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Abstract

In this article we study surfaces in Euclidean space E
4 with pointwise

1-type Gauss map. We give a characterization of surfaces in E
4 with

a pointwise 1-type Gauss map of the first kind. We conclude that an
oriented non-minimal surface M in E

4 has a pointwise 1-type Gauss
map of the first kind if and only if M is a surface in a 3-sphere of E4

with constant mean curvature. We also obtain a characterization for
non-planar minimal surfaces in E

4 with pointwise 1-type Gauss map of
the second kind. Further we give a partial classification of surfaces in
E

4 in terms of the pointwise 1-type Gauss map of the second kind.

Keywords: Minimal surface, Normal bundle, Mean curvature, Pointwise 1-type, Gauss
map.
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1. Introduction

A submanifold M of a Euclidean space Em is said to be of finite type if its position
vector x can be expressed as a finite sum of eigenvectors of the Laplacian ∆ of M , that
is, x = x0 + x1 + · · ·+ xk, where x0 is a constant map, x1, . . . , xk are non-constant maps
such that ∆xi = λixi, λi ∈ R, i = 1, 2, . . . , k.

If λ1, λ2, . . . , λk are all different, then M is said to be of k-type (cf. [7, 8]). In [9], this
definition was similarly extended to differentiable maps, in particular, to Gauss maps of
submanifolds.

The notion of a finite type Gauss map is especially a useful tool in the study of sub-
manifolds (cf. [2, 3, 4, 5, 9, 16]). In [9], Chen and Piccinni made a general study on
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compact submanifolds of Euclidean spaces with finite type Gauss map, and for hyper-
surfaces they proved that a compact hypersurface M of En+1 has 1-type Gauss map if
and only if M is a hypersphere in En+1.

If a submanifold M of a Euclidean space has 1-type Gauss map ν, then ∆ν = λ(ν+C)
for some λ ∈ R and some constant vector C. However, the Laplacian of the Gauss map
of several surfaces such as the helicoid, catenoid and right cones in E

3, and also some
hypersurfaces take the form

(1.1) ∆ν = f(ν + C)

for some smooth function f on M and some constant vector C. A submanifold of a
Euclidean space is said to have pointwise 1-type Gauss map if its Gauss map satisfies
(1.1) for some smooth function f on M and some constant vector C. A submanifold with
pointwise 1-type Gauss map is said to be of the first kind if the vector C in (1.1) is the
zero vector. Otherwise, a submanifold with pointwise 1-type Gauss map is said to be of
the second kind.

Surfaces in Euclidean spaces and in pseudo-Euclidean spaces with pointwise 1-type
Gauss map were recently studied in [1, 10, 11, 13, 14, 15, 17]. Also, hypersurfaces of the
Euclidean space En+1 with pointwise 1-type Gauss map were studied in [12].

In this paper we give a characterization of a surface in E
4 with pointwise 1-type Gauss

map of the first kind in terms of M being minimal or non-minimal. We conclude that
an oriented non-minimal surface in E

4 has pointwise 1-type Gauss map of the first kind
if and only if M is a surface in a 3-sphere of E4 with constant mean curvature.

On the other hand we give a characterization for non-planar minimal surfaces in E
4

with pointwise 1-type Gauss map of the second kind. Further, for an oriented surface
M in E

4 with non-parallel mean curvature direction, non-zero constant mean curvature,
and dim(N1(M)) = 1 we prove that M has pointwise 1-type Gauss map of the second
kind if and only if M is an open portion of a helical cylinder in E

4, where N1(M) is the
first normal space of M in E

4.

2. Preliminaries

Let M be an oriented n-dimensional submanifold in an (n+2)-dimensional Euclidean
space E

n+2. We choose an oriented local orthonormal frame {e1, . . . , en+2} on M such
that e1, . . . , en are tangent to M and en+1, en+2 are normal to M . We use the following
convention on the range of indices: 1 ≤ i, j, k, . . . ≤ n, n+ 1 ≤ r, s, t, . . . ≤ n+ 2.

