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Highlights 
• An Energy Management Algorithm is proposed for day-ahead scheduling in a microgrid. 

• Optimization problem is framed to minimize the cost of power generation under DMO model. 

• Artificial Fish Swarm technique is used as a tool to solve the optimization part. 

• Several scenarios are drawn to treat uncertainty in Renewable Energy availability. 
 

ArticleInfo 

 

Abstract 

A day ahead management strategy is proposed in this article to schedule energy generators and 

storage in presence of Renewable Energy Sources under uncertainty conditions with an objective 

to optimize the cost of energy generation. Artificial Fish Swarm algorithm is used as optimization 

tool. The optimization problem is framed considering all the practical constraints of energy 

generators and storage units. The uncertainty of Renewable Energy Sources is treated with a 

proven uncertainty model and several scenarios are drawn for energy availability and demand. 

The proposed energy management algorithm is tested numerically on a grid connected microgrid 

hosting a group of hybrid energy sources and storage battery for day ahead scheduling under 

dynamic pricing and demand side management in one of the generated uncertainty scenarios. The 

obtained results show that the performance of Artificial Fish Swarm algorithm as an optimizing 

tool is validated and the proposed Energy Management System is found to optimize the cost of 

energy generation while matching the power generated with power required. 
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1. INTRODUCTION 

 

The economic research forecasts that the cost of energy generation from RESs will nose dive next decade 

in comparison with their conventional counterparts like coal [1]. In realization of these forecasts, solar 

generated electrical energy has witnessed a lowest bidding rate of 2.44 Rupees in India from a private 

producer [2]. It is comparatively much cheaper than conventional sources like nuclear or coal. Apart from 

cost of energy generation, the potency of solar generated energy in meeting the global energy needs with 

almost zero damage to the environment is yet another advantage. The sunshine rich parts of the world like 

Asia, Africa, and Australia etc have enough solar energy sources to meet a major share of global energy 

requirements. The idea of tapping solar and wind energy which are distributed sources by availability has 

encouraged the concept of connecting smaller and distributed generation sources to the utility grid at tail 

ends (distribution systems) at low and medium voltages levels. This lead to a whole new concept of 

autonomous microgrids [3]. The microgrids operate in either grid connected mode or in autonomous mode. 

The developments in microgrid enabling technologies like capacity building of DG units from a few kW to 

MW, efficient energy derivation methods from RESs, reducing costs of energy storage, availability of wide 

area controlling technologies like SCADA along with incentives offered by governments for renewable 

energy generation have grown so attractive that they can no more be overlooked by investment policy 

makers. The investment policies in energy market are being reframed to accommodate microgrids into the 

existing utility grid system and symptoms that conventional centralized generation concept of energy is 

slowly shifting towards the distributed generation concept are evident [4].  
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All the above advantages being on one side of the microgrids, they suffer from quite a few operation and 

control difficulties. Uncertainty of energy availability from the RESs is one such serious setback, which 

ultimately affects the reliability of the system, if not treated properly. The energy output from a RES 

generator is not under the control of the microgrid operator. He can only curtail the generation in the event 

of excess generation. A lot of research is inspired by the need to reduce the uncertainty of energy availability 

from RESs and to balance the generation with the loads in the microgrids. The classical energy balance 

techniques fall short in microgrid environment due to the uncertainty in generation and loads added with 

bi-directional power flows, which add even more difficulty in energy balancing. Thanks to research, it has 

come out with quite a few modern techniques modelled and tested to contain the uncertainty. Day ahead 

scheduling using data mining, maintaining battery storage back-ups and spinning reserves, demand side 

management tools like load shifting, load curtailing (load shedding under deficit generation), demand 

response etc top the list. A sample of literature using the above energy balance techniques to solve various 

types of objective functions include mixed integer linear programming problems [5-7], linear programming 

problems [8]. Different types of linear programming techniques and nature inspired swarm intelligence 

algorithms are employed to solve the problems of optimum energy exchange (charging/discharging) 

schedules of batteries/storage facility [9-11]. All the above energy balancing techniques are from the 

generation side. The other energy balancing techniques from demand side are also tested successfully, like 

load shifting and shedding [12], demand response [13-16]. Load shedding being a technique used to manage 

the constant power loads (They are either supplied with rated power or else completely disconnected), using 

electric springs is a new technique to supply constant energy loads with reduced power [17]. Apart from 

this quite a large number of models are proposed and tested to represent the uncertainty of energy 

availability with the RES generators and the loads [18-21]. 

