cone of a normed linear space have a family of functions associated with them
which satisfy condition (1.1).

In fact, it is easy to observe that if M is a q-starshaped subset of a normed linear space
X and fx(t) = (1−t)q+tx, for each x, q ∈ M and t ∈ [0, 1], then F is a contractive jointly
continuous family with ϕ(t) = t, t ∈ (0, 1). Also if S is affine self mapping of M and
S(q) = q, we have S(fx(t)) = S((1− t)q+ tx) = (1− t)S(q)+ tS(x) = (1− t)q+ tS(x) =
fS(x)(t), for all x, q ∈ M and t ∈ [0, 1]. Thus the class of subsets of X with the property
of contractive and joint continuity contains the class of starshaped sets, which in turn
contains the class of convex sets.

In recent years, many results related to Gregus’s Theorem [12] have appeared. Fisher

and Sessa [11], Jungck [17], Ćirić [6], [7] and many others (see [4, 8, 16] and references
cited therein) have generalized the theorem of Gregus with more contractive conditions.
The purpose of this paper is to prove some similar results for a class of Banach operator
pairs without the assumptions of linearity or affinity of either T or S. We prove some
common fixed point theorems for Banach operator pairs with Ćirić type nonexpansive
mappings and the existence of common fixed points from the set of best approximation
in the framework of convex metric spaces. The results proved in this paper generalize,
unify and extend some of the results of [2, 3, 4, 5, 14, 15, 16, 18, 22, 23, 24, 26] and of a
few others.
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2. Main results

2.1. Common fixed point theorems with Ćirić type nonexpansive mappings.

In this section we prove some common fixed point theorems for Banach operator pairs
with Ćirić type nonexpansive mappings in convex metric spaces.

The following result of Ćirić [7] will be used in our first theorem:

2.1. Lemma. Let C be a closed convex subset of a complete convex metric space (X, d)
and T : C → C a mapping satisfying, for all x, y ∈ C

d(Tx, Ty) ≤ amax{d(x, y), c[d(x, Ty) + d(y, Tx)]}+ bmax{d(x, Tx), d(y, Ty)},

where 0 < a < 1, a+ b = 1, c ≤ 4−a
8−a

. Then T has a unique fixed point. �

The following result extends and improves [16, Lemma 2.1] of Hussain.

2.2. Theorem. Let M be a closed convex subset of a complete convex metric space
(X, d), and (T, I) a Banach operator pair on M . Assume that T and I satisfy

d(Tx, Ty) ≤ amax{d(Ix, Iy), c[d(Ix, Ty) + d(Iy, Tx)]}
+ bmax{d(Tx, Ix), d(Ty, Iy)}

for all x, y ∈ M , where 0 < a < 1, a+ b = 1, 0 ≤ c < η, where η = min{ 2+a
5+a

, 2−a
4

, 4
9+a

}.
If I is continuous, F (I) is nonempty and convex, then there is a unique common fixed
point of T and I.

Proof. Since (T, I) is a Banach operator pair, T (F (I)) ⊆ F (I). The continuity of I
implies that F (I) is closed. Thus F (I) is a nonempty, closed and convex subset of M .
Further for all x, y ∈ F (I), we have

d(Tx,Ty) ≤ amax{d(Ix, Iy), c[d(Ix, Ty) + d(Iy,Tx)]}
+ bmax{d(Tx, Ix), d(Ty, Iy)}

≤ amax{d(x, y), c[d(x, Ty) + d(y, Tx)]}+ bmax{d(x, Tx), d(y, Ty)}.

So by Lemma 2.1, T has a unique fixed point z in F (I) and consequently M∩F (T )∩F (I)
is a singleton. �

The following theorem extends Hussain [16, Theorem 2.2]:

2.3. Theorem. Let M be a closed convex subset of a complete convex metric space (X, d)
with Property (I), and S, T continuous self maps of M . Suppose that F (S) is nonempty
and convex and that (T, S) is a Banach operator pair on M . If cl(T (M)) is compact and
satisfies

d(Tx, Ty) ≤ max{d(Sx, Sy), c[dist(Sx, [p, Ty]) + dist(Sy, [p, Tx])]}
+ 1−λ

λ
max{dist(Sx, [p, Tx]), dist(Sy, [p, Ty])}

for some p ∈ F (S) ∩M , for all x, y ∈ M , 0 < λ < 1, 0 ≤ c < 1
4
, then there is a common

fixed point of T and S.

