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Abstract

In the method of paired comparisons, items are compared on the ba-
sis of their qualitative characteristics assessed by judges through their
sensory evaluations. Judges are offered items in pairs and are asked
to pick the better one. The experiment is repeatedly executed to yield
preference data based on binary digits – zeros and ones – allotted to
the items by the judges. The preferred item is awarded rank one while
the loser is assigned zero. As the binary digits fail to furnish the ac-
tual comparative worth of items and indistinguishably assign one to the
preferred item and zero to the losing one, a methodology is proposed
to measure the actual comparative worth of the competing items on a
finer scale by assigning some refined rank on a finer scale to each of
the two competing items. The assigned ranks are then converted to
a refined paired comparison data-set in the form of a preference ma-
trix to be used for ranking the items. For illustration, a real data-set
on ice-cream brands is used to rank the brands using the renowned
Bradley-Terry model for paired comparisons.
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1. Introduction

In the method of paired comparisons (PC), judges (raters, respondents, jurists, pan-
elists etc.) are presented with items (stimuli, options, objects, items, individuals etc.) in
pairs and are asked to choose the better one on the basis of sensory evaluations according
to certain criteria. The experiment is repeatedly executed to yield preference data which
is presented in a preference matrix and is used via the paired comparison models to rank
items, which is the ultimate goal of the method of paired comparisons. The method
is widely employed for comparing items when no real measurement of worth (strength,
merit, etc.) of items is possible. The method is utilized in a variety of applications rang-
ing from sensory testing to the investigations of preferences, sports and choice behavior,
etc.

Customarily, the paired comparison experiment is repeatedly executed to yield pref-
erence data based on binary digits – zeros and ones – allotted to items by judges. The
preferred item is awarded rank one while the loser is given zero. As the binary digits –
zero and one – fail to furnish the actual comparative worth of items and indistinguishably
assign one to the preferred item and zero to the loser. In this article, a methodology is
proposed to measure the actual comparative worth of the competing items by assigning a
specific rank on a finer scale to each of the competing items. The assigned ranks are then
converted to the usual paired comparison data-set in the form of a preference matrix to
be used for ranking the items. Though all the PC models may serve the purpose, we
stick only to the renowned Bradley-Terry (BT) model proposed by Bradley and Terry
[3].

The literature reveals different situations in which the method of PC is used, and
also discusses various models devoted to ranking items in these situations. For instance,
David [6] provides a detailed review of the PC models. Bradley [4] assumes the responses
follow the Logistic distribution and proposes his model, whereas Abbas and Aslam [1]
adopt the Cauchy distribution. The motivation for using refined ranks in the method
of paired comparisons is to accommodate the actual worth of the items under study.
An improvement in the method of paired comparisons has been proposed by Abbas
and Aslam [2] through the accommodation of quantitative weights in qualitative paired
comparisons.

We may break up this study as follows: Section 2 discusses the theory for the proposed
methodology of the refined paired comparisons. Section 3 deals with the iterative ML
estimation procedure and Section 4 provides an illustrative example using a real data-
set on five brands of ice-cream coded as A, B, C, D and E. Section 5 pertains to the
comparison of the conventional and the refined paired comparisons. Section 6 concludes
the entire study.

2. The refined paired comparison technique

As we know that we usually assign one-zero ranks to the items under study in paired
comparison experiments. But it does not properly accommodate the degree of liking or
disliking of the judges. If, in the paired comparison of items-pair (i, j), a judge prefers
item i to j by assigning it rank one, and similarly in the paired comparison of the items-
pair (i, k), item i is preferred to k by being assigned rank one, then there is no criterion
for differentiating between the worth of item i in comparison to item j and that of i with
k. It necessitates items j and k being alike in their worth and that i is preferable to both
j and k with same degree of liking. But actually the item i may enjoy different (weaker
or stronger) preferences over items j and k. But the conventional paired comparison plan
merely prefers one item to the other and fails to perceive degree of liking or disliking of
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judges. It, therefore, necessitates a refinement in the judges’ assessments of the items
under study to properly accommodate the so-called degree of superiority or inferiority of
one item over the other. This is exactly what we attempt to articulate in this research.
Such a refinement of the paired comparison experiments may also be incorporated if
judges are asked to make more than one paired comparison for the pair (i, j), so that the
actual strength of the items may be incorporated properly.

