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Abstract

In this article we study surfaces in Euclidean space E* with pointwise
1-type Gauss map. We give a characterization of surfaces in E* with
a pointwise 1-type Gauss map of the first kind. We conclude that an
oriented non-minimal surface M in E* has a pointwise 1-type Gauss
map of the first kind if and only if M is a surface in a 3-sphere of E*
with constant mean curvature. We also obtain a characterization for
non-planar minimal surfaces in E* with pointwise 1-type Gauss map of
the second kind. Further we give a partial classification of surfaces in
E* in terms of the pointwise 1-type Gauss map of the second kind.

Keywords: Minimal surface, Normal bundle, Mean curvature, Pointwise 1-type, Gauss
map.
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1. Introduction

A submanifold M of a Euclidean space E™ is said to be of finite type if its position
vector x can be expressed as a finite sum of eigenvectors of the Laplacian A of M, that
is, t = xo +x1 + - - - + Tk, where x¢ is a constant map, x1, ..., x, are non-constant maps
such that Az; = \izi, i € R, i =1,2,... k.

If A1, A2, ..., A, are all different, then M is said to be of k-type (cf. [7, 8]). In [9], this
definition was similarly extended to differentiable maps, in particular, to Gauss maps of
submanifolds.

The notion of a finite type Gauss map is especially a useful tool in the study of sub-
manifolds (cf. [2, 3, 4, 5, 9, 16]). In [9], Chen and Piccinni made a general study on

*Istanbul Technical University, Faculty of Science and Letters, Department of Mathematics,
34469 Maslak, Istanbul, Turkey.
E-mail: (U. Dursun) udursun@itu.edu.tr (G.G. Arsan) ggarsan@itu.edu.tr

TCorresponding Author.



618 U. Dursun, G. G. Arsan

compact submanifolds of Euclidean spaces with finite type Gauss map, and for hyper-
surfaces they proved that a compact hypersurface M of E"*! has 1-type Gauss map if
and only if M is a hypersphere in E"*1,

If a submanifold M of a Euclidean space has 1-type Gauss map v, then Av = A(v+C)
for some A € R and some constant vector C'. However, the Laplacian of the Gauss map
of several surfaces such as the helicoid, catenoid and right cones in E3, and also some
hypersurfaces take the form

(1.1)  Av=fv+0)

for some smooth function f on M and some constant vector C. A submanifold of a
Euclidean space is said to have pointwise 1-type Gauss map if its Gauss map satisfies
(1.1) for some smooth function f on M and some constant vector C. A submanifold with
pointwise 1-type Gauss map is said to be of the first kind if the vector C in (1.1) is the
zero vector. Otherwise, a submanifold with pointwise 1-type Gauss map is said to be of
the second kind.

Surfaces in Euclidean spaces and in pseudo-Euclidean spaces with pointwise 1-type
Gauss map were recently studied in [1, 10, 11, 13, 14, 15, 17]. Also, hypersurfaces of the
Euclidean space E™t! with pointwise 1-type Gauss map were studied in [12].

In this paper we give a characterization of a surface in E* with pointwise 1-type Gauss
map of the first kind in terms of M being minimal or non-minimal. We conclude that
an oriented non-minimal surface in E* has pointwise 1-type Gauss map of the first kind
if and only if M is a surface in a 3-sphere of E* with constant mean curvature.

On the other hand we give a characterization for non-planar minimal surfaces in E*
with pointwise 1-type Gauss map of the second kind. Further, for an oriented surface
M in E* with non-parallel mean curvature direction, non-zero constant mean curvature,
and dim(N1(M)) = 1 we prove that M has pointwise 1-type Gauss map of the second
kind if and only if M is an open portion of a helical cylinder in E*, where N; (M) is the
first normal space of M in E*.

2. Preliminaries

Let M be an oriented n-dimensional submanifold in an (n + 2)-dimensional Euclidean
space E"T2. We choose an oriented local orthonormal frame {617 R en+2} on M such
that e1, ..., e, are tangent to M and en+1, ent2 are normal to M. We use the following
convention on the range of indices: 1 <4,j5,k,...<n,n+1<rst,... <n+2.

