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Abstract

In this paper the notion of a relative metric space, as a mathematical
model compatible with a physical phenomena, is considered. The no-
tion of relative topological entropy for relative semi-dynamical systems
on a relative metric space is studied. It is proved that observational

topological entropy is an invariant object up to a relative conjugate
relation.
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1. Introduction

The theory of fuzzy systems [16] was the reason for considering new theories of
uncertainty [2, 3]. The recent mathematical results of fuzzy theory [16] in topology
[1, 4, 10, 11, 12, 13, 14], and geometry [7] created a new approach to considering space.
An Observer, as one of the main objects which determines the uncertainty of a space X,
can be considered as a fuzzy set µ : X → [0, 1]. Any mathematical model according to
the viewpoint of an observer µ is called a relative model [4, 5, 6, 8].

There is a space description using fuzzy theory which is called fuzzy metric spaces

[1, 10]. In this paper relative metric spaces are introduced as another approach for
considering space by using an observer. A method for constructing relative topologies
via a relative metric space is presented. The notion of relative entropy for relative semi-
dynamical systems created by a relative continuous map on a relative metric space is
considered. The relative entropy for the iteration of a relative continuous map is studied.
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2. Metric spaces from an observer viewpoint

To introduce the notion of relative metric spaces we use of the following definition of
a continuous t-norm, which is is a special case of the usual continuous t-norm [9]. In fact
a binary operation

∗ : [0, 1]× [0, 1] −→ [0, 1]

is called a continuous t-norm if ∗ satisfies the following conditions;

1. ∗ is associative and commutative;
2. ∗ is continuous;
3. a ∗ 1 = a for all a ∈ [0, 1];
4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d;
5. If a ∗ b = a ∗ c, and a, b, c ∈ (0, 1] then b = c.

Properties 4 and 5 of a continuous t-norm imply that if a ∗ b ≤ a ∗ c and a, b, c ∈ (0, 1],
then b ≤ c.

2.1. Definition. Let X be a nonempty set and µ : X → (0, 1] a non-vanishing observer.
Moreover let ∗ be a t-norm and M : X2 × (0,∞) −→ (0, 1] a function. Then (X,M, ∗, µ)
is called a relative metric space if the following axioms hold:

(1) M(x, y, t) = µ(y) if and only if µ(x) = µ(y).
(2) M(x, y, t) ∗M(y, z, s) ≤ µ(y) ∗M(x, z, t+ s).
(3) µ(x) ∗M(x, y, t) = µ(y) ∗M(y, x, t).
(4) For given x, y ∈ X, M(x, y, · ) : (0,∞) −→ (0, 1] is a continuous map.

In the definition of relative metric space we try to present a mathematical model for
detecting a distance in a space from the viewpoint of an observer. As we know, different
observers determine different distances when they are considering the distance between
two points using their eyes. The observer is the main object in physical theories, but
before the paper [6] there was no mathematical model for it.

Part (1) of Definition 2.1 implies that the observer µ can see two points x and y as
similar if the distance detected is exactly equal to the seeing power of µ at one of their
points. In other words, µ cannot distinguish two points which are closer than its seeing
power.

The condition (2) of Definition 2.1 means that µ can detect the triangle inequality up
to its power of seeing. Condition (3) means that the detected distance between (x, y)
when the observer looks to x is equal to the detected distance between (y, x) when it
looks to y. One must pay attention to the point that M(x, y, t) determines the detected
distance between x and y in the level t.

2.2. Example. Let X = R, a ∗ b = ab, and M(x, y, t) = µ(y) ∗ [2
|µ(y)−µ(x)|

t ]−1. Then we
show that (X,M, ∗, µ) is a relative metric space.

1. If M(x, y, t) = µ(y) then µ(y) = µ(y) ∗ [2
|µ(y)−µ(x)|

t ]−1. This implies

[2
|µ(y)−µ(x)|

t ]−1 = 1.