We know that a confusing situation may emerge while comparing three items A, B and
C pair-wise. A judge may prefer item A to B, B to C and then C to A. This is technically
known as a circular-triad that exhibits inconsistency of the judges. Such a situation may
arise when a judge is either incompetent in assessing the difference between items or
the items are too similar to be distinguished. But in the refined paired comparison
technique, the occurrences of circular-triads may be avoided to a considerable extent.
Here the judges will have to assign ranks to items on a finer scale to locate the actual
worth of items on the basis of their liking or disliking, and the chance of occurrence of
circular-triads will be minimized. However, if the judges are competent enough to asses
the differences occurring among the items under study, the chance of the occurrence of
circular-triads may be completely ruled out.

Numerically, the range of values of the response variable is enhanced from the binary
values (0, 1) to 0, 1, 2, . . . ,m. Here the value ‘0’ stands for the zero or minimum strength
or worth of an item and m denotes the maximum strength. Consequently, while compar-
ing items i and j, a judge may assign any value ranging from 0 to m depending upon its
strength or worth as perceived by the judge. These values are used while comparing all
Ct

2 = t(t− 1)/2 possible pairs if there are, in all, t items under study. The refined data
thus obtained are them converted back to the conventional paired comparison data by
omitting a pre-specified percentage of the middle values if ties are to be accommodated.
These values may generate a paired comparison data-set with ties, which is studied by
Rao and Kupper [8], Davidson [7] and many others. We may use the judges’ assessments
falling within a certain range [L, U ] as ties. The set of value falling below L may be
assumed as being against a specific item and those greater than U may be regarded as
favorable to the other one.

3. The ML estimation

For illustration, we make use of the renowned BT model for paired comparisons which
states:

(3.1) φij = H(Vi − Vj) =
1
4

∫ ∞

−(Vi−Vj )

sech2( 1
2
x
)

dx =
πi

πi + πj

,

for all i ( 6= j) = 1, . . . , t. Here t denotes the total number of items to be compared,
Vi = log(πi), πi > 0, denotes the worth or merit of the item i for i = 1, . . . , t, φij

represents the probability of preferring item i over j and φji = 1− φij , David [6].

Here we note that the outcomes fall into just two possible categories, i.e., either i will
be preferred to j or vice versa, the experiment of paired comparisons between any two
items i, j is independently performed for a fixed number of times nij (say), where nij =
nji is the number of comparisons made between items i and j for i (< j) = 1, 2, . . . , t,
and aij + aji = nij = a′

ij + a′
ji, were aij and a′

ij respectively symbolize the conventional
and the refined number of preferences of item i over j. Hence the variable A denoting
the number of preferences of item i over j follows a binomial distribution, i.e.,
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where aji = nij − aij , π = (π1, π2, . . . , πt), A = {aij}, φji = 1− φij .

Using the classical ML estimation method to estimate the parameters of the Bradley-
Terry model, the likelihood function L (A;π) is given by

L (A;π) =

t
∏

i(<j)=1

[

n

aij !aji!

(

πi

πi + πj

)aij
(

πj

πi + πj

)aji
]

=⇒ L (A;π) ∝

t
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[(πi)
ai ]

t
∏
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[

(πi + πj)
−nij

]

,(3.2)

where ai =
∑t

j( 6=i)=1 aij denotes the total score of item i for i = 1, 2, . . . , t. Since, the log-

arithmic function is non-decreasing and both the likelihood function and its logarithmic
form are maximized at the same points (estimates); after dropping the terms independent
of parameters, the logarithmic form of (3.2) is:

(3.3) lnL (A;π) =

t
∑

i=1

{ai ln (πi)} −

t
∑

i<j

{nij log (πi + πj)} .

Following the algebraic maximization technique, we equate to zero the partial derivatives
of (3.3) with regards to the unknowns πi and get

(3.4)
ai

π̂i

−

t
∑

j 6=i

(

nij

π̂i + π̂j

)

= 0.

Equations (3.4) are complicated and an analytic solution for the worth parameters is
intractable. So, following Bradley [4, 5], we plan to find the ML estimates through
iterative methods.

If π
(k)
i be the k-th approximation of πi, then π

(k)
i = π

∗(k)
i

/

∑t

i=1 π
∗(k)
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.

Here, for identification we impose the restriction that the sums of the worth parameters

be unity. For the initialization of the iterative procedure, we may take π
(0)
i = 1/t, for

all i = 1, 2, . . . , t, and repeat the iterations till convergence. The ML estimates π̂i of the
worth parameters πi may be used to rank the set of t items.

