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Abstract

This paper presents a general class of estimators for a finite population
total with the aid of two auxiliary variables in a two-stage sampling with
varying probabilities. The methodology developed can be extended
readily to three-stage and stratified two-stage sampling designs.
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1. Introduction

Consider U , a finite population consisting of N first stage units (fsu) U1, U2, . . . , UN ,

such that Ui contains Mi second stage units (ssu) and M =
∑N

i=1 Mi. Let Yi, Xi and
Zi be the totals of Ui in respect of the study variable y, and two auxiliary variables x

and z respectively with corresponding overall totals Y =
∑N

i=1 Yi, X =
∑N

i=1 Xi and

Z =
∑N

i=1 Zi. To estimate Y , let us consider a general class of two-stage sampling
designs: At stage one, a sample s (s ⊂ U) of n fsus is drawn from U according to
any design with πi and πij as the known first and second order inclusion probabilities.
Then for every i ∈ s, a sample si of mi ssus is drawn from Ui (si ⊂ Ui) with suitable
selection probabilities at the second stage. More detailed accounts of two-stage sampling
procedure are given in general survey sampling books (cf. Cochran [1], Sarndal et al [9]).

Let E1, E2 (V1, V2; Cov1,Cov2) denote the expectation (variance, covariance) opera-
tors over repeated sampling in the first and second stages; by E (V or Cov) we denote
the overall expectation (variance or covariance). It is assumed that from the second
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stage sample si, i ∈ s, unbiased estimates tiy , tix and tiz respectively for Yi, Xi and Zi

are available. Then, V2(tiy) = σ2
iy , V2(tix) = σ2

ix, V (tiz) = σ2
iz, Cov2(tiy, tix) = σiyx,

Cov2(tiy , tiz) = σiyz, Cov2(tix, tiz) = σixz.

Given the first stage sample s, we define π-estimators ty =
∑

i∈s

tiy
πi

, tx =
∑

i∈s
tix
πi

and tz =
∑

i∈s
tiz
πi

so that E(ty) = Y , E(tx) = X, E(tz) = Z, V (ty) = σ2
y +

∑N

i=1

σ2

iy

πi
,

V (tx) = σ2
x +

∑N

i=1

σ2

ix

πi
, V (tz) = σ2

z +
∑N

i=1

σ2

iz

πi
, Cov(ty, tx) = σyx +

∑N

i=1

σiyx

πi
,

Cov(ty, tz) = σyz +
∑N

i=1

σiyz

πi
and Cov(tx, tz) = σxz +

∑N

i=1
σixz

πi
, where

σ
2
y =

1

2

N
∑

i6=j=1

(πiπj − πij)

(

Yi

πi

−
Yj

πj

)2

,

σyx =
1

2

N
∑

i6=j=1

(πiπj − πij)

(

Yi

πi

−
Yj

πj

)(

Xi

πi

−
Xj

πj

)

, etc.

We have seen that many two-stage sampling estimation techniques require advance knowl-
edge on overall population totals X and Z . However, these techniques do not fully
exhaust the information content of the auxiliary variables. In many surveys when the
clusters are selected, it is more likely that the totals Xi and Zi are known (or can be
found easily or cheaply) for i ∈ s, i.e., for the selected clusters. For instance, in a crop
survey if y, x and z are respectively yield of the crop, area under the crop and area under
cultivation, then information on total area under the crop (Xi) and total area under
cultivation (Zi) for the ith selected block (cluster of villages) can be obtained easily from
the block records. Detail studies on the profitability of using knowledge on the auxiliary
variable values at the level of first stage units, are provided by several authors, see, for
example Sahoo [4], Sahoo and Panda ([5,6]), Sahoo and Sahoo [7], Sahoo et al [8], Hansen
et al [2] and Smith [11]. In this context, we may also refer to Zheng and Little [14] who
used penalized spline nonparametric regression models on the selection of probabilities
of the first stage units, and Kim et al [3] who considered nonparametric regression esti-
mation of the population total in which complete auxiliary information is available for
the first stage units. Works of Singh et al [10], and Tracy and Singh [13] also focus on
the use of various kinds of auxiliary information at different phases of a survey operation
under a two-phase sampling set-up.