The problem of scheduling power generation sources and storage devices while optimizing the cost of 

power generation from sources is considered in this article. The solution to the problem needs two aspects 

to be solved. One is to find the optimal mix of generation from different sources to minimize the cost of 

generation and the other part is to schedule the required power among generation sources following the 

optimized mix as evaluated. Until late, the cost of power generation from renewable sources is considered 

as zero on the pretext that they need zero expenditure towards the fuel and hence they are treated as non-

dispatchable sources [22,23]. This assumption is too remote from practical reality and simplifies the 

optimization problem too much.  A few works reported in literature have considered the cost of power 

generation from renewable sources as non-zero. Authors in [24] have considered cost of generation from 

wind and PV units as quadratic functions. Authors in [25] have proposed a new cost function for renewable 

power generation by computing a penalty amount for differential power between actual powers generated 

and forecasted power. This case is specifically proposed for the microgrid operators who do not have 

sufficient facilities to store all the excess energy available with renewable sources. The penalty amount so 

computed is made a component in computing the cost of renewable energy generation. The authors in [26] 

put an end to general flow of concept in literature that the power generation from renewable sources in 

uncontrollable. They have proposed an Automatic Generation Control strategy to control power generation 

from wind farms.We have considered both the conventional and renewable generators in dispatchable 

category with respective cost functions for both. The popular optimization techniques like GA and PSO, 

which are the favourites in literature, suffer from serious drawbacks in terms of computational complexities 

and time. More constrained the problem is, more will be these complexities. For instance, the process of 

fine tuning the computational parameters like fitness normalization, mutation rate, crossover parameters 

etc in GA is more trial and error based. Such complexities are quite lesser in number in Artificial Fish 

Swarm (AFS) algorithm. Though it suffers from the disadvantage of not using the past experience of the 

swarm members in evaluating the next step in search, AFS algorithm has the outweighing merits of higher 

accuracy, lesser computational time, faster convergence, very few parameters to be tuned etc. As such, AFS 

algorithm is used in this paper to find solution for the optimization part of the problem. The problem is 

framed with an objective to reduce the cost of energy generation in presence of uncertain energy availability 

from the RES generators under dynamic pricing of energy. A bunch of renewable and non-renewable 

energy sources are considered along with battery back-up. The uncertainty with RESs energy availability 

and loads is treated using a proven uncertainty model. The battery is charged from the excess energy 

available and is used to back-up supply under deficit generation. The microgrid is operated in grid 

connected mode with an upper limit for power drawl. The problem formulation is done with a view to 
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include demand side management which allows load shedding under power shortage condition, 

compensating the consumer for the inconvenience caused due to power disconnection. Artificial Fish 

Swarm Algorithm is employed to work out the optimization part of the objective function. The problem is 

solved over hourly intervals for 24 hours. 

 

2. ARTIFICIAL FISH SWARM ALGORITHM 

 

The fishes in a swarm are seen continuously changing their positions. For an observer, their movements 

appear random and unsynchronized. But in reality, the fishes do it purposefully and with a high sense of 

synchronization. They move continuously to adjust their position in synchronization to the path leading to 

a location of their objective. Their objective could be anything like staying protected from a predator’s 

attack, avoiding collision with neighbouring fellow fishes, finding a location where chances of finding food 

is better etc. Such movements of the fishes are modelled and the AFS algorithm is framed [27]. It frames a 

localized searching method for each of the individual artificial fish and each search ends with updating the 

solution to obtain the best location for the objective chosen. Each individual fish in the swarm is termed as 

artificial fish. Each instantaneous position that these artificial fishes occupy on their path to the objective 

location, symbolizes a possible solution to the problem at hand. These instantaneous positions are modelled 

differently for different objectives of movement by fish. The fishes exhibit different movement patterns for 

different behaviours like random searching behaviour, trail following behaviour, preying, swarming and 

mating behaviours etc. The AFS algorithm adopts these entire behaviours one after the other in its quest for 

the optimum solution. The AFS algorithm can be summed up as follows.     

Let the current location of an individual artificial fish be 

𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … . . 𝑥𝑖𝑛),                                                                                                                               (1) 

where 𝑖 signifies the number of control variables and 𝑛 signifies the total number of individual artificial 

fishes living in the swarm. 