Proof. For each n, define Tn : M → M by Tnx = W (Tx, p, λn), x ∈ M , where < λn >
is a sequence in (0, 1) such that λn → 1. Now as (T, S) is a Banach operator pair and
F (S) is convex, Tn(x) = W (Tx, p, λn) ∈ F (S) for each x ∈ F (S) since Tx ∈ F (S). Thus
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(Tn, S) is a Banach operator pair for each n. Consider

d(Tnx, Tny) = d(W (Tx, p, λn),W (Ty, p, λn))

≤ λnd(Tx, Ty),by Property (I)

≤ λn{max{d(Sx,Sy), c[dist(Sx, [p, Ty]) + dist(Sy, [p, Tx])]}
+ 1−λn

λn
max{dist(Sx, [p, Tx]), dist(Sy, [p, Ty])}}

≤ λn{max{d(Sx,Sy), c[d(Sx, Tny) + d(Sy, Tnx)]}
+ (1− λn)max{[d(Sx, Tnx), d(Sy, Tny)]}

for all x, y ∈ M ,0 ≤ c < 1
4
. Therefore, by Theorem 2.2, there exists some xn ∈ M such

that F (Tn)
⋂

F (S) = {xn} for each n ≥ 1. The compactness of cl(T (M)) implies that
there exists a subsequence {Txni

} of {Txn} and z ∈ cl(T (M)) such that Txni
→ z ∈ M .

Now xni
= Tni

(xni
) = W (Txni

, p, kni
) → W (z, p, 1) = z. By the continuity of T and S,

we have z ∈ F (T ) ∩ F (S). Hence M ∩ F (T ) ∩ F (S) 6= ∅. �

2.4. Example. Consider M = R2 with the usual metric d((x1, y1), (x2, y2)) = |x1−x2|+
|y1 − y2|, (x1, y1), (x2, y2) ∈ R2. Define T and S on M as T (x, y) = (x−2

2
, x2+y−4

2
) and

S(x, y) = (x−2
2

, x2+y−4). Obviously, T is S-nonexpansive but S is not linear. Moreover,

F (T ) = (−2, 0), F (S) = {(−2, y) : y ∈ R} and C(S, T ) = {(x, y) : y = 4 − x2, x ∈ R}.
Thus (T, S) is a continuous Banach operator pair, F (S) is convex and (−2, 0) is a common
fixed point of S and T .

2.2. Common fixed point theorems and invariant approximation. In this sec-
tion we prove the existence of some common fixed points of best approximation for

Banach operator pairs with Ćirić type nonexpansive mappings.

We begin the section with the following result.

2.5. Proposition. If C is a closed and convex subset of a convex metric space (X, d)
and x ∈ X then PC(x) is closed and convex.

Proof. Let y, z ∈ PC(x) and λ ∈ [0, 1]. Consider

d(x,W (y, z, λ)) ≤ λd(x, y) + (1− λ)d(x, z)

= λdist(x,C) + (1− λ)dist(x,C)

= dist(x,C)

≤ d(x,W (y, z, λ)) as W (y, z, λ) ∈ C.

Therefore, d(x,W (y, z, λ)) = dist(x,C) and so W (y, z, λ) ∈ PC(x). Thus PC(x) is convex
and it is easy to prove that it is closed. �

The following theorem extends/generalizes the corresponding theorems of [2, 3, 4, 5,
18, 22, 23, 24], and [26].

