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Abstract

The purpose of this paper is to introduce four kinds of near continuity
for functions defined on minimal spaces. Basic properties and char-
acterizations are established for such functions. We also define new
minimal structures related to these near continuities. In this way, we
obtain many well known results already in the literature, as special
cases.
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1. Introduction

In the literature, there are a large number of papers including notions of near conti-
nuity, for example almost continuity [19, 23], H-continuity [15], c-continuity [9, 14, 16],
almost c-continuity [20, 24], I-continuity [12], almost {-continuity [13], kc-continuity [10]
and lc-continuity [11]. In each of these cases the definition of near continuity is equivalent
to requiring continuity of the function when the range space is retopologised in a certain
way. Some well known examples of these new topologies can be given as; cocompact [7],
coLindeldf [8], almost coLindeldf [13], coKC' [10] and coLC [11] topologies which define
the continuity of a c-continuous, I-continuous, almost I-continuous, kc-continuous and
lc-continuous function, respectively.

In this paper, we introduce some near continuities for functions between minimal
spaces, namely c-M-continuity, [-M-continuity, c-m-continuity and l-m-continuity. We
also define minimal structures related to these near continuities, called co-m-compact
and co-m-Lindel6f structures, which are generalizations of cocompact and coLindel6f
topologies, in the classical sense, respectively.
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2. Preliminaries

Let (X, 7) and (Y, 7’) be topological spaces. Then a function f : (X, 7) — (Y, 7') is said
to be c-continuous [9] (resp. l-continuous [12]) if for each point € X and each open set
V of Y containing f(x) and having a compact (resp. Lindel6f) complement, there exists
an open set U of X containing x such that f(U) C V. Furthermore, the cocompact
topology and coLindel6f topology of 7 on X (denoted by c¢(7) and (1), respectively)
are defined in [7] and [8] as; ¢(7) = {0} U{U € 7 : X — U is compact in (X, 7)} and
I(r)={0}U{U € 7: X — U is Lindelof in (X, 7)}, respectively.

Now we recall some concepts and notations defined in [17]. Let X be a nonempty
set and m C exp X, then m is said to be a minimal structure (briefly, m-structure)
on X if ) € m and X € m. Then, (X,m) is called a minimal space. The elements
of m are called m-open sets, and their complements m-closed sets. If m is a minimal
structure on X and A C X, the m-interior of A and the m-closure of A are defined
as: m-Int(A) = | {U : U C A, U € m} and m-Cl(A) = ({F: ACF, X —F € m},
respectively (we shall write briefly I,,A and C, A). Note that a m-structure is said to
have property (B) if the union of any family of subsets of m belongs to m.

2.1. Lemma. [17] Let m be a minimal structure on X. Then

(1) ITmAC A and In(ImA) =InmA for each A C X,

(2) ACCnA and Cn(CmA) =CmA for each A C X,

(3) CnA =X —TIn(X — A) for each A C X,

(4) IfAC BC X, then I,A C I,nB and CnA C Cr B,

(5) If A is m-open (resp. m-closed), then A =TI, A (resp. A=CnA),

(6) If m has property (B), then A is m-open (resp. m-closed) iff A = ImA (resp.
A=CnA). O

The fundamental separation axioms (7o, T1, T2, Ro) for minimal structures (denoted
by m-To, m-T1, m-T>, m-Ry) are formulated in [2] and [22] by replacing open sets by
m-open ones. Furthermore, m-compactness [22] and m-connectedness [22] are defined in
the same manner. Similarly we shall say that a subset K of X is m-Lindelof relative to
(X, m) if any cover of K by m-open sets has a countable subcover.

2.2. Definition. Let mx and my be m-structures on X and Y, respectively and let
f: X — Y be a function. Then f is said to be

(1) M-continuous [22] if for each z € X and each my-open set V of Y containing
f(x), there exists U € mx containing x such that f(U) C V.
(2) m-continuous [1] if f~*(V) € mx for each V € my.

On the other hand, the notions of generalized topology were introduced by Csaszér in
[3]. Let X be a nonempty set and g C exp X. Then g is said to be a generalized topology
(briefly GT) on X if ) € g and G; € g for j € J # () implies G =, ;G € 9. If X € g,
then g is said to be a strongly generalized topology [4] on X. The elements of g are called
g-open sets and their complements g-closed sets. For A C X, the g-interior of A (denoted
by igA) is the union of all G C A, G € g and the g-closure of A (denoted by cyA) is the
intersection of all g-closed sets containing A.

