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Abstract

In this paper, we give the relation between a finitely generated torsion
free Dedekind module and the endomorphism ring of O(M)M . In ad-
dition it is proved that the endomorphism ring of a finitely generated
torsion free Dedekind module M is a Dedekind domain. Also, we give
equivalent condition for Dedekind modules, duo modules and uniform
modules. Various properties and characterizations of Dedekind mod-
ules over integral domains are considered and consequently, necessary
and sufficient conditions for an R-module M to be a Dedekind module
are given.

Keywords: Dedekind modules and Dedekind domains, Invertible submodules, Duo
modules.
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1. Introduction

Throughout this paper all rings are commutative domains with identity and all mod-
ules are unitary.

A nonzero ideal I of R is said to be invertible if II−1 = R, where I−1 = {x ∈ K : xI ⊆
R}. The concept of an invertible submodule was introduced in [7] as a generalization of
the concept of an invertible ideal. Let M be an R-module and let S = R − {0}. Then

T = {t ∈ S : tm = 0 for some m ∈ M implies m = 0}

is a multiplicatively closed subset of R. Let N be a submodule of M and N ′ = {x ∈
RT : xN ⊆ M}. A submodule N is said to be invertible in M , if N ′N = M , [7]. Note
that N ′ is an R-submodule of RT with R ⊆ N−1. A nonzero R-module M is called
Dedekind provided that each nonzero submodule of M is invertible.

Let O(M) = {x ∈ K : xM ⊆ M}, the order of an R-module M in K. Then O(M) is
a subring of K with R ⊆ O(M) and M is an O(M)-module.

Let M be any R-module. We denote the ring of R-endomorphisms of M by End(M).
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For any prime ideal P of R, S = R−P is a multiplicatively closed set, and we denote
S−1R by RP and S−1M by MP .

Let M be an R-module, the torsion submodule of M is

T (M) = {m ∈ M : ∃ 0 6= r ∈ R such that rm = 0}.

Then M is called torsion if T (M) = M , and M is called torsion free if T (M) = 0.

In this note we prove that if M is a Dedekind R-module, then T−1R is a local ring
and T = R − Ann(M), and M is a Dedekind R-module if and only if M is Dedekind as
a R

Ann(M)
-module.

We also prove our main theorems, which may be stated as follows:

2.12. Theorem. Let R be a Dedekind domain. Then the following are equivalent for a
finitely generated torsion free R-module M :

(1) M is a duo module,
(2) M is a multiplication module,
(3) M is a Dedekind module,
(4) M is a uniform module,
(5) rankRM = 1.

2.13. Theorem. Let M be a finitely generated torsion free Dedekind R-module. Then
the following are equivalent:

(1) R is a Dedekind domain,
(2) R is integrally closed,
(3) M is a multiplication module,
(4) M is a projective module,
(5) M is a flat module,
(6) M is a cancellation module,
(7) M is an duo module.

2.21. Theorem. The following statements are equivalent for a finitely generated torsion
free R-module M :

(1) M is a Dedekind R-module,
(2) O(M) is Noetherian, integrally closed and for each O(M)-submodule N of M ,

(N :O(M) M) = (O(M) :O(M) N
′),

(3) O(M) is a Dedekind domain and End(RM) ∼= O(M),
(4) O(M) is a Dedekind domain and M is a uniform R-module,
(5) O(M) is a Dedekind domain and every nonzero prime submodule of an O(M)-

module M is maximal.

2. Dedekind modules

Before starting, we recall some necessary notations and known facts. Let M be an
R-module and S = R− {0}. Then

T = {t ∈ S : tm = 0 for some m ∈ M implies m = 0}

is a multiplicatively closed subset of R. It is clear that if M is torsion free, then T = S.
Now let T−1R be the localization of R at T in the usual sense. Following Naoum and
Al-Alwan [7], we say that xn ∈ M , where x = r

t
∈ T−1R and n ∈ M − {0}, as long as

there exists an element m ∈ M such that tm = rn for some r ∈ R. We start with the
following proposition:

2.1. Proposition. Let M be a Dedekind R-module, Then T−1M is a simple T−1R-
module.
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Proof. Let N be a nonzero submodule of T−1M . Therefore there exists N ≤ M such
that N = T−1N . Since N is an invertible submodule of M , N = T−1N = T−1M . Thus
T−1M is a simple T−1R-module. �

2.2. Proposition. Let M be a Dedekind R-module. Then for each 0 6= m ∈ M ,
AnnR(m) = AnnR(M) and AnnR(M) is a prime ideal of R.