In this paper, we are aimed at constructing a general class of estimators for Y with
explicit involvement of x and z motivated by the assumption that X, Z, Xi and Zi, i ∈ s,
are known.

2. The class of estimators

For given si, following the work of Srivastava [12] let us define a class of estimators for

Yi by Ŷi = gi(tiy , tix, tiz), i ∈ s, where gi(tiy , tix, tiz) is a known function of tiy, tix and tiz,
which may depend on Xi and Zi but is independent of Yi such that gi(tiy , Xi, Zi) = tiy,

which implies that gi(Yi, Xi, Zi) = Yi. Also, for given s, let t′y =
∑

i∈s
Ŷi

πi
, t′x =

∑

i∈s
Xi

πi
,

t′z =
∑

i∈s
Zi

πi
, and g(t′y, t

′
x, t

′
z) be a function of t′y, t

′
x and t′z, which may depend on X and

Z but is independent of Y , such that g(t′y, X, Z, ) = t′y, which implies that g(Y,X, Z) = Y .
Further, following Srivastava [12], let us consider the following assumptions:

(a) (tiy , tix, tiz), i ∈ s, and (t′y, t
′
x, t

′
z) assume values in a bounded convex subspace

R3 of 3-dimensional real space containing the points (Yi, Xi, Zi) and (Y,X, Z),
and
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(b) The functions gi(tiy, tix, tiz) and g(t′y, t
′
x, t

′
z) are continuous having first and sec-

ond order partial derivatives w.r.t. their arguments which are also continuous
in R3.

Then, motivated by the work of Srivastava [12], we propose a class of estimators of Y
defined by

tg = g(t′y, t
′
x, t

′
z).

Here, Ŷi = gi(tiy , tix, tiz) covers both linear and nonlinear functions of the statistics
tiy, tix and tiz. So, it is impossible to obtain an exact general expression for the condi-

tional variance V2(Ŷi) due to the fact that the expectation operator is a linear operator.
However, for simplicity we use Taylor linearization technique (cf. Sarndal et al [9]) to ap-

proximate Ŷi by a more easily handled linear function, so that an approximate expression
for V2(Ŷi) can be obtained. Hence, on considering the first order Taylor approximation of
the function gi after expanding around the point (Yi, Xi, Zi) and neglecting the remainder
term, we obtain

(1) Ŷi ≈ Yi + gi0(tiy − Yi) + gi1(tix −Xi) + gi2(tiz − Zi),

where gi0, gi1 and gi2 are respectively the first order differential coefficients of gi w.r.t.

tiy, tix and tiz, when evaluated at (Yi, Xi, Zi). Hence, from (1) and noting that gi0 = 1,

to a first order of approximation we have E2(Ŷi) ≈ Yi and

(2) V2(Ŷi) ≈ σ
2
iy + g

2
i1σ

2
ix + g

2
i2σ

2
iz + 2gi1σiyx + 2gi2σiyz + 2gi1gi2σixz.

In light of the above discussion, once again using the linear approximation

(3) tg ≈ Y + (t′y − Y ) + g1(t
′
x −X) + g2(t

′
z − Z),

the asymptotic variance of tg is obtained as

(4)
V (tg) ≈ V (t′y) + g

2
1V (t′x) + g

2
2V (t′z) + 2g1Cov(t

′
y, t

′
x) + 2g2Cov(t

′
y, t

′
z)

+ 2g1g2Cov(t
′
x, t

′
z),

where g1 and g2 are respectively the first derivatives of g w.r.t. t′x and t′z around (Y,X, Z).