More generally, Csaszar [5] introduced ixA = (J{L € A : L C A} for an arbitrary
A C exp X (in particular, ixA = 0 if no L € X satisfies L C A), and by taking p =
{X—L:LelX},cxA={M € p: M D A} (in particular, cxA = X if no M € p
satisfies M D A). Also it is shown that ixA C A, ixinA = ixA, A C crA, caerA = A,
AA=X—ix(X—A),and if AC B C X, then ixA C ixB and cxA C cxB.

Note that if we give the role of the arbitrary family A to a minimal structure m (resp.
GT g), we get I,, and Cy, (resp. 74 and cg4) instead of iy and cx. However it is observed
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that there exists a uniquely determined GT g;, = {L C X : L = i\ L} satisfying iy = igiA
for an arbitrary class A C exp X by the following Lemma.

2.3. Lemma. [5] Ift:exp X — exp X satisfies tA C 1B when AC BC X, tAC A and
wA = 1A for A C X, then there is a GT p C exp X such that v = i,. ]

3. Near continuities for minimal structures

In this section we introduce new classes of functions between minimal spaces, namely
c-M-continuous, [-M-continuous, c-m-continuous and [-m-continuous functions.

In the sequel, let mx and my be m-structures on X and Y, respectively.

3.1. Definition. Let f: (X,mx) — (Y, my) be a function. Then f is

(1) c-M-continuous (resp. [-M-continuous) if for each z € X and each my-open
set V' containing f(z) and having a m-compact (resp. m-Lindel6f) complement
relative to Y, there exists a mx-open set U C X such that f(U) C V.

(2) c-m-continuous (resp. l-m-continuous) if whenever V is a my-open set having
a m-compact (resp. m-Lindeléf) complement relative to Y, then f~*(V) € mx.

Note that if mx has property (B), then clearly c-M-continuity (resp. I-M-continuity)
coincides with ¢-m-continuity (resp. l-m-continuity).

Now let us examine the particular case when mx and my are topologies on X and
Y, respectively. Then it is clear that c-M-continuous and also c-m-continuous (resp.
I-M-continuous and also [-m-continuous) functions coincide with c-continuous (resp. I-
continuous) functions. Moreover, in the particular case when mx is a minimal structure
on X and my is a topology on Y, the definition of ¢-M-continuous functions coincides
with Definition 3.5 of Noiri and Popa [21].

3.2. Remark. (1) Every [-M-continuous (resp.l-m-continuous) function is c¢-M-contin-
uous (resp. c-m-continuous).

(2) Every c-m-continuous (resp. Il-m-continuous) function is ¢-M-continuous (resp.
[-M-continuous).

By Remark 3.2 we have the following diagram, in which the converse of each implica-
tion fails to be true by the examples stated below.

Diagram

l-m-continuous ———> [-M-continuous

c-m~continuous ——— c¢-M-continuous

3.3. Example. [12] Let X and Y denote the real line equipped with the usual and
discrete topologies, respectively, instead of mx and my. It is clear that the identity
function id : X — Y is c-continuous but not [-continuous.

3.4. Example. Let X = {a,b,c,d} and consider two minimal structures on X defined
as m1 = {0, X, {a}, {b}, {c}, {b, ¢}, {b,d}} and m2 = {0, X, {a}, {b},{b,c,d}}. Then it is
clear that the identity function id : (X,m1) — (X, m2) is ¢-M-continuous (resp. I-M-
continuous) but it is not ¢-m-continuous (resp. I-m-continuous).

We shall denote the family of all unions of the elements of mx (resp. my) with gm X
(resp. gmy )-
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3.5. Theorem. Let f : (X,mx) — (Y,my) be a function. Then the following conditions
are equivalent.
(1) f is c-M-continuous (resp. 1-M-continuous),
(2) If V is a my-open subset having a m-compact (resp. m-Lindeldf) complement
relative to Y, then f~H(V) € gmy,
(3) If F is m-compact (resp. m-Lindeldf) relative to Y and my -closed, then f~*(F)
15 Gmx -closed.

Proof. (1) = (2) Let V € my have a m-compact complement relative to Y. Then
for each z € f~'(V) there exists a mx-open set U, containing = such that f(U,) C V.
Hence f~1(V) € gmy -

(2) = (3) Let F' be m-compact relative to Y and my-closed. Then Y — F' is a my-
open subset having a m-compact complement relative to Y. Therefore f = (Y —F) € gm -
Hence f~!(F) is gm-closed.