Thus µ(x) = µ(y). Conversely if µ(x) = µ(y), then [2
|µ(y)−µ(x)|

t ]−1 = 1. So M(x, y, t) =
µ(y).

2. For all x, y ∈ X and t, s ∈ (0,∞) we have

| µ(x)− µ(z) |

t+ s
≤

| µ(x)− µ(y) |

t
+

| µ(y)− µ(z) |

s
.
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So

[2
|µ(x)−µ(z)|

t+s ]−1 ≥ [2
|µ(x)−µ(y)|

t ]−1[2
|µ(y)−µ(z)|

s ]−1
.

Thus

[2
|µ(x)−µ(z)|

t+s ]−1 ≥ [2
|µ(x)−µ(y)|

t ]−1[2
|µ(y)−µ(z)|

s ]−1
.

Since

µ(y) ∗ µ(z) ∗ [2
|µ(x)−µ(z)|

t+s ]−1 ≥ µ(y) ∗ µ(z) ∗ [2
|µ(x)−µ(y)|

t ]−1[2
|µ(y)−µ(z)|

s ]−1
,

then µ(y) ∗M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s).

The other two properties can be easily deduced.

2.3. Example. If X is a nonempty set and M(x, y, t) = µ(y)∗ t

t+|µ(y)−µ(x)| , with a∗b =

ab, then (X,M,µ, ∗) is a relative metric space. We only prove the condition 2.

Since

| µ(x)− µ(z) |

t+ s
≤

| µ(x)− µ(y) |

t
+

| µ(y)− µ(z) |

s
,

then

1 +
| µ(x)− µ(z) |

t+ s
≤ 1 +

| µ(x)− µ(y) |

t
+

| µ(y)− µ(z) |

s
.

Thus

t+ s

t+ s+ | µ(x)− µ(z) |
≥

ts

ts+ s | µ(x)− µ(y) | +t | µ(y)− µ(z) |
.

Hence

ts

(t+ | µ(x)− µ(y) |)(s+ | µ(y)− µ(z) |)

≤
ts

ts+ s | µ(x)− µ(y) | +t | µ(y)− µ(z) |

≤
t+ s

t+ s+ | µ(x)− µ(z) |
.

So
(

t

t+ | µ(x)− µ(y) |

)(

s

s+ | µ(y)− µ(z) |

)

≤
t+ s

t+ s+ | µ(x)− µ(z) |
.

Thus
(

t

t+ | µ(x)− µ(y) |

)(

s

s+ | µ(y)− µ(z) |

)

µ(y)µ(z)

≤
t+ s

t+ s+ | µ(x)− µ(z) |
µ(y)µ(z).

So M(x, y, t) ∗M(y, z, s) ≤ µ(y) ∗M(x, z, t+ s).

The next theorem implies that: in a relative metric space (X,M, ∗, µ) the relative
metric M is an observable object according to the viewpoint of the observer µ.

2.4. Theorem. If (X,M, ∗, µ) is a relative metric space, then M(x, y, t) ≤ µ(y) for each
x, y ∈ X and t ∈ (0,∞).
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Proof. Definition 2.1 impliesM(x, y, t)∗M(y, x, t) ≤ µ(y)∗M(x, x, 2t). SinceM(x, x, 2t) =
µ(x) then M(x, y, t) ∗M(y, x, t) ≤ µ(y) ∗ µ(x). So

M(x, y, t) ∗ µ(y) ∗M(y, x, t) ≤ µ(y) ∗ µ(y) ∗ µ(x).

Since µ(x) ∗M(x, y, t) = µ(y) ∗M(y, x, t), then

M(x, y, t) ∗ µ(x) ∗M(x, y, t) ≤ µ(y) ∗ µ(y) ∗ µ(x).