Let ∇̃ be the Levi-Civita connection of En+2 and ∇ the induced connection on M .
Denote by {ω1, . . . , ωn+2} the dual frame and by {ωA

B}, A,B = 1, . . . , n+2, the connection
forms associated to {e1, . . . , en+2}. Then we have

∇̃ekei =
n∑

j=1

ωj
i (ek)ej +

n+2∑

r=n+1

hr
iker,

∇̃ekes = −Ar(ek) +

n+2∑

r=n+1

ωr
s(ek)er, and

Dekes =

n+2∑

r=n+1

ωr
s(ek)er,

where D is the normal connection, hr
ij the coefficients of the second fundamental form

h, and Ar the Weingarten map in the direction er.
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The mean curvature vector H and the squared length ‖h‖2 of the second fundamental
form h are defined, respectively, by

(2.1) H =
1

n

∑

r,i

hr
iier

and

(2.2) ‖h‖2 =
∑

r,i,j

hr
ijh

r
ji.

The Codazzi equation of M in En+2 is given by

hr
ij,k = hr

jk,i,

hr
jk,i = ei(h

r
jk) +

n+2∑

s=n+1

hs
jkω

r
s(ei)−

n∑

ℓ=1

(
ωℓ
j(ei)h

r
ℓk + ωℓ

k(ei)h
r
jℓ

)
.

(2.3)

Also, from the Ricci equation of M in En+2, we have

(2.4) RD(ej , ek; er, es) = 〈[Aer , Aes ](ej), ek〉 =
n∑

i=1

(
hr
ikh

s
ij − hr

ijh
s
ik

)
,

where RD is the normal curvature tensor.

The first normal space N1(M) of M at each point p ∈ M in E
n+2 is defined as the

orthogonal complement of the space {ξ ∈ T⊥
p M | Aξ = 0} in the normal space T⊥

p M .

Let G(m−n,m) denote the Grassmannian manifold consisting of all oriented (m−n)-
planes through the origin of Em. Let M be an oriented n-dimensional submanifold of a
Euclidean space Em. The Gauss map ν : M → G(m−n,m) of M is a smooth map which
carries a point p ∈ M into the oriented (m−n)-plane through the origin of Em obtained
by the parallel translation of the normal space of M at p in Em.

SinceG(m−n,m) is canonically embedded in
∧m−n

E
m = E

N , N =
(

m

m−n

)
, the notion

of the type of the Gauss map is naturally defined. If {en+1, en+2, . . . , em} is an oriented
orthonormal normal frame on M , then the Gauss map ν : M → G(m − n,m) ⊂ E

N is
given by ν(p) = (en+1 ∧ en+2 ∧ · · · ∧ em)(p).

The product of a circular helix with non-zero torsion which lies in a 3-dimensional
linear subspace E3 of the Euclidean space E

4 and a line of E4 is called a 2-dimensional
helical cylinder in the Euclidean space E

4.

3. Pointwise 1-type Gauss map of the first kind

In this section we investigate surfaces in the Euclidean space E4 with pointwise 1-type
Gauss map of the first kind. However we prove the following lemma for n-dimensional
submanifolds of the Euclidean space E

n+2.

3.1. Lemma. Let M be an n-dimensional submanifold of Euclidean space E
n+2. Then,

the Laplacian of the Gauss map ν = en+1 ∧ en+2 is given by

∆ν = ‖h‖2ν + 2
∑

j<k

RD(ej , ek; en+1, en+2)ej ∧ ek

+ n

n∑

j=1

ωn+1
n+2(ej)ej ∧H +∇(trAn+1) ∧ en+2 −∇(trAn+2) ∧ en+1,

(3.1)

where ‖h‖2 is the squared length of the second fundamental form, RD the normal curva-

ture tensor and ∇trAr the gradient of trAr.
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Proof. By regarding ν = en+1 ∧ en+2 as an E
N -valued function with N =

(
n+2
2

)
on M ,

we have

(3.2) eiν = −An+1(ei) ∧ en+2 − en+1 ∧An+2(ei).