(3) = (1) Let z € X and V a my-open set containing f(x) and having a m-
compact complement relative to Y. Then for F =Y — V| fﬁl(F ) is gmy-closed. Thus
F (V) € gmy. Hence there exists U € mx containing = such that U C f~'(V). This
completes the proof.

The proof is similar for {-M-continuity. |

3.6. Corollary. If f : (X,mx) — (Y,my) is a function and my has the property (B),
then the following statements are equivalent.
(1) f is c-M-continuous (resp. 1-M-continuous),
(2) Cny fH(B) C fH(Cmy B) for every subset B of Y such that Cpmy B is m-
compact (resp. m-Lindelof) relative to Y,
(3) 7' (Tmy B) C Imyf ' (B) for every subset B of Y such that Y — I, B is
m-compact (resp. m-Lindeldf) relative to Y.
These statements are implied by:
(4) f is c-m-continuous (resp. l-m-continuous).

Moreover, if mx has property (B), all the statements are equivalent.

Proof. (1) = (2) Let B be an arbitrary subset of Y such that Cp, B is m-compact
relative to Y. Then ffl(CmY B) is gmy-closed. On the other hand, for the m x-interior
operator I,,,, we have a uniquely determined strongly GT,

Grmy ={LCX:L=Tn,L}
satisfying Imy = igImX and Cry = oLy by Lemma 2.3. Also, gr,,,, = gmy by [6,
Proposition 2.8]. Thus

Conx [~ (Cmy B) = Copu [~ (Cny B) = [ (Cmy B).
Hence Cmy fH(B) C £ (Cmy B).

(2) = (3) Let B be an arbitrary subset of ¥ such that ¥ — I,,, B is m-compact
relative to Y. Then we have Crmy f~ (Y — Imy B) C ' (Cimy (Y — Ly B)). Hence,
f*i(ImYB) C Imyf Y(B) sinc? Cony [THY = Imy B) = X — Iy [ (Tmy B) and
[T (Cny (Y = Imy B)) = X — f7 " (Imy B).

(3) = (1) Let V be a my-open subset having a m-compact complement relative to
Y. Then f7*(V) = f  (Tmy V) C Iy fH(V), since Y — 1,5, V is m-compact relative
to Y. Hence, f1(V) € gmy-
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For the rest of the proof see Remark 3.2 (2) and consider the fact that c-M-continuity
coincides with c-m-continuity when mx has the property (B).

The proof is similar for {-M-continuity. |

3.7. Remark. In the particular case when mx and my are topologies on X and Y,
respectively, we obtain the results given in Long and Hendrix [14, Theorem 1], and a
part of Kohli [12, Theorem 2.1], as a corollary by Theorem 3.5. Also, Noiri and Popa
[21, Corollary 3.2] follows from Corollary 3.6.

4. Minimal structures related to near continuities

In this section, we introduce minimal structures related to the near continuous func-
tions given in the previous section and investigate some basic properties of these struc-
tures.

4.1. Definition. Let m be a minimal structure on X. The collection

(1) ¢(m) ={0}U{A € m : X—A is m-compact relative to X } is a minimal structure
with ¢(m) C m, called the co-m-compact structure on X,

(2) I(m)={0}U{A € m : X—A is m-Lindeldf relative to X } is a minimal structure
with I(m) C m, called the co-m-Lindeldf structure on X.

It is clear that c(m) C l(m) C m.

Let us examine the particular case when m is a topology on X. Clearly the co-
m-compact (resp. co-m-Lindel6f) structure on X coincides with the cocompact (resp.
coLindelof) topology on X. Also, it is evident that ¢(m) (I(m)) need not to be a topology
on X, except in this particular case.

4.2. Theorem. Let m be a minimal structure on X. Then (X,c(m)) (resp. (X,l(m)))
is m-compact (resp. m-Lindeldf).

Proof. Let A = (Aj)jes C c¢(m) be a cover of X. Then for an arbitrary A; € A,
finitely many members of A cover X — A;. Hence, (X, c(m)) is m-compact since X =
A; U (X — Ay).

The proof is similar for (X,I(m)). O

4.3. Lemma. Let m be a minimal structure on X and A C X.

(1) If X is m-compact and C, A = A then A is m-compact relative to X [18].
(2) If X is m-Lindelof and Cry A = A then A is m-Lindelof relative to X.