Proof. Let 0 6= m ∈ M . Since T−1M is a simple T−1R-module, there exists a maximal
ideal P of T−1R such that AnnT−1R(m) = P. We know that P = T−1P for some prime
ideal P of R. Thus AnnT−1R(m) = T−1P . Consequently, AnnR(m) = P . Since for each
0 6= m ∈ M , AnnR(m) = P , thus AnnR(m) = AnnR(M) = P . �

Recall that anR-moduleM is called prime whenever for each 0 6= N ≤ M , AnnR(M) =
AnnR(N).

2.3. Corollary. The following hold for a Dedekind R-module M :

(1) M is either torsion or torsion free.
(2) M is torsion free if and only if it is a faithful R-module.
(3) M is a prime module.

Proof. (1) By Proposition 2.2, if T (M) 6= 0 then T (M) = M .

(2) It is clear that every torsion free module is faithful.

Conversely, suppose Ann(M) = 0. Then for each 0 6= m ∈ M , Ann(m) = 0. Thus M
is torsion free.

(3) Clear by Proposition 2.2. �

The following Theorem gives some important properties of Dedekind modules.

2.4. Theorem. Let M be a Dedekind R-module.

(1) T−1R is a local ring.
(2) AssR(M) = {AnnR(M)}

Proof. (1) Let AnnR(M) = P . Since T ∩ P = ∅, T ⊆ R − P . Let r /∈ P , then for each
0 6= m ∈ M , rm 6= 0. Thus T = R − P , hence T−1R is a local ring.

(2) Clear from Proposition 2.2. �

The next proposition gives a condition for a Dedekind R-module to be a simple R-
module.

2.5. Proposition. Let M be a Dedekind R-module. Then M is simple if and only if
Ann(M) is a maximal ideal.

Proof. The necessity is clear. For the sufficiency, let Ann(M) be a maximal ideal of R.
Then M is a direct sum of some simple modules, hence M = Rm. Therefore M is a
simple R-module. �

2.6. Corollary. Let M be a Dedekind R-module and suppose that the Krull dimension
of R is 1. If M is a torsion module, then M is a simple R-module. �

We leave the proof of the following lemma to the reader.

2.7. Lemma. Let M be a finitely generated Dedekind R-module. Then (N : M) =
Ann(M) if and only if N = 0. �

For a Dedekind R-module M , P denotes Ann(M). In the next lemma we take M to
be an R

P
-module by natural multiplication.
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2.8. Lemma. Let M be an R-module. Then M is a Dedekind R-module if and only if
it is a Dedekind R

P
-module.

Proof. Let N ≤ M , and put

N ′′ =

{

γ =
r

t
+ T−1P ∈

T−1R

T−1P
: γN ⊆ M

}

,

N ′ =
{

δ =
r′

t′
∈ T−1R : δN ⊆ M

}

.

By natural multiplication, N ′′N = M if and only if N ′N = M . Therefore M is a
Dedekind R-module if and only if it is a Dedekind R

P
-module. �

2.9. Corollary. Let M be a finitely generated Dedekind R-module. If M is a divisible
R

Ann(M)
-module, then M is a simple R-module.

Proof. By [1, Corollary 3.8], M = Rm for somem ∈ M . Thus R

Ann(M)
is a field. Therefore

by Proposition 2.5, M is a simple R-module. �

From the previous properties we can extend [1, Theorem 3.14]. A proper submodule
N of M is P-prime if for any r ∈ R and m ∈ M such that rm ∈ N , either rM ⊆ N or
m ∈ M where P = (N : M).

2.10. Corollary. The following are equivalent for a finitely generated Dedekind R-module
M such that R

P
is an integrally closed domain:

(1) M is Dedekind,
(2) M is Noetherian and every nonzero prime submodule of M is maximal,
(3) M is Noetherian and for any maximal ideal m̄ of R containing P , there exists

π ∈ Rm̄ such that every submodule of Mm̄ is of the form πnMm̄ for some n ∈ N.

Proof. Clear by [1, Theorem 3.14]. �

Recall that an R-module M is uniform in case any two nonzero submodules of M
have nonzero intersection.

2.11. Lemma. Let M be a Dedekind R-module. Then M is uniform module.

Proof. Let N, N ′ be two nonzero submodules of M . We will show that N ∩N ′ 6= 0. Let
N ∩N ′ = 0. Let n ∈ N be such that n /∈ N ′. Since N ′ is an invertible submodule of M ,
there exists t ∈ T such that tn ∈ N ′. Thus tn = 0, so n = 0, a contradiction. Thus for
each nonzero submodule N, N ′ of M , N ∩N ′ 6= 0. �

From now on, unless otherwise stated, we take M to be a finitely generated torsion
free module over a domain R.