4. Numerical illustration

We consider an example of a real data-set on five brands of ice-cream coded as A, B,
C, D and E. The brands were offered in pairs to a set of 20 students of a local college.
The students were asked to assign refined ranks as a result of sensory evaluations to
the competing brands on a linear scale having range 1 through 5 on the basis of the
characteristics the brands possess. The students did the job in the stipulated pattern.
The refined ranks a′

ij assigned to the items-pair (i, j) by all the judges, summed over j
to yield the total scores of all the brands of ice-cream under consideration, along with
the conventional data matrix are summarized in Table 1.
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Table 1. Conventional and refined data-sets

Ice-cream brands A B C D E ai, (a
′
i)

A 0 16 (83) 13 (95) 15 (92) 12 (89) 56 (359)

B 4 (37) 0 6 (27) 11 (81) 8 (39) 29 (184)

C 7 (32) 14 (73) 0 7 (25) 9 (42) 37 (172)

D 5 (23) 9 (56) 13 (57) 0 7 (33) 34 (169)

E 8 (33) 12 (69) 11 (63) 13 (85) 0 44 (250)

The numbers within parentheses indicate the refined observations obtained by summing
the ranks a′

ij having individual values in the pre-set range 1 to 5 for all the 20 students,
while those without parentheses correspond to the conventional ones. The last column
denotes the conventional and the refined scores, ai and a′

i, of the ice-cream brands under
consideration. We may solve (3.4) using the usual iterative procedure in the light of the
data given in Table 1. But, here we run a computer program developed in SAS package
using the procedure PROC GENMOD. The SAS codes are given in the Appendix. The
resulting estimates, along with the associated standard errors (SEs) within parentheses,
are displayed in Table 2. The difference occurring in the worth of the competing brands
by switching the conventional paired comparisons over to the refined ones are summarized
in the last column.

Table 2. Estimates and SEs using conventional and refined data-sets

Ice-cream brands πi π′
i Differences in worth

A 0.5227 0.6729 0.1502

(0.2993) (0.1267)

B -0.6307 -0.5552 0.0755

(0.2953) (0.1244)

C -0.2915 -0.4203 0.1288

(0.2897) (0.1270)

D -0.4171 -0.6224 0.2053

(0.2911) (0.1247)

E 0.0000 0.0000 0.0000

(0.0000) (0.0000)

From the conventional estimates of worth (column 2), it is evident that the set of ice-
cream brands under study may be ranked as A being the number one, E the second,
C the third, D the fourth and B the fifth and last one. However, in the light of the
model’s estimates obtained using the refined data-set, all the brands enjoy the same
ranking order except that of the brands B and D, which have their ranks reversed, i.e.,
B captures the fourth position and D the last and fifth one. Moreover, the brands A
and B are over estimated by 0.1502 and 0.0755 respectively via the refined ranks, C and
D are in order under-estimated by 0.1288 and 0.2053. However, the worth of the brand
E remains intact for both the data-sets. We may get the overall worth of any brand
by taking the geometric means of its worth estimates found using the conventional and
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the refined data-sets as
√

πiπ′
i. It is interesting to note that we obtain smaller standard

errors for the estimates of the worth parameters using the refined data-set.

5. Comparison of the conventional and the refined paired

comparison techniques

We witness that the ranking order is preserved for the ice-cream brands A, E and C
for the paired comparison data-sets collected through both of the conventional as well
as the refined assessments, but the ranking order for the brands B and D is reversed
for the data-sets collected through the refined assessments. Moreover, we obtain smaller
standard errors for the estimates of the worth parameters using the refined data-set,
which indicates an improvement in the paired comparison technique.

6. Concluding remarks

The Bradley-Terry model is the most popular model in paired comparison studies
and is extensively used for ranking items. Because of its simple mathematical form, it
can be easily handled for analytical estimation of the worth parameters. It occupies a
vital position in this field. Since we have obtained the refined data-set by paying more
attention to using more careful assessments, we get smaller standard errors. So, it may
be said that the refined technique may preferably be used in place of the conventional
one for a number of reasons. Firstly, it captures a more accurate assessment of the worth
of items being compared than does the conventional assessment in the form of mere
zeros and ones. It utilizes some additional information regarding the worth of the items
under study, which is desirable in any statistical analysis. Secondly, the smaller standard
errors observed for the refined data-set as compared to those for the conventional data-set
indicate a move in the right direction towards an improvement in the paired comparison
technique. Thirdly, if the paired comparison data-sets obtained using the refined and
the conventional assessments of the items under consideration coincide, then the two
approaches become identical.

Appendix

data creams; input win n A B C D E;

datalines;

16 20 1 -1 0 0 0

13 20 1 0 -1 0 0

15 20 1 0 0 -1 0

12 20 1 0 0 0 -1

6 20 0 1 -1 0 0

11 20 0 1 0 -1 0

8 20 0 1 0 0 -1

7 20 0 0 1 -1 0

9 20 0 0 1 0 -1

7 20 0 0 0 1 -1

;

proc genmod;

model win/n = A B C D E / dist=bin link=logit noint;

run;
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