Let V be the Levi-Civita connection of E"*2 and V the induced connection on M.
Denote by {w?!, ..., w"*?} the dual frame and by {wa}, A, B = 1,...,n+2, the connection

forms associated to {e1,...,ent2}. Then we have
n n+2
Ve, €i = E w!(exr)ej + E hizer,
Jj=1 r=n-+1
n+2
Ve es = —Ar(ex) + E ws (ex)er, and
r=n+1
n+2
-
Dek €s = E Ws (ek)em
r=n+1

where D is the normal connection, h;; the coefficients of the second fundamental form
h, and A, the Weingarten map in the direction e,..
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The mean curvature vector H and the squared length ||||* of the second fundamental
form h are defined, respectively, by

1
2.1 H=-— hizer
(2.1) DT

and
(22)  [IRI* = D hijhjs.
,%,]
The Codazzi equation of M in E™*? is given by

r _ T
hijk = Pjkis

(2'3) ™ I n+2 S i = T T
jki = ei(hj) + Z hirws (i) — Z (Wf(ei)hM + wlt;(ei)hjl) .
s=n+1 =1

Also, from the Ricci equation of M in E"T2, we have

(24)  RP(ejensen es) = ([Aer, Acles) en) = 3 (Bihls — i)
i=1

where R is the normal curvature tensor.

The first normal space N1(M) of M at each point p € M in E"*2 is defined as the
orthogonal complement of the space {£ € T;‘M | A¢ = 0} in the normal space T;‘ M.

Let G(m—mn, m) denote the Grassmannian manifold consisting of all oriented (m —n)-
planes through the origin of E™. Let M be an oriented n-dimensional submanifold of a
Euclidean space E™. The Gauss map v : M — G(m —mn, m) of M is a smooth map which
carries a point p € M into the oriented (m — n)-plane through the origin of E™ obtained
by the parallel translation of the normal space of M at p in E™.

Since G(m—n,m) is canonically embedded in A" " E™ = EY, N = (,™ ), the notion
of the type of the Gauss map is naturally defined. If {en+1,€nt2,...,em} is an oriented
orthonormal normal frame on M, then the Gauss map v : M — G(m —n,m) C EV is
given by v(p) = (ent1 A ent2 A+ Aem)(p).

The product of a circular helix with non-zero torsion which lies in a 3-dimensional
linear subspace E° of the Euclidean space E* and a line of E* is called a 2-dimensional

helical cylinder in the Euclidean space E*.

3. Pointwise 1-type Gauss map of the first kind

In this section we investigate surfaces in the Euclidean space E* with pointwise 1-type
Gauss map of the first kind. However we prove the following lemma for n-dimensional
submanifolds of the Euclidean space E"*2.

3.1. Lemma. Let M be an n-dimensional submanifold of Euclidean space E"T2. Then,
the Laplacian of the Gauss map v = en4+1 A ent2 1S given by

Av = |h|*v +2 ZRD(ej, €k; Ent1,Ent2)€) N €
i<k
(3.1) .
+n Z w;f:[; (ej)e; NH +V(trAns1) Aenta — V(trdni2) Aengr,
j=1

where ||h||* is the squared length of the second fundamental form, RP the normal curva-
ture tensor and VtrA, the gradient of trA,.
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Proof. By regarding v = €nt1 A enyo as an EV-valued function with N = (";2) on M,
we have

(3.2) eV = —An+1(ei) Nent2 —ent1 N An+2(6i).