Now we recall that an R-module M is called multiplication when for each submodule
N of M , there exists an ideal I of R such that N = IM . If M is a torsion module then it
is easily seen that M is multiplication as an R-module if and only if M is multiplication
as an R

Ann(M)
-module by natural multiplication.

Recall that if R is an integral domain with the quotient field K, the rank of an R-
module M is defined to be the greatest number of elements of M linearly independent
over R. It is easy to see that rankRM = dimK S−1M .

A submodule N of M is called fully invariant if f(N) ⊆ N , for each R-endomorphism
f of M . An R-module M is called duo provided that every submodule of M is fully
invariant, [9].
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2.12. Theorem. Let R be a Dedekind domain. Then the following are equivalent for an
R-module M :

(1) M is a duo module,
(2) M is multiplication,
(3) M is a Dedekind module,
(4) M is a uniform module,
(5) rankRM = 1.

Proof. (1) =⇒ (2) It is well-known that every torsion free module over a Dedekind
domain is projective. By [11, Theorem A], since M is projective and every submodule of
M is fully invariant, M is a multiplication R-module.

(2) =⇒ (3) This is [7, Theorem 3.4].

(3) =⇒ (4) This follows from Lemma 2.11.

(4) =⇒ (1) Since R is integrally closed, therefore M is a duo module [9, Corollary 3.4].

(3) =⇒ (5) Let M be a Dedekind R-module. Then S−1M is a simple S−1R-module.
Thus rankRM = 1.

(5) =⇒ (3) Let rankRM = 1. By [1, Corollary 3.7], M ∼= I for some ideal I of R.
Thus M is a Dedekind R-module. �

An R - module M is called cancellation, if for all ideals I and J of R, IM ⊆ JM
implies I ⊆ J , [2].

An R-module M is said to be integrally closed whenever ynmn + · · ·+ ym1 +m0 = 0
for some n ∈ N, y ∈ T−1R and mi ∈ M , then ymn ∈ M , [1].

In the following theorem, we extend [1, Theorem 3.12].

2.13. Theorem. Let M be a Dedekind R-module. Then the following are equivalent:

(1) R is a Dedekind domain,
(2) R is integrally closed,
(3) M is multiplication,
(4) M is a projective module,
(5) M is a flat module,
(6) M is a cancellation module,
(7) M is a duo module.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3) are by [1, Theorem 3.12].

(4) ⇐⇒ (5) By [10, Corollary 6], M is a finitely presented R-module. Therefore M is
a projective R-module if and only if it is a flat R-module.

(1) =⇒ (6) Since every Dedekind module over a Dedekind domain is multiplication,
M is cancellation, [4, Theorem 3.1].

(6) =⇒ (1) Let M be a cancellation module and I any nonzero ideal of R. Then

(IM)′ = {q ∈ K : qIM ⊆ M} = {q ∈ K : qI ⊆ R} = I−1.

Therefore I−1IM = M . Since M is cancellation, I−1I = R. Thus R is a Dedekind
domain.

(2) =⇒ (7) Since M is uniform and R is integrally closed, M is a duo module, [9,
Corollary 3.4].

(7) =⇒ (2) By using [9, Theorem 3.7] and [10, Lemma 2], since M is a duo module,
R is an integrally closed domain. �
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Now let O(M) = {x ∈ K : xM ⊆ M}, the order of M in K. Then O(M) is a subring
of K with R ⊆ O(M), and M is an O(M)-module. We will use the notation O(M)M to
indicate that M is regarded as an O(M)-module.

In the following, R̄ denote the integral closure of R.

2.14. Lemma. Let M be an integrally closed R-module. Then O(M) = R̄.

Proof. Let x ∈ O(M). Then xM ⊆ M . By a determinant argument, x ∈ R̄.

Let x ∈ R̄, therefore there exist b0, b1, . . . , bn−1 ∈ R and n ∈ N such that b0 + b1x +
· · ·+bn−1x

n−1+xn = 0. Thus for each m ∈ M , b0m+b1mx+· · ·+bn−1mxn−1+mxn = 0.
Since M is integrally closed, xm ∈ M . This completes the proof. �

2.15. Theorem. The R-module M is Dedekind if and only if

(1) O(M) is integrally closed.
(2) O(M) is Noetherian.
(3) For each O(M) - submodule N of M , (N :O(M) M) = (O(M) :O(M) N

′).