2.6. Theorem. Let C be a closed and convex subset of a complete convex metric space
(X, d) with Property (I), and S, T : X → X mappings such that u ∈ F (S)∩F (T ) for some
u ∈ X and T (∂C ∩C) ⊆ C (∂C denotes the boundary of C). Suppose that D = PC(u) is
nonempty and F (S) is nonempty and convex, S is continuous on PC(u), and S(D) ⊆ D.
If T is continuous, cl(T (D) is compact and (T, S) is a Banach operator pair on D that
satisfies

d(Tx, Ty) ≤
{

d(Sx, Su) if y = u,

M(x, y) if y ∈ D,
(∗)
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where

M(x, y) = max{d(Sx, Sy), c[dist(Sx, [p, Ty]) + dist(Sy, [p, Tx])]}
+ 1−λ

λ
max{dist(Sx, [p, Tx]), dist(Sy, [p, Ty])},

for some p ∈ F (S) ∩D, for all x, y ∈ C, 0 < λ < 1, 0 ≤ c < 1
4
, then there is a common

fixed point of T , S and D.

Proof. Let x ∈ PC(u), then for any λ ∈ (0, 1), we have

d(W (u, x, λ), u) ≤ λd(u, u) + (1− λ)d(x, u) = (1− λ)d(x, u) < dist(u,C).

It follows (see [1, Lemma 3.2]) that the line segment {W (u, x, λ) : 0 ≤ λ ≤ 1} and the set
C are disjoint. Thus x is not in the interior of C and so x ∈ ∂C∩C. Since T (∂C∩C) ⊂ C,
Tx must be in C. Also since Sx ∈ PC(u), u ∈ F (T )∩ F (S), and from Inequality (∗), we
have

d(Tx, u) = d(Tx,Tu) ≤ d(Sx, Su) = d(Sx, u) = dist(u, C).

This implies that Tx ∈ PC(u). Consequently, PC(u) is T -invariant, closed and convex.
Hence the result follows from Theorem 2.3. �

2.7. Corollary. [16, Theorem 2.5 (i)] Let C be a subset of a Banach space X, and
S, T : X → X mappings such that u ∈ F (S)∩F (T ) for some u ∈ X and T (∂C∩C) ⊆ C.
Suppose that D = PC(u) and F (S) are nonempty and convex, S is continuous on PC(u),
and S(PC(u)) ⊆ PC(u). If T is continuous, cl(T (PC(u)) is compact and (T, S) is a
Banach operator pair on PC(u) which satisfies

‖Tx− Ty‖ ≤
{

‖Sx− Su‖ if y = u,

M(x, y) if y ∈ D,

where

M(x, y) = max{‖Sx− Sy‖ , c[dist(Sx, [p, Ty]) + dist(Sy, [p, Tx]]}
+ 1−λ

λ
max{dist(Sx, [p, Tx]), dist(Sy, [p, Ty])},

for some p ∈ F (S) ∩ C, for all x, y ∈ C, 0 < λ < 1, 0 ≤ c < 1
4
, then there is a unique

common fixed point of T, S and PC(u). �

Let G◦ denote the class of closed convex subsets containing a point x◦ of a convex
metric space (X, d) with Property (I). For M ∈ G◦ and p ∈ X, let Mp = {x ∈ M :
d(x, x◦) ≤ 2d(p, x◦)}. For h ≥ 0, let PM (p) = {x ∈ M : d(p, x) = d(p,M)} - the set

of best approximants to p in M , CS
M (p) = {x ∈ M : Sx ∈ PM (p)} and Dh,S

M (p) =

PM (p) ∩Gh,S
M (p), where Gh,S

M (p) = {x ∈ M : d(Sx, p) ≤ (2h+ 1)dist(p,M)}.

2.8. Theorem. Let M be a convex subset of a complete convex metric space (X, d) with
Property (I), and S, T : X → X mappings such that u ∈ F (S) ∩ F (T ) for some u ∈ X

and T (∂M ∩ M) ⊆ M . Suppose that S is continuous on the closed convex set Dh,S

M (u),

Dh,S
M (u)∩F (S) is nonempty and S(Dh,S

M (u)) ⊆ Dh,S
M (u). If cl(T (Dh,S

M (u)) is compact, T
is continuous and the pair (T, S) satisfies

(i) d(STx, Tx) ≤ hd(Sx, x) for all x ∈ Dh,S
M (u) and h ≥ 0;