Then the consistency of fulfilling its objective at the location will be 

𝑌𝑖 = 𝑓(𝑋𝑖).                                                                                                                                                   (2) 

On its way to the location where the consistency of fulfilling objective is best, the artificial fish alters its 

position to a new location 𝑋𝑖
∗which is given by 

𝑋𝑖
∗ = 𝑋𝑖 + 𝑟𝑎𝑛𝑑 ( ) ∗ 𝑠𝑡𝑒𝑝 ∗

𝑋𝑗−𝑋𝑖

‖𝑋𝑗−𝑋𝑖‖
,                                                                                                         (3) 

where rand ( ) is any random number that lies between ‘0’ and ‘1’, step is the largest radial displacement 

through which the fish can navigate in one move and 𝑋𝑗 is anyone of the  calculated positions which exists 

within the visual extent of the fish. The calculated position 𝑋𝑗 is a function of behaviour of the artificial 

fish and it is different for different behaviours.   

1. Chasing behaviour: In this behaviour, the artificial fish simply follows the fish in its front. 

Condition is that the position of the neighbouring fish exists within its visual extent. In this 

behaviour, the position 𝑋𝑗 is defined as 

𝑋𝑗 = 𝑇ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑓𝑖𝑠ℎ.  

2. Swarming / gathering behaviour: In this behaviour the artificial fish tries to move close to the 

centre of the swarm to ensure that it is surrounded by the fellow fishes in all directions to avoid 

any potential attack/predator from outside. In this behaviour, the position 𝑋𝑗 is defined as 𝑋𝑗 =

𝑋𝑖 + 𝑟𝑎𝑛𝑑 ( ) ∗ 𝑠𝑡𝑒𝑝 ∗
𝑋𝑐−𝑋𝑖

‖𝑋𝑐−𝑋𝑖‖
,                                                                                            (4) 

where the geometrical centre location of the swarm is denoted by 𝑋𝑐. 
3. Foraging / Preying behaviour: In this behaviour, the artificial fish estimates the probability of 

finding food at different locations either by vision or sense. It searches for a location with better 

food consistency and directly moves in that direction. The position 𝑋𝑗 in this behaviour is defined 

as  



1170 Prakash Kumar K, Saravanan B/ GU J Sci, 32(4): 1167-1183 (2019) 

 

𝑋𝑗 = 𝑋𝑖 + 𝑟𝑎𝑛𝑑 ( ) ∗ 𝑣𝑖𝑠𝑢𝑎𝑙.                                                                                                       (5) 

 

 

Figure 1. Flow chart of AFS algorithm 

 

The AFS algorithm uses all the above explained behaviours of fish movement in a sequential order in search 

for the optimality of the objective function. With each step, the better location is updated and the search is 

continued until the objective is achieved. Figure-1 shows the flow chart of the AFS algorithm. After 

initialization of the parameters, the algorithm generates the initial fish swarm for generator 𝑥𝑖 for 𝑖=1 to 𝑛 

as shown in Figure-1. The different artificial fishes are tested for the fitness of the objective function. The 

various behaviours of the fish swarm like chasing the trail, swarming and foraging behaviours, are 

simulated in a sequence on the artificial fishes generated as shown in Figure 1 and the best resulting 

locations are updated with each iteration. If the termination condition is true, the simulation is stopped. 

The parametric mapping between the AFS algorithm and the problem considered is done as follows. The 

power generation to be scheduled to each generator is mapped with artificial fish, the vision of the fish is 

mapped with maximum power limit of the generator and the step of the fish is mapped with generation 

ramp allowed with the individual generators. 

 

3. MODELLING OF RELEVANT AGENTS 

 

The mathematical models of different agents used in this problem such as generators, storage devices, cost 

of energy, uncertainty associated with the loads and renewable energies availability etc are detailed as 

below. 

 

 

  

3.1. Generator model 

 

Let  𝑃𝑖
𝑐𝑜𝑛(𝑡) and 𝑃𝑗

𝑟𝑒𝑠(𝑡) be the powers generated by ith conventional generator (non-renewable energy)  

and jth renewable generator at time interval t. The upper and lower limits of their power generation are given 

by 

Perform  behaviour for 
xi  & Yi ,  i = 1 to n 

Perform swarm behaviour 
for xi & Yi ,  i = 1 to n 

Perform foraging 
behaviour for xi & Yi , i = 1 

to n 

Initialize parameters 

Generate fish swarm xi , i = 1 to n 

Evaluate fitness Yi , i =1 to n 

Update best fitness 

Is the termination 

condition satisfied? 