Verifying that V (t′y) = V1E2(t
′
y) + E1V2(t

′
y), on simplification we get

(5) V (t′y) = σ
2
y +

N
∑

i=1

V2(Ŷi)
/

πi.

Similarly, under the conditional argument we also have Cov(t′y, t
′
x) = σyx, Cov(t

′
y , t

′
z) =

σyz, Cov(t
′
x, t

′
z) = σxz, V (t′x) = σ2

x and V (t′z) = σ2
z . Finally, the formula for the asymp-

totic variance of tg is obtained as

(6)

V (tg) = σ
2
y + g

2
1σ

2
x + g

2
2σ

2
z + 2g1σyx + 2g2σyz + 2g1g2σxz

+

N
∑

i=1

(

σ
2
iy + g

2
i1σ

2
ix + g

2
i2σ

2
iz + 2gi1σiyx + 2gi2σiyz + 2gi1gi2σixz

) /

πi.

This variance is minimized when

gi1 = −
βiyx − βiyzβizx

1− βizxβixz

= −ĝi1 (say), gi2 = −
βiyz − βiyxβixz

1− βizxβixz

= −ĝi2 (say),

g1 = −
βyx − βyzβzx

1− βzxβxz

= −ĝ1 (say), and g2 = −
βyz − βyxβxz

1− βzxβxz

= −ĝ2 (say),

where βiyx = σiyx

/

σ2
ix, βyx = σyx

/

σ2
x, etc.

The optimum values of gi1, gi2, g1 and g2 determined are unique in the sense that
they do not depend on each other for their computation. Using these optimum values
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in (6), we obtain a minimum asymptotic variance (which may be called the asymptotic
minimum variance bound of the class) as

(7) minV (tg) = σ
2
y(1− ρ

2) +
N
∑

i=1

σ
2
iy(1− ρ

2
i )
/

πi,

where ρ2i =
ρ2iyx+ρ2iyz−2ρiyxρiyzρixz

1−ρ2
ixz

and ρ2 =
ρ2yx+ρ2yz−2ρyxρyzρxz

1−ρ2xz
are such that ρiyx =

σiyx/σiyσix, ρyx = σyx/σyσx, etc. The estimator attaining this bound (which may
be called a minimum variance bound (MVB) estimator) is a regression-type estimator
defined by

tRG =
∑

i∈s

[tiy − ĝi1(tix −Xi)− ĝi2(tiz − Zi)] /πi − ĝ1(t
′
x −X)− ĝ2(t

′
z − Z).

3. Some specific cases of the class

If there is no use for x and z, Ŷi = tiy =⇒ tg = ty, the simple expansion estimator
of Y . On the other hand, if the emphasis is laid on the use of either x or z or both, tg
defines a wide class of estimators. For various choices of gi and g, it also reduces to many
other classes. Let us now examine a few specific cases.

3.1. When the values of X and Z are not taken into consideration tg = t′y, producing a
family of separate variety of estimators whose asymptotic variance structure is shown in
(5). The minimum variance bound and the corresponding MVB estimator of the class
are given by

(8)

minV (tg) = σ
2
y +

N
∑

i=1

σ
2
iy(1− ρ

2
i )
/

πi,

t
(s)
RG =

∑

i∈s

[tiy − ĝi1(tix −Xi)− ĝi2(tiz − Zi)] /πi.

3.2. When X is unknown but Xi, Zi for i ∈ s, and Z are known, we have Ŷi =
gi(tiy, tix, tiz) and tg = g(t′y, t

′
z). Then the asymptotic MVB of the class is given by

(9) minV (tg) = σ
2
y(1− ρ

2
yz) +

N
∑

i=1

σ
2
iy(1− ρ

2
i )
/

πi,

and the MVB estimator is defined by

t
(1)
RG =

∑

i∈s

[tiy − ĝi1(tix −Xi)− ĝi2(tiz − Zi)] /πi − βyz(t
′
z − Z).