(ii) For all x ∈ Dh,S
M (u) ∪ {u},
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d(Tx,Ty) ≤
{

d(Sx,Su) if y = u,

M(x, y) if y ∈ Dh,S
M ,

where

M(x, y) = max{d(Sx, Sy), c[dist(Sx, [p, Ty]) + dist(Sy, [p, Tx])]}
+ 1−λ

λ
max{dist(Sx, [p, Tx]), dist(Sy, [p, Ty])},

for some p ∈ F (S) ∩ PM (u), 0 < λ < 1, 0 ≤ c < 1
4
,

then PM (u) ∩ F (T ) ∩ F (S) 6= ∅.

Proof. Let x ∈ Dh,S
M (u). Then x ∈ PM (u), and as in the proof of Theorem 2.6, we see

that Tx is in M . Since Sx ∈ PM (u), u ∈ F (S) ∩ F (T ) and S and T satisfy (i) and (ii),
it follows that d(Tx, u) = d(Tx, Tu) ≤ d(Sx,Su) = d(Sx, u) = dist(u,M). Now

d(STx, u) ≤ d(STx, Tx) + d(Tx, Tu)

≤ hd(Sx, x) + d(Tx,u)

≤ h[d(Sx, u) + d(u, x)] + d(Tx, u)

≤ h[dist(u,M) + dist(u,M)] + dist(u,M)

≤ (2h+ 1)dist(u,M).

This implies that Tx ∈ Gh,S
M (u). Consequently, Tx ∈ Dh,S

M (u) and so T (Dh,S
M (u)) ⊆

Dh,S

M (u). Inequality (i) also implies that (T, S) is a Banach operator pair. AsM is convex,

Dh,S
M (u) is convex. Thus by Theorem 2.3, we obtain that PM (u)∩ F (T )∩ F (S) 6= ∅. �

2.9. Remark. Let CS
M (u) = {x ∈ M : Sx ∈ PM (u)}. Then S(PM (u)) ⊂ PM (u)

implies that PM (u) ⊂ CS
M (u) ⊂ Dh,S

M (u) and hence Dh,S
M (u) = PM (u). Consequently,

Theorem 2.8 remains valid when Dh,S
M (u) = PM (u) and the pair (T, S) is a Banach

operator pair on PM (u) instead of satisfying (i), which in turn extends/generalizes the
corresponding results in [2, 5, 14, 22, 24] and [26].

2.10. Corollary. [16, Theorem 2.6 (i)] Let M be a subset of a Banach space X, and
S, T : X → X mappings such that u ∈ F (S) ∩ F (T ) for some u ∈ X and T (∂M ∩
M) ⊆ M . Suppose that S is continuous on the closed convex set Dh,S

M (u), Dh,S

M (u) ∩
F (S) is nonempty convex and S(Dh,S

M (u)) ⊆ Dh,S
M (u). If cl(T (Dh,S

M (u)) is compact, T is
continuous and the pair (T, S) satisfies

(i) ‖STx− Tx‖ ≤ h ‖Sx− x‖ for all x ∈ Dh,S

M (u) and h ≥ 0;

(ii) For all x ∈ Dh,S

M (u) ∪ {u}, and 0 < λ < 1,

‖Tx− Ty‖ ≤
{

‖Sx− Sy‖ if y = u,

M(x, y) if y ∈ Dh,S
M ,

where

M(x, y) = max{‖Sx− Sy‖ , c[dist(Sx, [p, Ty]) + dist(Sy, [p, Tx]]}
+ 1−λ

λ
max{dist(Sx, [p, Tx]), dist(Sy, [p, Ty])}

for some p ∈ F (S) ∩ PM (u), for all x, y ∈ M , 0 < λ < 1, 0 ≤ c < 1
4
,

then PM (u) ∩ F (T ) ∩ F (S) 6= ∅. �

The next two theorems extend and generalize the corresponding results of [2, 4, 14,
16, 22] and [24].
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2.11. Theorem. Let S and T be self maps of a complete convex metric space (X, d) with
Property (I), u ∈ F (S) ∩ F (T ) and M ∈ G◦ such that T (Mu) ⊆ S(M) ⊆ M . Suppose
that cl(S(Mu)) is compact, d(Sx,Su) ≤ d(x, u) for all x ∈ Mu, T, S are continuous on
Mu, T satisfies d(Tx,u) ≤ d(Sx, u) for all x ∈ Mu. Then