Proof. (1) Given in [18].

(2) Let A C X satisfying A = CnA. Then X — A = I,(X — A) = U, {U. :
U C X —A, U, € m}. So, for an arbitrary m-open cover (M;);cs of A, we have
B C (Ujes Mj) U (U,c; Ur). Therefore, m-Lindelofness of B implies the existence of
countable subsets F, K of J, I, respectively, such that B C (U;cp M;) U (U,cx Uh)-
Thus, A C UjerM;. Hence A is m-Lindelof relative to X. O

So we can give the following result by Theorem 4.2.

4.4. Corollary. Let m be a minimal structure on X. Then

(1) (X, m) is m-compact iff c(m) = m.
(2) (X,m) is m-Lindelof iff I(m) = m. O
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4.5. Remark. In the particular case when m is a topology on X, we obtain the results
given in Gauld [7, Theorem 2] and of Gauld et. al. [8, Theorem 2] as a corollary by
Theorem 4.2. Also, Gauld [7, Corollary 3] and Gauld et. al. [8, Corollary 1] follow from
Corollary 4.4.

4.6. Proposition. Let m be a minimal structure on X. Then we have

(1) Ue(m)) = c(e(m)) = ¢(m) C e(l(m)),
(2) Ul(m)) = U(m),
(3) If m has property (B), then c(m) = c(l(m)).

Proof. (1) It is clear that I(c(m)) = ¢(m) and c(c(m)) = ¢(m) by Theorem 4.2 and
Corollary 4.4. Also, c(m) C ¢(I(m)) follows from c¢(m) C I(m) C m, since m-Lindel6fness
is implied by m-compactness.

(2) Follows from Theorem 4.2 and Corollary 4.4 (2).

(3) Let A € ¢(I(m)) and A = (A;)cs be a m-open cover of X — A. Since m has the
property (B), we have G; = AUA; € mforeach j € J. Then X —G,; = (X—A)N(X—A;)
is m-Lindeldf relative to X since A € I(m). Therefore, (G;);es is a [(m)-open cover of
X — A. Thus, there exists a finite set /' C J such that X — A C ;. G;, and then
(Aj)jer covers X — A. Hence, A € c(m). O

4.7. Remark. If m = 7 is a topology on X, then we obtain Gauld et. al. [8, Proposi-
tion 1] as a corollary to Proposition 4.6.

Furthermore, the basic relation between the cocompact (coLindeldf) minimal struc-
tures and c-M-continuous (resp. I-M-continuous), and also c-m-continuous (resp. I-m-
continuous), functions is given by the following theorem.

4.8. Theorem. Let mx and my be m-structures on X and Y, respectively. Then the
following statements are valid.
(1) f: X = (Y,my) is c-M-continuous iff f : X — (Y,c(my)) is M-continuous,
(2) f: X = (Y,my) is c-m-continuous iff f: X — (Y, c(my)) is m-continuous,
(3) f:X — (Y,my) is I-M-continuous iff f: X — (Y,l(my)) is M-continuous,
4) f: X = (Y,my) is l-m-continuous iff f: X — (Y,l(my)) is m-continuous.

Proof. Follows from Definitions 3.1 and 4.1. |

4.9. Remark. In the particular case when mx and my are topologies on X and Y,
respectively, we obtain Gauld [7, Theorem 1] and Gauld et. al. [8, Theorem 1] as a
corollary to Theorem 4.8.

Now consider the transfer of the seperation properties (m-To, m-T1 and m-T3) from
a minimal space (X, m) to its co-m-compact and co-m-Lindeldf structures. Clearly any
property preserved by an enlargement of minimal structures will be transferred from
¢(m) to I(m), and from I(m) to m, since ¢(m) C I(m) C m. On the other hand, by
[8, Examples 1, 2, 3 and 4] it is shown that the opposite preservations do not occur in
general for the m-Tp and m-T» properties. In Proposition 4.11 below we show that if m
has property (B), then the opposite preservation occurs for the m-T1 property.

However we give a new separation axiom, analogous to m-7} for minimal structures,
which will be transferred from ¢(m) to {(m), from I(m) to m and also from (X, m) to
(X,c(m)) ((X,l(m))), without the assumption that m has property (B).