3.3. Assuming that Xi(i ∈ s), Z are known and X, Zi(i ∈ s) are unknown, and then

defining Ŷi = gi(tiy, tix) and tg = g(t′y, tz), we see that the class of estimators considered
by Sahoo and Panda [6] is a particular case of tg. Here, the MVB of the class and the
resulting MVB estimator are given by

(10)

minV (tg) = σ
2
y − γ

2

{

σ
2
z +

N
∑

i=1

σ
2
iz

(

1− ρ
2
ixz

) /

πi

}

+

N
∑

i=1

σ
2
iy

(

1− ρ
2
iyx

) /

πi,

t
(2)
RG =

∑

i∈s

[tiy − γi (tix −Xi)] /πi − γ (tz − Z) ,

where γi = (βiyx + γβizx) and γ =
σyz+

∑N
i=1

σ2

iz(βiyz−βiyxβixz)/πi

σ2
z+

∑
N
i=1

σ2

iz(1−ρ2
ixz)/πi

.
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3.4. Assume that Z is unknown butXi, Zi for i ∈ s, andX are known. Then, considering

Ŷi = gi(tiy , tiz) , the class of estimators is defined by tg = g(t′y, t
′
x) as studied by Sahoo

and Sahoo [7]. In this case the minimum variance bound is

(11) minV (tg) = σ
2
y(1− ρ

2
yx) +

N
∑

i=1

σ
2
iy(1− ρ

2
iyz)
/

πi,

and the corresponding MVB estimator is

t
(3)
RG =

∑

i∈s

[tiy − βiyz(tiz − Zi)] /πi − βyx(t
′
x −X).

3.5. If the estimation procedure is carried out with the involvement of x only, then

Ŷi = gi(tiy, tix) and tg = g(t′y, t
′
x), a class of estimators considered by Sahoo and Panda

[5]. The asymptotic MVB of the class is

(12) minV (tg) = σ
2
y(1− ρ

2
yx) +

N
∑

i=1

σ
2
iy(1− ρ

2
iyx)

/

πi,

and the corresponding MVB estimator is of the form

t
(4)
R =

∑

i∈s

[tiy − βiyx(tix −Xi)] /πi − βyx(t
′
x −X),

which can be transformed to the regression-type estimator developed by Sahoo [4] on
adopting the simple random sampling without replacement (SRSWOR) design at differ-
ent stages.

3.6. If s = U , then πi = πij = 1 for all i and j . In this case tg simply defines a class of
estimators for a stratified sampling with N fsus as a set of strata.

3.7. If si = Ui∀ i, tg defines a class of estimators for single-stage cluster sampling.

4. Precision of the class

In order to study precision of tg compared to other classes of estimators utilizing
information on two auxiliary variables, let us now consider the classes of estimators
developed by Srivastava [12] and Sahoo et al, [8]. These classes are respectively defined
by

tc = h(ty , tx, tz)

and

tl = f(Ỹ , X̃),

where Ỹ =
∑

i∈s φi(tiy, tix)/πi and X̃ = φ(t′x, t
′
z), are such that the functions involved

in composing the classes admit regularity conditions. It may be remarked here that tl
makes use of pre-assigned values of X,Z,Xi and Zi (i ∈ s), whereas tc makes use of only
X and Z.
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The asymptotic expressions for V (tc) and V (tl) are given by

V (tc) = σ
2
y + h

2
1σ

2
x + h

2
2σ

2
z + 2h1σyx + 2h2σyz + 2h1h2σxz

+

N
∑

i=1

[

σ
2
iy + h

2
1σ

2
ix + h

2
2σ

2
iz + 2h1σiyx + 2h2σiyz + 2h1h2σixz

] /

πi,
(13)

V (tl) = σ
2
y + f

2
1

(

σ
2
x + φ

2
2σ

2
z + 2φ2σxz

)

+ 2f1 (σyx + φ2σyz)