Print xi, Yi 

Yes 

No 
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𝑃𝑖
𝑐𝑜𝑛𝑚𝑖𝑛 ≤ 𝑃𝑖

𝑐𝑜𝑛(𝑡) ≤ 𝑃𝑖
𝑐𝑜𝑛𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼,                                                                                               (6) 

𝑃𝑗
𝑟𝑒𝑠𝑚𝑖𝑛 ≤ 𝑃𝑗

𝑟𝑒𝑠(𝑡) ≤ 𝑃𝑗
𝑟𝑒𝑠𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽.                                                                                                (7) 

3.2. Storage model 

 

Battery storage is modelled as a distributed unit and their charging and discharging schedule is controlled 

by the energy management system based on the following constraints.  

Let 𝑃𝑘
𝑠𝑡𝑔𝑐ℎ(𝑡), 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 and 𝑃𝑘

𝑠𝑡𝑔𝑑𝑐ℎ(𝑡), 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾, be the charging and discharging powers 

respectively.  

Then the rates of charging and discharging are bound by upper and lower limits as in (8) and (9) 

  

0 ≤ 𝑃𝑘
𝑠𝑡𝑔𝑐ℎ(𝑡) ≤ 𝑃𝑘

𝑠𝑡𝑔𝑐ℎ𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾,                                                                                                  (8) 

0 ≤ 𝑃𝑘
𝑠𝑡𝑔𝑑𝑐ℎ(𝑡) ≤ 𝑃𝑘

𝑠𝑡𝑔𝑑𝑐ℎ𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾,                                                                                               (9) 

𝑆𝑜𝐶𝑘
𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑘(𝑡) ≤ 𝑆𝑜𝐶𝑘

𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾,                                                                                          (10) 

𝑆𝑜𝐶𝑘(𝑡 + 1) = 𝑆𝑜𝐶𝑘(𝑡) + 𝜂𝑘𝑃𝑘
𝑠𝑡𝑔𝑐ℎ(𝑡), 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾,                                                                             (11) 

𝑆𝑜𝐶𝑘(𝑡 + 1) = 𝑆𝑜𝐶𝑘(𝑡) − 𝜂𝑘𝑃𝑘
𝑠𝑡𝑔𝑑𝑐ℎ(𝑡), 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾.                                                                           (12) 

The magnitude of energy stored in the battery storage facility is expressed in terms of state of charge, 

𝑆𝑜𝐶𝑘(𝑡) which could either be in terms of percentage of full charge or in terms of kWh remaining for 

backup. It is convenient to use kWh remaining for back-up in the present case.  The state of charge is bound 

by upper and lower limits (10). The state of charge at any instant is given by (11) while charging and by 

(12) while discharging, inclusive of charging and discharging efficiencies as noted in equations.  

 

3.3. Load model 

 

A constant power model is used for loads. In such models the loads are an aggregate of rated powers, which 

should be supplied in full.  A controllable/load shedding version of the model allows the energy 

management system to either supply the load fully or disconnect it from the grid. The load in excess to total 

power available with the microgrid cannot be supplied and is disconnected/ shed. Such load is termed as 

load shed 𝐿𝑚
𝑠ℎ𝑑(𝑡) [28]. The load shedding is allowed with compensation 𝐶𝑚

𝑠ℎ𝑑(𝑡) due to the energy user by 

the utility operator for the inconvenience caused.  

The Distribution Market Operator (DMO) model [29], which is used in the present work, restricts power 

transactions between the utility grid and microgrid to a predetermined award, which is communicated to 

the microgrid operator by the DMO one day in advance. The aim of this restriction is to reduce penetration 

of uncertainty from microgrids into the utility grid. This award is binding on the microgrid operator and he 

has to draw power from the utility grid without deviating from this award. Any deviation from the award 

will be penalised. In other words, the DMO decides the upper and lower limits for power drawl from the 

utility grid and utility grid is no more an infinite source. Under such conditions, if the load to be supplied 

by the microgrid is more than the sum of all internal sources, storage and maximum grid power limit, the 

excess load is disconnected and is termed as load shed. 