As the Laplacian of ν is defined by

∆ν = −
n∑

i=1

(
eieiν −∇eieiν

)
,

then, by using (3.2) we obtain

∆ν =
n∑

i=1

{
en+1 ∧

(
∇ei(An+2(ei))− An+2(∇eiei)− ωn+1

n+2(ei)An+1(ei)
)

+
(
∇ei(An+1(ei))−An+1(∇eiei)− ωn+2

n+1(ei)An+2(ei)
)
∧ en+2

}

+

n∑

i=1

{
h(An+1(ei), ei) ∧ en+2 + en+1 ∧ h(An+2(ei), ei)

}

− 2

n∑

i=1

An+1(ei) ∧An+2(ei).

(3.3)

By a direct calculation, it is seen that

n∑

i=1

h(An+1(ei), ei) ∧ en+2 + en+1 ∧ h(An+2(ei), ei) = ‖h‖2ν,

where ‖h‖2 = trA2
n+1 + trA2

n+2,

n∑

i=1

An+1(ei) ∧An+2(ei) = −
∑

j<k

RD(ej , ek; en+1, en+2)ej ∧ ek

and

∇ei(Ar(ei))− Ar(∇eiei)−
n+2∑

s=n+1

ωs
r(ei)As(ei) =

n∑

j=1

hr
ij, i ej , r = n+ 1, n+ 2.

Thus, we get

∆ν =
∑

i, j

hn+1
ij, i ej ∧ en+2 +

∑

i, j

hn+2
ij, i en+1 ∧ ej + ‖h‖2ν

+ 2
∑

j<k

RD(ej , ek; en+1, en+2)ej ∧ ek.
(3.4)

Using the Codazzi equation (2.3) we have

n∑

i=1

hr
ij, i =

n∑

i=1

hii, j =

n∑

i=1

{
ej(h

r
ii) +

n+2∑

s=n+1

hs
iiω

r
s(ej)− 2

n∑

ℓ=1

ωℓ
i (ej)h

r
ℓi

}

= ej
( n∑

i=1

hr
ii

)
+

n+2∑

s=n+1

ωr
s(ej)

n∑

i=1

hs
ii − 2

∑

i<ℓ

(
ωℓ
i (ej) + ωi

ℓ(ej)
)
hr
ℓi

= ej
(
trAr

)
+

n+2∑

s=n+1

ωr
s(ej)trAs(3.5)

for r = n+1, n+2. Since ∇(trAr) =
∑n

j=1 ej(trAr)ej , then substituting (3.5) into (3.4)

for r = n+ 1 and r = n+ 2 we obtain (3.1). �
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Now we give a characterization of a surface in E
4 with pointwise 1-type Gauss map

of the first kind according to M being minimal or non-minimal.

3.2. Theorem. An oriented non-minimal surface M in the Euclidean space E
4 has a

pointwise 1-type Gauss map of the first kind if and only if M has parallel mean curvature

vector in E
4.

Proof. SinceM is non-minimal, i.e., the mean curvature α 6= 0, then we can choose a local
orthonormal normal frame {e3, e4} such that e3 = H/α, which implies that trA3 = 2α
and trA4 = 0.

Suppose that M has pointwise 1-type Gauss map of the first kind in E
4. From (1.1)

and (3.1) we have

‖h‖2ν + 2RDe1 ∧ e2 + 2
2∑

j=1

ω3
4(ej)ej ∧H + 2∇α ∧ e4 = fν

for some differentiable function f on M , where RD = RD(e1, e2; e3, e4) is the normal
curvature of M . Hence, we get RD = 0, ω3

4 = 0 and α is a non-zero constant. Therefore,
the normal bundle is flat and the vector e3 is parallel, i.e., the mean curvature vector
H = αe3 is parallel.