As the Laplacian of v is defined by

n

Ay = — Z (61‘61‘7/ — Veieﬂ/)7

i=1

then, by using (3.2) we obtain
Av=3" {6n+1 A (Vei (Ansa(er) = Ansa(Ve,ei) — wils(er) An+1(€i))
=1
+ (Ve (Ans1(e)) = Ana(Veyei) = wid () Ansa(en) ) Aenta}

+> {h(AnJrl(ei)v ei) A entz + ent1 A h(Ani2(es), 6i)}
=1

-2 Z An+1(6i) A\ An+2(e,~).

i=1

By a direct calculation, it is seen that

> h(Anti(es), ) Aenta + enit Ah(Anta(er),es) = [|h]*v,

i=1

where ||h||? = trA2 . +trAZ .

n
Z Apnti(ei) A Anya(es) = — Z R (ej,er; ent1, eniz)es A ey

i=1 i<k
and
n+2 n
Ve (Ar(e:) = Ar(Ve,er) = Y wie)Asles) = > hij e, r=n+1n+2
s=n+1 j=1
Thus, we get
Av = Z h?jfrilej Nent2 + Z hZJ,rz?@nH Nej+ ||h||2’/
i35 i, 7
(3.4) b
+2 ZR (ej, €k} ent1,Ent2)e; A ek.
i<k
Using the Codazzi equation (2.3) we have
n n n n+2 n
r r s r 3 T
Zhij,i = Zhim‘ = Z {ej(hn‘) + Z hiiws (e;) — 22%‘ (ej)hu}
i=1 i=1 i=1 s=n+1 £=1
n n+2 n )
=i (3om) + DD wile) Yo i -2 (wiles) +wilen) )i
i=1 s=n+1 i=1 i<t
n+2
(3.5) =e;(trA,) + Z wg (ej)tras
s=n+1
for r =n+1,n+2. Since V(trA,) = 377, e;(trA,)e;, then substituting (3.5) into (3.4)

for r=n+1 and r = n + 2 we obtain (3.1). O
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Now we give a characterization of a surface in E* with pointwise 1-type Gauss map
of the first kind according to M being minimal or non-minimal.

3.2. Theorem. An oriented non-minimal surface M in the Euclidean space E* has a
pointwise 1-type Gauss map of the first kind if and only if M has parallel mean curvature
vector in B4,

Proof. Since M is non-minimal, i.e., the mean curvature o # 0, then we can choose a local
orthonormal normal frame {es, es} such that e3 = H/«, which implies that trAs = 2«
and trd4 = 0.

Suppose that M has pointwise 1-type Gauss map of the first kind in E*. From (1.1)
and (3.1) we have

2
A’y 4+ 2R er Aea + 22&)2(6]‘)6]‘ NH+2VaANes= fv

Jj=1

for some differentiable function f on M, where RP = RD(€1,€2; €3, €e4) is the normal
curvature of M. Hence, we get RP = 0, wi = 0 and « is a non-zero constant. Therefore,
the normal bundle is flat and the vector es is parallel, i.e., the mean curvature vector
H = «es is parallel.

Conversely, assume that M has parallel mean curvature vector H in E*. Then, « is a
non-zero constant and es = H/« is parallel in the normal bundle, i.e., wj = 0. Since the
codimension is two, then the normal vector e4 is parallel too. Thus, the normal bundle
is flat, that is, R” = 0. Consequently, equation (3.1) for n = 2 implies that Av = ||h||*v,
i.e., M has a pointwise 1-type Gauss map of the first kind. |

Considering [6, Theorem 2.1, p.106] we have

3.3. Corollary. An oriented non-minimal surface M in the Euclidean space E* has
pointwise 1-type Gauss map of the first kind if and only if M is a surface in a 3-sphere
S3(a) of E* with constant mean curvature. O

For instance, all minimal surfaces of S3(a) C E* have pointwise 1-type Gauss map of
the first kind. Also, a torus 72 = S*(a) x S*(b) in S3(v/a? + b2) C E* has 1-type Gauss
map of the first kind.

3.4. Theorem. An oriented minimal surface M in the Euclidean space E* has pointwise
1-type Gauss map of the first kind if and only if M has a flat normal bundle.

Proof. Immediately follows from Definition (1.1) and Lemma 3.1. O

We give the following example for Theorem 3.4.
3.5. Example. Let M be a surface in E* with the parametrization
z(u,v) = (ucosv,usinv, v, v)

which lies in E*. The surface M, which is called a helicoid in E?, is minimal, and its

Gauss map v is of pointwise 1-type of the first kind, i.e., Av = ﬁu.