So M(x, y, t) ∗M(x, y, t) ≤ µ(y) ∗ µ(y). Thus M(x, y, t) ≤ µ(y). �

3. Relative topologies created by a relative metric space

and relative entropy

Relative topological spaces are a special case of topological molecular lattices [15]
which are compatible with physical models [5]. Let us to recall the definition of a relative
topology [6]. If X is a nonempty set and µ : X −→ (0, 1] is an observer of X, then a
family τµ of fuzzy subsets of µ is called a µ-relative topology if it satisfies the following
conditions:

i. µ, χ∅ ∈ τµ;
ii. If λ1, λ2 ∈ τµ then λ1 ∩ λ2 ∈ τµ;
iii. If {λi : i ∈ Γ} ⊆ τµ then

⋃

i∈Γ λi ∈ τµ.

We now would like to construct some relative topologies via a relative metric space
(X,M, ∗, µ). For given x0 ∈ X we can define λ

x0
t : X −→ (0, 1] by λ

x0
t (y) = M(x0, y, t).

Theorem 2.4 implies λ
x0
t ≤ µ, for all t ∈ (0,∞).

3.1. Theorem. If t < s then λ
x0
t (y) ≤ λx0

s (y), for all y ∈ X.

Proof. Since M(x0, y, t) ∗ M(y, y, s − t) ≤ µ(y) ∗ M(x0, y, s), then M(xo, y, t) ∗ µ(y) ≤
µ(y) ∗M(x0, y, s). So M(xo, y, t) ≤ M(x0, y, s). Thus, λ

x0
t (y) ≤ λx0

s (y). �

Let D ⊂ (0,∞) be a set such that if C ⊂ D then supC ∈ D. Then

τ
x0
µ = {λx0

t : t ∈ D} ∪ {µ, χ∅}

is a µ-relative topology.

If α ∈ (0, 1], and λ ∈ τx0
µ , then λα is the set {x ∈ X : λ(x) > α}. With this notation

the set

(τx0
µ )α = {λα : λ ∈ τ

x0
µ }

is a topology for the set µα. If this space is a compact Hausdorff space then (X, τx0
µ ) is

called a compact (α, µ)-Hausdorff space. In the rest of this section we assume that α is
fixed and that (X, τx0

µ ) is a compact (α, µ)−Hausdorff space. Moreover we assume that

Θ = {λi
α : λi ∈ τx0

µ , i = 1, . . . , n} is an open cover for µα. Then an open cover Σ is
called a subcover of Θ if Σ ⊂ Θ.

The relative topological entropy [8] of the cover Θ with level α is Hα(Θ) = logN(Θ),
where N(Θ) is the smallest number of sets which can be used in a subcover of Θ.

Now let f : X −→ X be a mapping and (f,X, τx0
µ ) a relative semi-dynamical system

[6] i.e. f−1(λ) ∩ µ ∈ τµ for all λ ∈ τµ, where f−1(λ)(x) = λ(f(x)).

The following example implies µ can also create a relative semi-dynamical system.

3.2. Example. Let X = [0, 1] and let µ : X −→ [0, 1] be defined by

µ(x) =

{

1
2

if 0 ≤ x ≤ 1
2
,

1 if 1
2
< x ≤ 1.
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If M(x, y, t) = µ(y) t

t+|µ(x0)−µ(y)| and x0 ∈ X then

µ
−1(λx0

t (y) = λ
x0
t (µ(y))

= µ(µ(y))
t

t+ | µ(x0)− µ(µ(y)) |

= µ(y)
t

t+ | µ(x0)− µ(y) |

= λ
x0
t (y).

So (µ,X, τx0
µ ) is a relative semi-dynamical system.

If Θ1 and Θ2 are two covers of µα, then their join Θ1

∨

Θ2 is the open cover by all
sets of the form θ1 ∩ θ2, where θ1 ∈ Θ1 and θ2 ∈ Θ2.

The relative topological entropy for (f,X, τx0
µ ) with level α is defined by

h
x0
α (f) = sup{hα(f,Θ) : Θ is a finite cover of µα}, where

hα(f,Θ) = lim
n→∞

1

n
Hα

( n−1
∨

i=0

f
−iΘ

)

.

The next theorem implies that the nonconstant observers have the main role in hx0
α (f).