4.10. Definition. Let m be a minimal structure on X. Then X is said to be strongly
m-T1 if {z} is m-closed for each z € X.
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Clearly every strongly m-T1 space is m-T.
Recall that for a minimal structure m on X, we denote the family of all unions of the
elements of m by gm. Clearly, g, is a strongly generalized topology on X.

4.11. Proposition. Let m be a minimal structure on X. Then the following statements
are true.

(1) (X,m) is m-T1 iff {x} is gm-closed for each x € X,

(2) If m has property (B), then (X, m) is m-T1 iff (X, m) is strongly m-T1,

(3) (X,m) is strongly m-T1 iff (X, c(m)) (X,1(m))) is strongly m-T1.

Proof. (1) For an arbitrary y € X — {«} there exists U, € m containing z such that
y ¢ Uz, and U, € m containing y such that ¢ Uy, since (X,m) is m-T1. Thus
y € Uy C X — {z} implies that y € ig4,, (X — {z}) since m C gm. Hence X — {z} is
gm-open.

Conversely, for any pair of distinct points z, y of X, X — {z} and X — {y} are gm-
open sets of X. On the other hand, for the m-interior operator I,,, we have an uniquely
determined strongly GT gy, = {L C X : L = I, L} satisfying I,, = iy, and Cm = cg;
by Lemma 2.3. Also g1,, = gm by [6, Proposition 2.8]. Therefore X —{z} = I,,,(X —{z})
and X — {y} = In(X — {y}), and this implies the existence of G, € mx such that
z € G C X —{y}, and of Gy € mx such that y € Gy C X — {z}, respectively. Hence
(X, m) is m-T1.

(2) Follows from (1) and Definition 4.10, since g, = m by the assumption that m has
property (B).

(3) Take an arbitrary « € X. Clearly {z} is m-closed since (X, m) is strongly m-T3.
Thus the m-compactness of {z} implies that {x} is ¢(m)-closed. Hence, (X,c(m)) is
strongly m-T1.

The reverse implication is clear by the definition of ¢(m).

The proof is similar for (X,I(m)). O

4.12. Lemma. Let m be a minimal structure on X with property (B). Then c(m) and
l(m) are strongly generalized topologies on X .

Proof. Clearly ) and X € c(m). Now let J # 0 and A =, Uj, (Uj)jes C c¢(m). Then
X —A=e;(X—-Uj) CX—Uj for each j € J implies that X — A is m-compact
relative to X since X — A is m-closed. Hence A € ¢(m).

The proof is similar for I(m). O

A minimal space (X, m) is said to be m-Ro [22] if for each m-open set U and each
z € U, Cn{z} C U. By the following proposition we show that the m-Ro property will
be transferred from m to {(m), and from [(m) to ¢(m), similar to the particular case
when m is a topology.

4.13. Proposition. Let m be a minimal structure on X. Then the following statements
are true.
(1) If (X,m) is m-Ro, then Cm{x} is m-compact relative to X, for each v € X,
(2) If m has property (B) and (X, m) is m-Ry, then (X,1(m)) is m-Ro,
(3) If m has property (B) and (X,1(m)) is m-Ro, then (X, c(m)) is m-Ro.

Proof. (1) Let x € X and Cn{z} C U,c; Uj, (Uj)jes C m. Then there exists Uj, € m
such that « € Uj,. Thus Cr,{z} C Uj,, since (X, m) is m-Ry. Hence Cp,{z} is m-compact
relative to X.
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(2) Consider U € I(m) and « € U. Then Cn{z} C U since (X,m) is m-Ro. On the
other hand, C,,{z} is m-closed since m has property (B) and is m-compact. Thus C,,{z}
is I(m)-closed and so Cj(,n){z} CCm{z}. Hence, (X,I(m)) is m-Ro.

(3) Consider U € ¢(m) and & € U. Then Cyy{z} C U since (X,l(m)) is m-Ro.
On the other hand, Ciu,){x} is l[(m)-closed by Lemma 4.12 and m-compact relative
to (X,I(m)). Therefore, Cimy{z} is c(I(m))-closed. By Proposition 4.6(3), Ciim){z} is
c(m)-closed. Thus, Ce(m){x} CCymy{z}. Hence (X, c(m)) is m-Ro. O

4.14. Remark. If m = 7 is a topology on X, then we obtain Gauld et. al. [8, Proposi-
tion 2] as a corollary to Proposition 4.11 (2) and (3). Also, Gauld et. al. [8, Proposition 3]
follows from Proposition 4.13 (2) and (3).
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