4. Pointwise 1-type Gauss map of the second kind

In this section we partially classify surfaces in E* with pointwise 1-type Gauss map of
the second kind. For a characterization of minimal surfaces in E* with pointwise 1-type
Gauss map of the second kind we prove
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4.1. Theorem. A non-planar minimal oriented surface M in the Euclidean space E*
has pointwise 1-type Gauss map of the second kind if and only if, with respect to some
suitable local orthonormal frame {e1, e2,e3,ea} on M, the shape operators of M are given
by As = diag(p, —p) and A4 = adiag(£p, £p), where p is a smooth non-zero function on
M and adiag(a,b) means a 2 X 2 anti-diagonal matriz.

Proof. Suppose that M is a non-planar minimal oriented surface in E* with pointwise
1-type Gauss map of the second kind. Then, the mean curvature vector H is zero, and
from (3.1) we have Av = ||h||*v + 2RPe1 A es which implies RP = RP (e1, ea; €3, €4) # 0
on M because if RP =0, then M would have a pointwise 1-type Gauss map of the first
kind. Considering (1.1) we have

|h)|>r + 2R e Aea = f(v + O)

for some smooth non-zero function f on M and some constant vector C. Writing C' =
21§A<B§4 Capea Nep, where Cap = (C,ea Aeg), we get

(41)  |A* = f(1+ Ca4), Caa #—1,
(4.2) 2R = fCi2 #0,
(4.3) Ci3 = C1qa = Ca3 = C24 = 0.

Assuming that e, ez are principal directions of A3 and considering the minimality of M,
then As and A4 can be expressed as follows:

_ (ki 0 _ (M1 hi

a= (M ) e a= (G S,
Thus we get RP = —2h3, hi, # 0, that is, h$; # 0 and hiy # 0 on M. When we evaluate
ex(Ciz) = ex (C,e1 Nes) =0 and ex(Chra) = e (C,e1 A es) =0 for k = 1,2 by using (4.3)
we obtain
(4.4)  h}1Cs0 =0,
(4.5) h%2034 — h?lcm =0,
(4.6)  h31C314 — hiyCi2 = 0,
(4.7  h}1Ciz =0.
Equation (4.2) implies that C12 # 0. From (4.4), if C34 = 0, then (4.6) gives hi, = 0 as
Ch2 # 0, which is not possible because RP = —2h% ki, # 0. Hence we get hi; = 0 by
(4.4) or (4.7). Moreover, since Ci2 # 0 and Cs4 # 0, then (4.5) and (4.6) are satisfied

if and only if hi, = +h$;. If we put p = h$;, then hl, = £p, and hence we obtain the
diagonal and anti-diagonal shape operators.

Conversely, assume that As = diag(p, —p) and A4 = adiag(+p, £p). Since trds =0
and trAs = 0, M is minimal. Also ||k||* = tr(A3) + tr(A3) = 4p® and RP = —2h$,ht, =
—2¢p® # 0, where ¢ = +1. Hence Av = 4p*(v — ce1 A e2) by (3.1). Let f = 8p® and
C=—-%e1 Ney — %63 A es. Considering the entries of A3 and A4 it can be shown that

2
ex(C) =0 for k = 1,2, i.e., C is a constant vector. Therefore it is easily seen that for

the chosen f and C equation (1.1) holds, i.e., M has pointwise 1-type Gauss map of the
second kind. (|

We give the next example for Theorem 4.1.

4.2. Example. We consider the graph surface M in E* defined by
z(u,v) = (u,v,u® —v?,2u), (u,v) € R?,

where (u,v) is an isothermal coordinate system on M.
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The unit vectors

10 10 1 1
=5 2T gy B X(—2u72v7 1,0), es = X(—2v7—2u707 1),
where A\ = /1 + 4u? + 4v2, form an orthonormal frame on M such that es, e4 are normal
to M.

From a direct calculation we obtain the shape operators As and A4 in the directions
e3 and e, respectively, as follows

2 . 2 .