 

 

 

 

3.4. Modelling of costs of energy 

 

The business operation of microgrid involves various components towards the calculation of cost of energy 

production. Such components which are considered in the present article may be summed up as follows. 

 

𝐶𝑖
𝑐𝑜𝑛(𝑡) = 𝑋𝑖

𝑐𝑜𝑛(𝑡) ∗ 𝑐𝑖
𝑐𝑜𝑛(𝑡) ∗ 𝑃𝑖

𝑐𝑜𝑛(𝑡) + 𝑈𝑖
𝑐𝑜𝑛(𝑡) ∗ 𝑐𝑖

𝑐𝑜𝑛𝑠𝑡𝑎𝑟𝑡 + 𝑉𝑖
𝑐𝑜𝑛(𝑡) ∗ 𝑐𝑖

𝑐𝑜𝑛𝑠ℎ𝑢𝑡 , 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇,         (13) 
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𝐶𝑗
𝑟𝑒𝑠(𝑡) = 𝑋𝑗

𝑟𝑒𝑠(𝑡) ∗ 𝑐𝑗
𝑟𝑒𝑠(𝑡) ∗ 𝑃𝑗

𝑟𝑒𝑠(𝑡) + 𝑈𝑗
𝑟𝑒𝑠(𝑡) ∗ 𝑐𝑗

𝑟𝑒𝑠𝑠𝑡𝑎𝑟𝑡 + 𝑉𝑗
𝑟𝑒𝑠(𝑡) ∗ 𝑐𝑗

𝑟𝑒𝑠𝑠ℎ𝑢𝑡 , 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇,             (14) 

𝐶𝑘
𝑠𝑡𝑔(𝑡) = 𝑌𝑘

𝑠𝑡𝑔(𝑡) ∗ 𝑐𝑘
𝑠𝑡𝑔

∗ 𝜂𝑘 ∗ 𝑃𝑘
𝑠𝑡𝑔(𝑡),                                                                                                 (15) 

𝐶𝑚
𝑠ℎ𝑑(𝑡) = 𝑌𝑚

𝑠ℎ𝑑(𝑡) ∗ 𝑐𝑚
𝑠ℎ𝑑(𝑡) ∗ 𝐿𝑚

𝑠ℎ𝑑(𝑡),                                                                                                  (16) 

𝐶𝑔𝑟𝑑(𝑡) = 𝑐𝑔𝑟𝑑(𝑡) ∗ 𝑃𝑔𝑟𝑑(𝑡).                                                                                                                  (17) 

The hourly cost of energy generation 𝐶𝑖
𝑐𝑜𝑛(𝑡) by the conventional energy source including the startup and 

shutdown costs is given by (13) and that of RES generator 𝐶𝑗
𝑟𝑒𝑠(𝑡) is given by (14) which include their 

startup and shutdown costs. U and V are state vectors which give the shut-down or start-up status of the 

sources. A ‘1’ is used to indicate if the generator is either started or shut down at the time interval and a ‘0’ 

is used to indicate if the generator is already OFF state or is already in ON state. 

The cost of power exchange from battery/storage device 𝐶𝑘
𝑠𝑡𝑔(𝑡) is modelled as given by (15), where 

𝑌𝑘
𝑠𝑡𝑔(𝑡) is a state vector signifying the type of power exchange of the battery/storage. 𝑌𝑘

𝑠𝑡𝑔(𝑡) models the 

three types power exchange of the kth battery/storage with the microgrid at time t. The three states are 

charging under excess generation, discharging under deficit generation and idle states. The energy 

management system schedules battery charging under excess generation and discharging under deficit 

generation. The term k   refers to efficiency while charging and discharging of the battery/storage facility. 

The cost of load shedding by the microgrid operator is given by (16). 𝑌𝑚
𝑠ℎ𝑑(𝑡) is a state vector signifying 

ON/OFF state of the mth load at time t . A ‘0’ in the vector signifies an ON state  and a ‘1’ signifies OFF 

state. Compensation cost adds to the total cost of microgrid operation in case the load shedding is done by 

the microgrid operator. The term 𝑐𝑚
𝑠ℎ𝑑(𝑡)  is  the rate of compensation payable and 𝐿𝑚

𝑠ℎ𝑑(𝑡) is the load 

magnitude disconnected from the microgrid by the utility operator.  