(i) PM (u) is nonempty, closed and convex,
(ii) T (PM (u)) ⊆ S(PM (u)) ⊆ PM (u), provided that d(Sx,Sp) = d(x, u) for all

x ∈ CS
M (u), and

(iii) PM (u) ∩ F (S) ∩ F (T ) 6= ∅ provided that d(Sx, Su) = d(x, u) for all x ∈ CS
M (u),

F (S) is nonempty and convex, (T, S) is a Banach operator pair on PM (u) and
T satisfies for some p ∈ F (S) ∩ PM (u),

d(Tx, Ty) ≤ max{d(Sx, Sy), c[dist(Sx, [p, Ty]) + dist(Sy, [p, Tx])]}
+ 1−λ

λ
max{dist(Sx, [p, Tx]), dist(Sy, [p, Ty])}

for all x, y ∈ PM (p), 0 < λ < 1, and some 0 ≤ c < 1
4
.

Proof. If u ∈ M then all the arguments are obvious. So assume that u /∈ M . If
x ∈ M\Mu, then d(x, x◦) > 2d(u, x◦) and so d(u, x) ≥ d(x, x◦) − d(u, x◦) > d(u, x◦) ≥
dist(u,M). Thus α = dist(u,Mu) = dist(u,M) ≤ d(u, x◦). Since cl(S(Mu)) is com-
pact, and the distance function is continuous, there exists z ∈ cl(S(Mu)) such that
β = dist(u, cl(S(Mu))) = d(u, z). Hence

α = dist(u,Mu)

≤ dist(u, cl(S(Mu))) as T (Mu) ⊆ S(M) ⊆ M =⇒ clS(Mu) ⊆ M

= β ≤ dist(u, S(Mu)) ≤ d(u, Sx)

≤ d(u, x)

for all x ∈ Mu. Therefore α = β = dist(u,M) i.e. dist(u,M) = dist(u, cl(S(Mu))) =
d(u, z) i.e. z ∈ PM (u) and so PM (u) is nonempty. The closedness and convexity of PM (u)
follows from that of M . This proves (i).

To prove (ii) let z ∈ PM (u). Then d(Sz, u) = d(Sz, Su) ≤ d(z, u) = dist(u,M). This
implies that Sz ∈ PM (u) and so S(PM (u)) ⊆ PM (u). Let y ∈ T (PM (u)). Since T (Mu) ⊆
S(M) and PM (u) ⊆ Mu, there exists z ∈ PM (u) and x1 ∈ M such that y = Tz =
Sx1. Further, we have d(Sx1, u) = d(Tz, u) ≤ d(Sz, u) ≤ d(z, u) = dist(u,M). Thus
Sx1 ∈ PM (u) and x1 ∈ CS

M (u). Also, as Sx1 ∈ M and dist(u,M) ≤ d(Sx1, u), it follows
that dist(u,M) = d(Sx1, u). Since d(x1, u) = d(Sx1, u) = dist(u,M), x1 ∈ PM (u) and
y = Sx1 ∈ S(PM (u)). Hence T (PM(u)) ⊆ S(PM (u)) and so (ii) holds.