= Fdlag(L —1) and A4 = Fadlag(L 1).
Therefore, M is minimal, and it has a pointwise 1-type Gauss map of the second kind
by Theorem 4.1. Furthermore the Gauss map v = e3 A e4 satisfies (1.1) for f =
32/(1 + 4u® + 4v*)% and the constant vector C' = —1/2e1 A ez — 1/2e3 Aes € ES.

€1

As

We need the following example for the proof of the next theorem. We show that a
2-dimensional helical cylinder M in E* has a 1-type Gauss map of the second kind. It has
also non-parallel mean curvature direction, constant mean curvature, and dim(N;(M)) =
1.

4.3. Example. Let M be a 2-dimensional helical cylinder in E*. Then, by a suitable
choice of the Euclidean coordinates, M takes the following form
z(u,v) = (acosu, asinu, bu,v),
for some constants a # 0 and b. If we put
=t0 0
YT oouw T v

where ¢ = a2 + b2, then the dual forms are w' = cdu, w? = dv, and by a direct
calculation we obtain the connection forms wZ® of M as

. 1, .
, e3 = (cosu,sinu,0,0), es = p (bsinu, —bcosu,a,0),

a b
(4.8)  ws =0, Wi =wi=ws =0, wif:——2w1, wZ:—2w1.

c c
All these relations show that M? has a flat normal bundle, the mean curvature o =
—a/(2¢?) is constant, and the mean curvature direction ez = H/a is non-parallel.

By a calculation we have

Ay — 1 ab b?
V—C—2 V—gel/\eg—c—zeg/\m
which satisfies the definition (1.1) with f(u,v) = 1/¢* and C = —g—fel Nes — ’2—263 A es.
We can see by a direct calculation that ex(C) = 0 for kK = 1,2. Therefore the helical
cylinder M? has 1-type Gauss map of the second kind as f is constant.

4.4. Theorem. Let M be an oriented surface in the Fuclidean space E* with non-parallel
mean curvature direction, non-zero constant mean curvature, and dim(Ni(M)) = 1,
where N1(M) denotes the first normal space of M. Then, M has pointwise 1-type Gauss
map of the second kind if and only if M is an open portion of a helical cylinder in E*.

Proof. From the hypotheses on M, we can choose a local orthonormal normal frame
{es, ea} such that es = H/a, a # 0, and De,e3 = wgl(ei)a; #0, ie., wgl(ei) # 0 at least
for one 7 € {1,2}.

Thus, without losing generality we may assume that wi’(el) # 0 in the following
calculation. From dim(N:(M)) = 1 we have A4 = 0, i.e., h?j =0, ¢,j = 1,2 which
implies R” = 0 on M by (2.4). We choose a local orthonormal tangent frame {e1,e2}
on M such that As = diag(h?;, h3,).
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Now suppose M has a pointwise 1-type Gauss map of the second kind. Since trAs = 2«
is constant and trA4 = 0, then we have from (1.1) and (3.1)

2
(4.9)  ||hlPv+ 20 wileei Aes = f(v+C)

i=1

for some smooth function f on M and some constant vector C' which can be written as

C= Z CapeaNeg,

1<A<B<4
where Cap = (C,ea A eg). Equation (4.9) implies that
R[> = f(1 4 Csa),
2awi(er) = f Cis,

f0237
Cia=(C,e1 Nes) =0, Coa = (C,ea Aea) =0, Cr12 = (C, e1 ANea) =0.

4.10
4.11
4.12
4.13

(4.10)
(4.11)
( ) 2awi(es
(4.13)

By evaluating e2((C,e1 Ae2)) = e2(0), e1((C,e2 Aes)) = e1(0), and e1((C,e1 ANes)) =
e1(0), and using (4.13), we obtain the following equations:

(4.14) h3s C13 = 0,

(4.15) wi(el) 023 = 07

(4.16) h?l Csq + Wi(el) Ci3 =0,

As wi(e1) # 0 we have Ci3 # 0 from (4.11). Thus, (4.16) implies that C3s # 0 and

h3; # 0. Also, (4.14) and (4.15) give, respectively, h3; = 0 (h}; = 2a # 0) and
Caz = (C,e2 A es) = 0. Moreover, we have wj(e2) = 0 by (4.12).