Conversely, assume that M has parallel mean curvature vector H in E
4. Then, α is a

non-zero constant and e3 = H/α is parallel in the normal bundle, i.e., ω3
4 = 0. Since the

codimension is two, then the normal vector e4 is parallel too. Thus, the normal bundle
is flat, that is, RD = 0. Consequently, equation (3.1) for n = 2 implies that ∆ν = ‖h‖2ν,
i.e., M has a pointwise 1-type Gauss map of the first kind. �

Considering [6, Theorem 2.1, p.106] we have

3.3. Corollary. An oriented non-minimal surface M in the Euclidean space E
4 has

pointwise 1-type Gauss map of the first kind if and only if M is a surface in a 3-sphere
S3(a) of E4 with constant mean curvature. �

For instance, all minimal surfaces of S3(a) ⊂ E
4 have pointwise 1-type Gauss map of

the first kind. Also, a torus T 2 = S1(a)× S1(b) in S3(
√
a2 + b2) ⊂ E

4 has 1-type Gauss
map of the first kind.

3.4. Theorem. An oriented minimal surface M in the Euclidean space E
4 has pointwise

1-type Gauss map of the first kind if and only if M has a flat normal bundle.

Proof. Immediately follows from Definition (1.1) and Lemma 3.1. �

We give the following example for Theorem 3.4.

3.5. Example. Let M be a surface in E
4 with the parametrization

x(u, v) = (u cos v, u sin v, v, v)

which lies in E
4. The surface M , which is called a helicoid in E

4, is minimal, and its
Gauss map ν is of pointwise 1-type of the first kind, i.e., ∆ν = 4

(u2+2)2
ν.

4. Pointwise 1-type Gauss map of the second kind

In this section we partially classify surfaces in E
4 with pointwise 1-type Gauss map of

the second kind. For a characterization of minimal surfaces in E
4 with pointwise 1-type

Gauss map of the second kind we prove
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4.1. Theorem. A non-planar minimal oriented surface M in the Euclidean space E
4

has pointwise 1-type Gauss map of the second kind if and only if, with respect to some

suitable local orthonormal frame {e1, e2, e3, e4} on M , the shape operators of M are given

by A3 = diag(ρ,−ρ) and A4 = adiag(±ρ,±ρ), where ρ is a smooth non-zero function on

M and adiag(a, b) means a 2× 2 anti-diagonal matrix.

Proof. Suppose that M is a non-planar minimal oriented surface in E
4 with pointwise

1-type Gauss map of the second kind. Then, the mean curvature vector H is zero, and
from (3.1) we have ∆ν = ‖h‖2ν + 2RDe1 ∧ e2 which implies RD = RD(e1, e2; e3, e4) 6= 0
on M because if RD = 0, then M would have a pointwise 1-type Gauss map of the first
kind. Considering (1.1) we have

‖h‖2ν + 2RDe1 ∧ e2 = f(ν + C)

for some smooth non-zero function f on M and some constant vector C. Writing C =∑
1≤A<B≤4 CAB eA ∧ eB, where CAB = 〈C, eA ∧ eB〉, we get

‖h‖2 = f(1 + C34), C34 6= −1,(4.1)

2RD = fC12 6= 0,(4.2)

C13 = C14 = C23 = C24 = 0.(4.3)

Assuming that e1, e2 are principal directions of A3 and considering the minimality of M ,
then A3 and A4 can be expressed as follows:

A3 =

(
h3
11 0
0 −h3

11

)
and A4 =

(
h4
11 h4

12

h4
12 −h4

11

)
.

Thus we get RD = −2h3
11h

4
12 6= 0, that is, h3

11 6= 0 and h4
12 6= 0 on M . When we evaluate

ek(C13) = ek 〈C, e1 ∧ e3〉 = 0 and ek(C14) = ek 〈C, e1 ∧ e4〉 = 0 for k = 1, 2 by using (4.3)
we obtain

h4
11C34 = 0,(4.4)

h4
12C34 − h3

11C12 = 0,(4.5)

h3
11C34 − h4

12C12 = 0,(4.6)

h4
11C12 = 0.(4.7)

Equation (4.2) implies that C12 6= 0. From (4.4), if C34 = 0, then (4.6) gives h4
12 = 0 as

C12 6= 0, which is not possible because RD = −2h3
11h

4
12 6= 0. Hence we get h4

11 = 0 by
(4.4) or (4.7). Moreover, since C12 6= 0 and C34 6= 0, then (4.5) and (4.6) are satisfied
if and only if h4

12 = ±h3
11. If we put ρ = h3

11, then h4
12 = ±ρ, and hence we obtain the

diagonal and anti-diagonal shape operators.