+
N
∑

i=1

(

σ
2
iy + φ

2
i1σ

2
ix + 2φi1σiyx

) /

πi,
(14)

where h1 =
∂h(ty ,tx,tz)

∂tx

∣

∣

∣

(Y,X,Z)
, h2 =

∂h(ty ,tx,tz)

∂tz

∣

∣

∣

(Y,X,Z)
, φi1 =

∂φi(tiy,tix)

∂tix

∣

∣

∣

(Yi,Xi)
, φ2 =

∂φ(t′x,t
′
z)

∂t′z

∣

∣

∣

(X,Z)
and f1 = ∂f(Ỹ ,X̃)

∂X̃

∣

∣

∣

(Y,X)
.

The MVB and the corresponding MVB estimators of tc and tl are

minV (tc) = σ
2
y(1−R

2) +
N
∑

i=1

σ
2
iy(1−R

2)
/

πi,(15)

minV (tl) = σ
2
y(1− ρ

2) +
N
∑

i=1

σ
2
iy(1− ρ

2
iyx)

/

πi,(16)

t
(c)
RG = ty − β1(tx −X)− β2(tz − Z),

t
(l)
RG =

∑

i∈s

[tiy − βiyx(tix −Xi)] /πi − f̂1(t
′
x −X) − φ̂2(t

′
z − Z),

where R is the multiple correlation coefficient of ty on tx and tz; β1 and β2 are respectively

the partial regression coefficients of ty on tx and ty on tz; f̂1 = ĝ1, φ̂2 =
βyz−βyxβxz

βyx−βyzβxz
.

As tc and tl can be taken to be potential competitors of tg, one should naturally be
interested to compare their precisions. But, comparing (6) with (13) and (14), we can
derive only some sufficient conditions under which an estimator of tg is asymptotically
more precise than an estimator of tc or tl. However, these conditions are extremely
complicated and mainly depend on the choices of the functions, h, f, φ, φi, g and gi, and
cannot lead to any straightforward conclusion unless the nature of these functions are
known. But, for simplicity, if we accept MVB as an intrinsic measure of the precision of
a class, the problem of precision comparison seems to be easier and our attention will be
concentrated on the MVB estimators only. Thus,

• minV (tg) ≤ minV (tc) i.e., tRG is more precise than t
(c)
RG if R ≤ ρ and ρi ∀ i,

and,

• minV (tg) ≤ minV (tl) i.e., tRG is always more precise than t
(l)
RG.

On these grounds, we also find that tRG is more precise than t
(s)
RG, t

(1)
RG, t

(3)
RG and t

(4)
RG,

whereas no conclusion can be drawn regarding the precision of tRG over t
(2)
RG.

5. A simulation study

As seen above, a theoretical comparison is not very useful in showing the merits of the
suggested estimation procedure over others. Therefore, as a counterpart to the theoretical
comparison, we carry out a simulation study. In this study, we do not limit ourselves to
the MVB estimators only.

The simulation study reported here involves repeated draws of independent samples
from a natural population consisting of 198 blocks (ssus) divided into N = 27 wards
(fsus) of Berhampur City of Orissa (India). The number of blocks (Mi) in the 27 wards
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are 6, 6, 12, 5, 6, 6, 10, 5, 6, 6, 6, 6, 6, 12, 6, 7, 7, 7, 10, 6, 6, 7, 10, 11, 9, 8 and 6.
Three variables viz., number of educated females, number of households and the female
population are used as y, x and z respectively, data on which is readily available from
the Census of India (1971) document.