Now, when we evaluate ex((C,e2 Aes)) = ex(0) for k = 1,2 by using (4.13) and
h?j = 0, we then have
(4.17)  wi(e1)Ciz =0,
(4.18) w% (62) 013 =0.

These equations imply that w3 (e1) = w3 (e2) = 0, that is, M is flat.

By considering C23 = 0, h?j =0,4,5 = 1,2, and (4.13) it is seen that ex(C13) = 0 and
ex(C34) = 0 for k = 1,2, that is, C13 and C34 are constant. Since ||h||* = (h}1)? = 4a? is
constant, then the function f is constant because of (4.10). Moreover, Equation (4.11)
implies that wj(e1) = £

2013 is a constant.
«
Consequently, we obtain

1 3_ 4 _ 4 _ 3 _ 1 3 _ 1
wy =wy =w; =wy =0, wi=2aw, wi=pw,

where po = £ 2623 All these relations show that the connection forms wh of M coincide
with the connection forms of the helical cylinder, which are given by (4.8). Therefore,
by the fundamental theorem of submanifolds, M is locally isometric to a helical cylinder

of E*.

The converse follows from Example 4.3.

Note that if wi’(eg) # 0, we can obtain the same result by a similar argument. O



Surfaces with Pointwise 1-Type Gauss Map 625

References

[1] Arslan, K., Bayram, B. K., Bulca, B., Kim, Y. H., Murathan, C. and Ouztiirk, G. Rotational
embeddings in E* with pointwise 1-type Gauss map, Turk. J. Math. 35, 493-499, 2011.

[2] Baikoussis, C. and Blair, D.E. On the Gauss map of ruled surfaces, Glasgow Math. J. 34,
355-359, 1992.

[3] Baikoussis, C., Chen, B.Y. and Verstraelen, L. Ruled surfaces and tubes with finite type
Gauss map, Tokyo J. Math. 16, 341-348, 1993.

[4] Baikoussis, C. Ruled sumanifolds with finite type Gauss map, J. Geom. 49, 42-45, 1994.

[5] Baikoussis, C. and Verstralen, L. The Chen-type of the spiral surfaces, Results in Math. 28,
214-223, 1995.

[6] Chen, B.Y. Geometry of Submanifolds (Marcel Dekker, New York, 1973).

[7] Chen, B.Y. On submanifolds of finite type, Soochow J. Math. 9, 65-81, 1983.

[8] Chen, B.Y. Total Mean Curvature and Submanifolds of Finite Type (World Scientific, Sin-
gapor, New Jersey, London, 1984).

[9] Chen, B.Y. and Piccinni, P. Sumanifolds with finite type Gauss map, Bull. Austral. Math.
Soc. 35, 161-186, 1987.

[10] Chen, B.Y., Choi, M. and Kim, Y.H. Surfaces of revolution with pointwise 1-type Gauss
map, J. Korean Math. 42, 447-455, 2005.

[11] Choi, M. and Kim, Y.H. Characterization of the helicoid as ruled surfaces with pointwise
1-type Gauss map, Bull. Korean Math. Soc. 38, 753-761, 2001.

[12] Dursun, U. Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 11, 1407—
1416, 2007.

[13] Kim, Y.H. and Yoon, D. W. Ruled surfaces with pointwise 1-type Gauss map, J. Geom.
Phys. 34, 191-205, 2000.

[14] Kim, Y.H. and Yoon, D. W. Classification of rotation surfaces in pseudo-Euclidean space,
J. Korean Math. 41, 379-396, 2004.

[15] Niang, A. Rotation surfaces with 1-type Gauss map, Bull. Korean Math. Soc. 42, 23-27,
2005.

[16] Yoon, D.W. Rotation surfaces with finite type Gauss map in E*, Indian J. Pure. Appl.
Math. 32, 1803-1808, 2001.

[17] Yoon, D.W. On the Gauss map of translation surfaces in Minkowski 3-spaces, Taiwanese
J. Math. 6, 389-398, 2002.