By (ii), the compactness of cl(S(Mu)) implies that cl(T (PM(u))) is compact and hence
complete. Hence the conclusion (iii) follows from Theorem 2.3 applied to PM (u). �

2.12. Corollary. [16, Theorem 2.7] Let S and T be self maps of a Banach space X with
u ∈ F (S) ∩ F (T ) and C ∈ G◦ such that T (Cu) ⊆ S(C) ⊆ C. Suppose that cl(S(Cu)) is
compact, ‖Sx− u‖ = ‖x− u‖ for all x ∈ Cu, T, S are continuous on Cu, and T satisfies
‖Tx− u‖ ≤ ‖Sx− u‖ for all x ∈ Cu. Then

(i) PC(u) is nonempty, closed and convex,
(ii) T (PC(u)) ⊆ S(PC(u)) ⊆ PC(u), provided that ‖Sx− u‖ = ‖x− u‖ for all x ∈

CS
C(u), and

(iii) PC(u) ∩ F (S) ∩ F (T ) 6= ∅ provided that ‖Sx− u‖ = ‖x− u‖ for all x ∈ CS
C(u),

F (S) is nonempty and convex, (T, S) is Banach operator pair on PC(u) and T
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satisfies for some p ∈ F (S) ∩ PC(u),

‖Tx− Ty‖ ≤ max{‖Sx− Sy‖ , c[dist(Sx, [p, Ty]) + dist(Sy, [p, Tx]]}
+ 1−λ

λ
max{dist(Sx, [p, Tx]), dist(Sy, [p, Ty])},

for all x, y ∈ PC(u), 0 < λ < 1, and some 0 ≤ c < 1
4
. �

2.13. Theorem. Let S and T be self maps of a complete convex metric space (X, d) with
Property (I), u ∈ F (S) ∩ F (T ) and M ∈ G◦ such that T (Mu) ⊆ S(M) ⊆ M . Suppose
that cl(T (Mu)) is compact, d(Sx,Su) ≤ d(x, u) for all x ∈ Mu, T, S are continuous on
Mu, and T satisfies d(Tx,u) ≤ d(Sx, u) for all x ∈ Mu. Then

(i) PM (u) is nonempty, closed and convex,
(ii) T (PM (u)) ⊆ S(PM (u)) ⊆ PM (u), provided that d(Sx, Su) = d(x, u) for all

x ∈ CS
M (u), and

(iii) PM (u) ∩ F (S) ∩ F (T ) 6= ∅ provided that d(Sx, Su) = d(x, u) for all x ∈ CS
M (u),

F (S) is nonempty and convex, (T, S) is a Banach operator pair on PM (u) and
T satisfies

d(Tx, Ty) ≤ max{d(Sx, Sy), c[dist(Sx, [p, Ty]) + dist(Sy, [p, Tx])]}
+ 1−λ

λ
max{dist(Sx, [p, Tx]), dist(Sy, [p, Ty])}

for all p ∈ F (S) ∩ PM (u), x, y ∈ PM (u), 0 < λ < 1, and some 0 ≤ c < 1
4
.

Proof. Similar to that of Theorem 2.11. �

2.14. Corollary. [16, Theorem 2.8] Let S and T be be self maps of a Banach space
X with u ∈ F (S) ∩ F (T ) and C ∈ G◦ such that T (Cu) ⊆ S(C) ⊆ C. Suppose that
cl(T (Cu)) is compact, ‖Sx− u‖ = ‖x− u‖ for all x ∈ Cu, T, S are continuous on Cu,
and T satisfies ‖Tx− u‖ ≤ ‖Sx− u‖ for all x ∈ Cu. Then

(i) PC(u) is nonempty, closed and convex,
(ii) T (PC(u)) ⊆ S(PC(u)) ⊆ PC(u), provided that ‖Sx− u‖ = ‖x− u‖ for all x ∈

CS
C(u), and

(iii) PC(u) ∩ F (S) ∩ F (T ) 6= ∅ provided that ‖Sx− u‖ = ‖x− u‖ for all x ∈ CS
C(u),

F (S) is nonempty and convex, (T, S) is a Banach operator pair on PC(u) and
T satisfies

‖Tx− Ty‖ ≤ max{‖Sx− Sy‖ , c[dist(Sx, [p, Ty]) + dist(Sy, [p, Tx]]}
+ 1−λ

λ
max{dist(Sx, [p, Tx]), dist(Sy, [p, Ty])},

for all p ∈ F (S) ∩ PC(u), x, y ∈ PC(u), 0 < λ < 1, and some 0 ≤ c < 1
4
. �

2.3. Common fixed point theorem with generalized nonexpansive mappings.

In this section we prove a common fixed point theorem for Banach operator pairs with
generalized nonexpansive mappings in metric spaces.