Conversely, assume that A3 = diag(ρ,−ρ) and A4 = adiag(±ρ,±ρ). Since trA3 = 0

and trA4 = 0, M is minimal. Also ‖h‖2 = tr(A2
3) + tr(A2

4) = 4ρ2 and RD = −2h3
11h

4
12 =

−2ερ2 6= 0, where ε = ±1. Hence ∆ν = 4ρ2(ν − εe1 ∧ e2) by (3.1). Let f = 8ρ2 and
C = − ε

2
e1 ∧ e2 − 1

2
e3 ∧ e4. Considering the entries of A3 and A4 it can be shown that

ek(C) = 0 for k = 1, 2, i.e., C is a constant vector. Therefore it is easily seen that for
the chosen f and C equation (1.1) holds, i.e., M has pointwise 1-type Gauss map of the
second kind. �

We give the next example for Theorem 4.1.

4.2. Example. We consider the graph surface M in E
4 defined by

x(u, v) = (u, v, u2 − v2, 2uv), (u, v) ∈ R
2,

where (u, v) is an isothermal coordinate system on M .
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The unit vectors

e1 =
1

λ

∂

∂u
, e2 =

1

λ

∂

∂v
, e3 =

1

λ
(−2u, 2v, 1, 0), e4 =

1

λ
(−2v,−2u, 0, 1),

where λ =
√
1 + 4u2 + 4v2, form an orthonormal frame on M such that e3, e4 are normal

to M .

From a direct calculation we obtain the shape operators A3 and A4 in the directions
e3 and e4, respectively, as follows

A3 =
2

λ3
diag(1,−1) and A4 =

2

λ3
adiag(1, 1).

Therefore, M is minimal, and it has a pointwise 1-type Gauss map of the second kind
by Theorem 4.1. Furthermore the Gauss map ν = e3 ∧ e4 satisfies (1.1) for f =
32/(1 + 4u2 + 4v2)3 and the constant vector C = −1/2e1 ∧ e2 − 1/2e3 ∧ e4 ∈ E

6.

We need the following example for the proof of the next theorem. We show that a
2-dimensional helical cylinder M in E

4 has a 1-type Gauss map of the second kind. It has
also non-parallel mean curvature direction, constant mean curvature, and dim(N1(M)) =
1.

4.3. Example. Let M be a 2-dimensional helical cylinder in E
4. Then, by a suitable

choice of the Euclidean coordinates, M takes the following form

x(u, v) = (a cosu, a sin u, bu, v) ,

for some constants a 6= 0 and b. If we put

e1 =
1

c

∂

∂u
, e2 =

∂

∂v
, e3 = (cosu, sin u, 0, 0) , e4 =

1

c
(b sin u,−b cosu, a, 0) ,

where c =
√
a2 + b2, then the dual forms are ω1 = c du, ω2 = dv, and by a direct

calculation we obtain the connection forms ωB
A of M as

(4.8) ω1
2 = 0, ω3

2 = ω4
1 = ω4

2 = 0, ω3
1 = − a

c2
ω1, ω3

4 =
b

c2
ω1.

All these relations show that M2 has a flat normal bundle, the mean curvature α =
−a/(2c2) is constant, and the mean curvature direction e3 = H/α is non-parallel.

By a calculation we have

∆ν =
1

c2

(
ν − ab

c2
e1 ∧ e3 −

b2

c2
e3 ∧ e4

)

which satisfies the definition (1.1) with f(u, v) = 1/c2 and C = − ab

c2
e1 ∧ e3 − b2

c2
e3 ∧ e4.

We can see by a direct calculation that ek(C) = 0 for k = 1, 2. Therefore the helical
cylinder M2 has 1-type Gauss map of the second kind as f is constant.