3.3. Theorem. If µ is a constant map then hx0
α (f) = 0, for all x0 ∈ X and α ∈ (0, 1].

Proof. Since µ is a constant map then for each x0 ∈ X and t > 0, λ
x0
t = µ. Hence

τx0
µ = {µ, χ∅}. Thus {µα} is the only open cover for (τx0

µ )α. So hx0
α (f) = 0. �

3.4. Theorem. If f : X −→ X is a τx0
µ continuous map then hx0

α (fm) ≤ mhx0
α (f), for

all m ∈ N .

Proof. For a given finite open cover ∆ for (τx0
µ )α we have

∨n−1
i=0 f−mi∆ ⊂

∨mn−1
i=0 f−i∆.

So,

Hα

( n−1
∨

i=0

f
−mi∆

)

≤ Hα

(mn−1
∨

i=0

f
−i∆

)

.

Thus

hα(f
m
,∆) = lim

n−→∞

1

n
Hα

( n−1
∨

i=0

f
−mi∆

)

≤ lim
n−→∞

m

mn
Hα

(mn−1
∨

i=0

f
−i∆

)

≤ mhα(f,∆).

So hα(f
m,∆) ≤ mhα(f,∆) for all finite open covers ∆. Thus hx0

µ (fm) ≤ mhx0
µ (f). �

Now we define the observational topological entropy of f up to the observer µ with
level α by:

hα(f) = sup
x0∈X

h
x0
µ (f).

3.5. Corollary. hµ(f
m) ≤ mhµ(f) for all m ∈ N . �

Two relative semi-dynamical systems (f,X, τx0
µ ) and (g,X, τx0

µ ) are called µ-conjugate

at x0 ∈ X if there exists a bijection φ : X −→ X such that (φ,X, τx0
µ ) and (φ−1, X, τx0

µ )
are relative semi-dynamical systems and φof = goφ.
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3.6. Theorem. If f : X −→ X and g : X −→ X are µ-conjugate at each x0 ∈ X then

hα(f) = hα(g).

Proof. [8, Theorem 5.5] implies hx0
α (f) = hx0

α (g) for all x0 ∈ X. Thus

hα(f) = sup
x0∈X

h
x0
α (f) = sup

x0∈X

h
x0
α (g) = hα(g) �

4. Conclusion

In this section we assume that: X is a relative metric space with an observer µ, and
that f : X → X is a mapping. We also assume that α is a fixed number in (0, 1].

We say that f is a minimal map on X with level α if there exists x0 ∈ X such that
(f,X, τx0

µ ) is a relative semi-dynamical system with the following properties:

i) f(µα) ⊂ µα.
ii) {fn(x) : n = 0, 1, 2, . . .} is a dense subset of µα for all x ∈ µα.

For example let X be an arbitrary set and x0 ∈ X . Moreover let µ : X −→ X be a
map such that sup{µ(x) : x ∈ X} = µ(x0) and let M(x, y, t) be an arbitrary relative
metric. For all t ∈ D, we have M(x0, x, t) ≤ µ(x). Since M(x0, x0, t) = µ(x0), then
supx∈X λ

x0
t (x) = µ(x0). So for all 0 < α < 1, x0 ∈ µα.

Let f : X −→ X be a function such that f(x) = x0. Then f(µα) ⊂ µα. Since for
every n ≥ 1, fn(x) = x0 then limn−→∞ fn(x) = x0. Thus for each x ∈ X we have

sup{λx0
t (fn(x)) : n ≥ 1} = µ(x0).

So, {fn(x) : n = 0, 1, 2, . . .} is a dense subset of µα, for all x ∈ µα. Moreover,

f
−1(λx0

t )(x) = λ
x0
t (f(x)) = λ

x0
t (x0) = µ(x0).

So f−1(λx0
t ) ∩ µ = µ. Thus f is a minimal map on X with level α.

The consideration of minimal mappings on relative metric spaces is a topic for further
research.
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