The following lemma of Hussain [16] will be used in our next theorem.

2.15. Lemma. [16] Let C be a nonempty subset of a metric space (X, d), (T, f) and
(T, g) Banach operator pairs on C. Suppose that cl(T (C)) is complete and T, f, g satisfy
for all x, y ∈ C and 0 ≤ k < 1,

d(Tx, Ty) ≤ kmax{d(fx, gy), d(Tx, fx), d(Ty, gy), d(Tx, gy), d(Ty, fx)}.
If f and g are continuous and F (f)∩ F (g) is nonempty, then there is a unique common
fixed point of T, f and g. �

The following result extends and improves the corresponding results of [2, 3, 5, 14, 16,
18, 21, 22] and [23].
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2.16. Theorem. Let C be a nonempty subset of a metric space (X, d), T, g and h self
maps of C. Suppose that g and h are continuous and that C has a contractive jointly
continuous family F = {fx : x ∈ C} with gfx(k) = fgx(k) and hfx(k) = fhx(k) for all
x ∈ M , k ∈ [0, 1]. If cl(T (C)) is compact, T is continuous and (T, g), (T, h) are Banach
operator pairs that satisfy

d(Tx, Ty)

≤ max{d(hx, gy), dist(hx, Y Tx
q ), dist(gy,Y Ty

q ), dist(hx, Y Ty
q ), dist(gy, Y Tx

q )}

for all x, y ∈ C, where Y Tx
q = {fTx(k) : 0 ≤ k ≤ 1} and q = fTx(0), then T, g and h have

a common fixed point.

Proof. For each n ∈ N , define Tn : C → C by Tn(x) = fTx(kn) for each x ∈ C, where
〈kn〉 is a sequence in (0, 1) such that kn → 1. Then each Tn is a self mapping of C. As
(T, g) is a Banach operator pair, for x ∈ F (g) we have Tx ∈ F (g). Consider

g(Tnx) = gfTx(kn) = fgTx(kn) = fTx(kn) = Tnx.

Then Tnx ∈ F (g). Thus for each n, (Tn, g) is a Banach operator pair on C. Similarly,
(Tn, h) is a Banach operator pair on C. Consider

d(Tnx, Tny)

= d(fTx(kn), fTy(kn))

≤ ϕ(kn)d(Tx,Ty)

≤ ϕ(kn)max{d(hx, gy), dist(hx, Y Tx
q ), dist(gy, Y Ty

q ), dist(hx, Y Ty
q ),

dist(gy, Y Tx
q )}

≤ ϕ(kn)max{d(hx, gy), d(hx, Tnx), d(gy, Tny), d(hx, Tny), d(gy, Tnx)}
for all x, y ∈ C. As cl(T (C)) is compact, cl(Tn(C)) is compact for each n and hence
complete. Now by Lemma 2.15, there exists xn ∈ C such that xn is a common fixed
point of g, h and Tn for each n. The compactness of cl(T (C)) implies there exists a
subsequence {Txni

} of {Txn} such that Txni
→ y ∈ C. Now

xni
= Tni

xni
= fTxni

(kni
) → fy(1) = y,

and the result follows by using the continuity of T, h and g. �

If C is a q-starshaped subset of a convex metric space (X, d) with Property (I), and
we define the family F as fx(α) = W (x, q, α), then

d(fx(α), fy(α)) = d(W (x, q, α),W (y, q, α))

≤ αd(x, y),

so taking ϕ(α) = α, 0 < α < 1, the family is a contractive jointly continuous family.
Consequently, we have:

2.17. Corollary. Let C be a nonempty q-starshaped subset of a convex metric space
(X, d) with Property (I), and let T, g and h be self maps of C. Suppose that g and h are
continuous and F (g) and F (h) are q-starshaped with q ∈ F (g) ∩ F (h). If cl(T (C)) is
compact, T is continuous and (T, g), (T, h) are Banach operator pairs that satisfy

d(Tx, Ty) ≤ max{d(hx, gy), dist(hx, [q, Tx]), dist(gy, [q, T y]), dist(hx, [q, T y]),
dist(gy, [q, Tx])}

for all x, y ∈ C, k ∈ [0, 1), then T, g and h have a common fixed point.
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Proof. For each n ∈ N , define Tn : C → C by Tn(x) = W (Tx, q, kn) for each x ∈ C,
where 〈kn〉 is a sequence in (0, 1) such that kn → 1. Then each Tn is a self mapping of C.
Since (T, g) is a Banach operator pair and F (g) is q-starshaped, then for each x ∈ F (g),
Tn(x) = W (Tx, q, kn) ∈ F (g), since Tx ∈ F (g). Thus (Tn, g) is a Banach operator pair
for each n. Similarly, (Tn, h) is a Banach operator pair on C. Consider

d(Tnx, Tny) = d(W (Tx, q, kn),W (Ty, q, kn))

≤ knd(Tx, Ty)

≤ kn max{d(hx, gy), dist(hx, [q, Tx]), dist(gy, [q, T y]),
dist(hx, [q, T y]), dist(gy, [q, Tx])}

≤ kn max{d(hx, gy), d(hx, Tnx), d(gy, Tny), d(hx, Tny), d(gy,Tnx)}
for all x, y ∈ C. As cl(T (C)) is compact, cl(Tn(C)) is compact for each n and hence
complete. Now by Lemma 2.15, there exists xn ∈ C such that xn is a common fixed
point of g, h and Tn for each n. The compactness of cl(T (C)) implies there exists a
subsequence {Txni

} of {Txn} such that Txni
→ y ∈ C. Now, as kni

→ 1, we have

xni
= Tni

xni
= W (Tx, q, kni

) → y,

and the result follows by using the continuity of T, h and g. �

2.18. Corollary. [16, Theorem 2.11] Let C be a nonempty q-starshaped subset of a
normed linear space X, and let T, g and h be self maps of C. Suppose that g and h are
continuous and that F (g) and F (h) are q-starshaped with q ∈ F (g) ∩ F (h). If cl(T (C))
is compact, T is continuous and (T, g), (T, h) are Banach operator pairs that satisfy

d(Tx, Ty) ≤ max{d(hx, gy), dist(hx, [Tx, q]), dist(gy, [Ty, q]),
dist(hx, [Ty, q]), dist(gy, [Tx, q])}

for all x, y ∈ C, k ∈ [0, 1), then T, g and h have a common fixed point. �

2.19. Corollary. Let C be a nonempty q-starshaped subset of a convex metric space
(X, d) with Property (I), and let T, g and h be self maps of C. Suppose that g and h are
continuous and affine with q ∈ F (g)∩F (h). If cl(T (C)) is compact, T is continuous and
(T, g), (T, h) are Banach operator pairs that satisfy

d(Tx, Ty) ≤ max{d(hx, gy), dist(hx, [q, Tx]), dist(gy, [q, T y]), dist(hx, [q, T y]),
dist(gy, [q, Tx])}

for all x, y ∈ C, k ∈ [0, 1), then T, g and h have a common fixed point.

Proof. Taking kn = n
n+1

, define Tn(x) = W (Tx, q, kn). Since (T, g) is a Banach operator

pair, g is affine with q ∈ F (g)∩ F (h) so for each x ∈ F (g) we have Tx ∈ F (g). Consider

g(Tn(x)) = g(W (Tx, q, kn)) = W (g(Tx), g(q), kn) = W (Tx, q, kn) = Tn(x),

so that Tnx ∈ F (g). Thus (Tn, g) is a Banach operator pair for each n. Similarly, (Tn, h)
is a Banach operator pair on C for each n. Now proceeding as in Corollary 2.17, we get
the result. �

2.20. Remark. As an application of Theorem 2.16, the analogues of [15, Theorem 2.3 (i),
Corollary 2.6, Corollary 2.7, Theorem 2.8 (i), Corollary 2.9 (i), Corollary 2.10 (i)] can be
established for Banach operator pairs (T, g) and (T, h) in convex metric spaces.
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