Proof. =⇒ By [10, Lemma 2] and [1, Proposition 3.10)].

⇐= We will show that every maximal submodule of O(M)M is invertible. Let L be
a maximal submodule of O(M)M . Since L′L ⊆ M and L ⊆ L′L, thus L′L = L or
L′L = M . If L′L = L, then L′ = O(M) because L is finitely generated and O(M) is
integrally closed. Thus by (3), (N :O(M) M) = O(M), therefore N = M , a contradiction.
Therefore LL′ = M , thus every maximal submodule of O(M)M is invertible and by
[1, Proposition 3.4], M is a Dedekind O(M)-module. Therefore, M is a Dedekind R-
module. �

If M is an integrally closed R-module, then by using Lemma 2.14, O(M) = R̄, thus
O(M) is integrally closed. Therefore in Theorem 2.15 we can replace (1) by ‘M is an
integrally closed R-module’. The converse is true because if M is a Dedekind R-module,
then by [10, Lemma 2] and [1, Theorem 3.12], M is an integrally closed O(M)-module,
therefore M is an integrally closed R-module.

Recall that an R-module M is called a weak multiplication module if the set of all
prime submodules is the empty set, or for every prime submodule N of M , we have
N = IM , where I is an ideal of R, [3].

We need to prove the following lemmas for our last theorem.

2.16. Lemma. Let M be an R-module. Then every nonzero prime submodule of M is
maximal if and only if M is a multiplication module and dimR = 1.

Proof. Let every nonzero prime submodule of M be maximal, thus by [1, Lemma 3.13],
every prime submodule ofM has the form PM where P is prime ideal of R and dimR = 1.
Thus M is a weak multiplication R-module. By [3, Theorem 2.7] M is a multiplication
module.

Conversely, it is clear that every nonzero prime submodule of M is maximal. �

2.17. Lemma. Let M be an R-module. Then End(RM) = End(O(M)M).

Proof. Let f be an R-endomorphism of M . It is easy to see that f(γm) = γf(m) for
each m ∈ M, γ ∈ O(M). Therefore End(RM) = End(O(M)M). �

The following proposition characterizes the endomorphism ring of a Dedekind R-
module M .

2.18. Proposition. Let M be a Dedekind R-module. Then End(RM) ∼= O(M).
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Proof. By [10, Lemma 2], M is a Dedekind O(M)-module and O(M) is a Dedekind
domain. Therefore M is a multiplication module. By [8, Corollary 3.3], End(O(M)M) ∼=
O(M). Thus Lemma 2.17 completes the proof. �

The following theorem explains the interrelation between Dedekind modules and the
endomorphism ring of Dedekind modules.

2.19. Theorem. The R-module M is Dedekind if and only if O(M) ∼= End(RM) and
O(M) is a Dedekind domain.

Proof. The necessity is clear. For the sufficiency, since M is a finitely generated torsion
free O(M)-module, we can regard M as a subspace of S−1M =

∑

n

i=1 S
−1O(M)xi over K,

where S = O(M)− {0}, xi ∈ M . Therefore M is a submodule of the free O(M)-module
M ′ =

∑

n

i=1 O(M)xi. Since O(M) is a Dedekind domain, M is a projective O(M)-
module. It is proved that if M is projective and End(M) is a commutative ring, then M
is a multiplication module, [11, Theorem A]. Thus M is a multiplication O(M)-module.
By Lemma 2.16 every nonzero prime submodule of the O(M)-module M is maximal,
therefore M is a Dedekind R-module, [10, Theorem 9]. �

2.20. Proposition. An R-module M is Dedekind if and only if M is uniform and O(M)
is a Dedekind domain.

Proof. Let M be a Dedekind R-module. Then by Lemma 2.11 and [10, Lemma 2], M is
a uniform R-module and O(M) is a Dedekind domain.

Conversely, since M is uniform, End(RM) ∼= O(M), [9, Lemma 3.2]. Thus Theo-
rem 2.19 completes the proof. �

We can summarize the above theorems in the following theorem.

2.21. Theorem. The following statements are equivalent for an R-module M ,

(1) M is a Dedekind R-module,
(2) O(M) is Noetherian, integrally closed and for each O(M)-submodule N of M ,

(N :O(M) M) = (O(M) :O(M) N
′),

(3) O(M) is a Dedekind domain and End(RM) ∼= O(M),
(4) O(M) is a Dedekind domain and M is a uniform R-module,
(5) O(M) is a Dedekind domain and every nonzero prime submodule of the O(M)-

module M is maximal.
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