4.4. Theorem. Let M be an oriented surface in the Euclidean space E
4 with non-parallel

mean curvature direction, non-zero constant mean curvature, and dim(N1(M)) = 1,
where N1(M) denotes the first normal space of M . Then, M has pointwise 1-type Gauss

map of the second kind if and only if M is an open portion of a helical cylinder in E
4.

Proof. From the hypotheses on M , we can choose a local orthonormal normal frame
{e3, e4} such that e3 = H/α, α 6= 0, and Deie3 = ω4

3(ei)e4 6= 0, i.e., ω4
3(ei) 6= 0 at least

for one i ∈ {1, 2}.
Thus, without losing generality we may assume that ω3

4(e1) 6= 0 in the following
calculation. From dim(N1(M)) = 1 we have A4 = 0, i.e., h4

ij = 0, i, j = 1, 2 which

implies RD = 0 on M by (2.4). We choose a local orthonormal tangent frame {e1, e2}
on M such that A3 = diag(h3

11, h
3
22).
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Now supposeM has a pointwise 1-type Gauss map of the second kind. Since trA3 = 2α
is constant and trA4 = 0, then we have from (1.1) and (3.1)

(4.9) ||h||2ν + 2α
2∑

i=1

ω3
4(ei)ei ∧ e3 = f(ν + C)

for some smooth function f on M and some constant vector C which can be written as

C =
∑

1≤A<B≤4

CAB eA ∧ eB,

where CAB = 〈C, eA ∧ eB〉. Equation (4.9) implies that

||h||2 = f(1 +C34),(4.10)

2αω3
4(e1) = f C13,(4.11)

2αω3
4(e2) = f C23,(4.12)

C14 = 〈C, e1 ∧ e4〉 = 0, C24 = 〈C, e2 ∧ e4〉 = 0, C12 = 〈C, e1 ∧ e2〉 = 0.(4.13)

By evaluating e2(〈C, e1 ∧ e2〉) = e2(0), e1(〈C, e2 ∧ e4〉) = e1(0), and e1(〈C, e1 ∧ e4〉) =
e1(0), and using (4.13), we obtain the following equations:

h3
22 C13 = 0,(4.14)

ω3
4(e1)C23 = 0,(4.15)

h3
11 C34 + ω3

4(e1)C13 = 0,(4.16)

As ω3
4(e1) 6= 0 we have C13 6= 0 from (4.11). Thus, (4.16) implies that C34 6= 0 and

h3
11 6= 0. Also, (4.14) and (4.15) give, respectively, h3

22 = 0 (h3
11 = 2α 6= 0) and

C23 = 〈C, e2 ∧ e3〉 = 0. Moreover, we have ω3
4(e2) = 0 by (4.12).

Now, when we evaluate ek(〈C, e2 ∧ e3〉) = ek(0) for k = 1, 2 by using (4.13) and
h4
ij = 0, we then have

ω1
2(e1)C13 = 0,(4.17)

ω1
2(e2)C13 = 0.(4.18)

These equations imply that ω1
2(e1) = ω1

2(e2) = 0, that is, M is flat.

By considering C23 = 0, h4
ij = 0, i, j = 1, 2, and (4.13) it is seen that ek(C13) = 0 and

ek(C34) = 0 for k = 1, 2, that is, C13 and C34 are constant. Since ||h||2 = (h3
11)

2 = 4α2 is
constant, then the function f is constant because of (4.10). Moreover, Equation (4.11)

implies that ω3
4(e1) =

fC13

2α
is a constant.

Consequently, we obtain

ω1
2 = ω3

2 = ω4
1 = ω4

2 = 0, ω3
1 = 2αω1, ω3

4 = µ0ω
1,

where µ0 = fC13

2α
. All these relations show that the connection forms ωA

B of M coincide
with the connection forms of the helical cylinder, which are given by (4.8). Therefore,
by the fundamental theorem of submanifolds, M is locally isometric to a helical cylinder
of E4.

The converse follows from Example 4.3.

Note that if ω3
4(e2) 6= 0, we can obtain the same result by a similar argument. �
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