The estimators under consideration are the eight MVB estimators viz., t
(s)
RG, t

(1)
RG, t

(2)
RG,

t
(3)
RG, t

(4)
RG, t

(c)
RG, t

(l)
RG and tRG, and their respective ratio counterparts defined by

t
(s)
R =

∑

i∈s

tiy
Xi

tix

Zi

tiz

/

πi, t
(1)
R =

(

∑

i∈s

tiy
Xi

tix

Zi

tiz

/

πi

)

Z

t′z
,

t
(2)
R =

(

∑

i∈s

tiy
Xi

tix

/

πi

)

Z

tz
, t

(3)
R =

(

∑

i∈s

tiy
Zi

tiz

/

πi

)

X

t′x
,

t
(4)
R =

(

∑

i∈s

tiy
Xi

tix

/

πi

)

X

t′x
, t

(c)
R = ty

X

tx

Z

tz
,

t
(l)
R =

(

∑

i∈s

tiy
Xi

tix

/

πi

)

X

t′x

Z

t′z
, and tR =

(

∑

i∈s

tiy
Xi

tix

Zi

tiz

/

πi

)

X

t′x

Z

t′z
.

We did not touch the product or product-type estimators as y is positively correlated
with x and z. It may also be noted here that, for simplicity, we compute tRG and the
other MVB estimators by considering population values of their respective coefficients,
and in this case the estimators are unbiased.

The following performance measures of an estimator t are taken into consideration:

(1) Relative absolute bias (RAB) = 100 |B(t)| /Y , where B(t) = E(t)−Y is the bias
of t.

(2) Percentage relative efficiency (PRE) compared to the direct estimator ty =
∑

i∈s

tiy
πi

i.e., PRE = 100V (ty)/V (t), where V (t) is the variance of t.

Our simulation consisted in the selection of 1000 independent first stage samples each
of size n = 10 fsus from the population by SRSWOR. From every selected Ui, (i =
1, 2, . . . , 10) in a first stage sample, a second stage sample of size mi = 2 or 3 ssus is
again selected by SRSWOR. Thus, we now have 1000 independent samples each of size
20 or 30 ssus. Considering these independent samples simulated biases and variances of
the comparable estimators are calculated. If r indexes the r-th sample, the simulated
bias and variance of an estimator t are given by

B(t) =
1

1000

1000
∑

r=1

t
(r) − Y

and

V (t) =
1

1000

1000
∑

r=1

(

t
(r) −

1

1000

1000
∑

r=1

t
(r)

)2

,

respectively, where t(r) is the value of t for the r-th realized sample. The simulated
values of RAB and PRE of different estimators are then calculated as suggested above
and their values are displayed in Table 1. But, we see that the simulated values of RAB
for the MVB estimators are not equal to zero as these values are computed from a limited
number of independent samples.
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Table 1. RAB and PRE of Different Estimators

Estimator RB PRE

mi = 2 mi = 3 mi = 2 mi = 3

t
(s)
RG 4.875 4.177 101 105

t
(1)
RG 2.965 2.390 109 110

t
(2)
RG 3.501 3.188 120 121

t
(3)
RG 6.347 5.910 109 111

t
(4)
RG 2.956 2.163 107 108

t
(c)
RG 5.885 4.632 118 119

t
(l)
RG 2.122 2.119 116 118

tRG 2.136 2.042 121 123

t
(s)
R 49.991 33.135 105 105

t
(1)
R 61.116 55.246 108 109

t
(2)
R 58.123 41.765 113 115

t
(3)
R 55.448 46.654 110 112

t
(4)
R 29.567 28.769 109 112

t
(c)
R 62.987 54.944 107 111

t
(l)
R 27.576 26.323 117 118

tR 25.653 22.444 119 120

Simulation results show that tR is superior to the other ratio-type estimators on the
grounds of RAB and PRE. On the other hand, tRG is superior to the other regression-
type (MVB) estimators with respect to RAB for mi = 3 and PRE. But, it is slightly

inferior to t
(l)
RG with respect to RAB for mi = 2. This imperfection is probably caused

by our restriction to 1000 independent samples. An increase in the number of samples
and their size may improve the degree of performance of tRG considerably. However,
our simulation study, though of limited scope, clearly indicates that there are practical
situations which can favor the application of the suggested estimation methodology.
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