The microgrid is operated in grid connected mode. Under DMO model, the power drawl from the grid is 

subject to upper and lower limits and the cost of power drawl 𝐶𝑔𝑟𝑑(t) is laid down by (17). The grid power 

comes at a dynamic price of  𝑐𝑔𝑟𝑑(t)  per unit energy. 

 

3.5. Modelling uncertainty of RES generation 

 

Let 𝑃𝑗
𝑟𝑒𝑠(𝑡) be the power developed by jth RES generator at time interval t and vector 𝛹𝑗  be a vector that 

collects all the values of 𝑃𝑗
𝑟𝑒𝑠(𝑡) for   𝑡 ∈ 𝑇. Then (18) consolidates this relation 

𝛹𝑗 = [𝑃𝑗
𝑟𝑒𝑠(1), 𝑃𝑗

𝑟𝑒𝑠(2)…… . 𝑃𝑗
𝑟𝑒𝑠(𝑇)], over the time horizon 𝑡 ∈ 𝑇.                                                      (18) 

To model the uncertainty of power 𝑃𝑗
𝑟𝑒𝑠(𝑡) over the time period 𝑡 ∈ 𝑇 , it is assumed that the value of 𝛹𝑗 

is unknown and lies in an uncertainty set 𝛹. Let there be an exclusive uncertainty set for each of renewable 

generators over the time period 𝑡 ∈ 𝑇 and another exclusive uncertainty set for the total renewable power 

∑ 𝑃𝑗
𝑟𝑒𝑠(𝑠)𝑗,𝑠  over a time sub-horizon 𝑠 ∈ 𝑇 and say all these uncertainty sets form the subsets of the main 

uncertainty set 𝛹.  Then (19) relates all the above uncertainty sets, 

𝛹 = {
([𝑃𝑗

𝑟𝑒𝑠(𝑡)]|𝑃𝑗
𝑟𝑒𝑠𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑗

𝑟𝑒𝑠(𝑡) ≤ 𝑃𝑗
𝑟𝑒𝑠𝑚𝑎𝑥(𝑡), |𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽) ,

([∑ 𝑃𝑗
𝑟𝑒𝑠(𝑠)𝑗,𝑠 ]|𝑃𝑗

𝑟𝑒𝑠𝑡𝑜𝑡𝑎𝑙𝑚𝑖𝑛(𝑠) ≤ ∑ 𝑃𝑗
𝑟𝑒𝑠(𝑠)|𝑠 ∈ 𝑇𝑗,𝑠 ≤ 𝑃𝑗

𝑟𝑒𝑠𝑡𝑜𝑡𝑎𝑙𝑚𝑎𝑥(𝑠))
},                               (19) 

𝑃𝑗
𝑟𝑒𝑠𝑚𝑖𝑛(𝑡) and 𝑃𝑗

𝑟𝑒𝑠𝑚𝑎𝑥(𝑡) are the minimum and maximum bounds for the values of power available with 

the jth RES sourced at time interval t, 𝑃𝑗
𝑟𝑒𝑠𝑡𝑜𝑡𝑎𝑙𝑚𝑖𝑛(𝑠) and 𝑃𝑗

𝑟𝑒𝑠𝑡𝑜𝑡𝑎𝑙𝑚𝑎𝑥(𝑠) represent the minimum and 

maximum bounds for the values of the total energy available with the  RES generators over a time sub-

horizon 𝑆. The numeric values of 𝑃𝑗
𝑟𝑒𝑠(𝑡) and ∑ 𝑃𝑗

𝑟𝑒𝑠(𝑠)𝑗,𝑠  lie always within these respective bounds.  

This uncertainty model is quite general in nature and it takes into consideration the climatic parameters of 

the RES sources as the model is based on the recorded data. This is a simple model in terms of 

computational complexity and is quite proven practically as it is based on the actual historical data. It 
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requires only the values of 𝑷𝒋
𝒓𝒆𝒔𝒎𝒊𝒏(𝒕), 𝑷𝒋

𝒓𝒆𝒔𝒎𝒂𝒙(𝒕), 𝑷𝒋
𝒓𝒆𝒔𝒕𝒐𝒕𝒂𝒍𝒎𝒊𝒏(𝒔) and 𝑷𝒋

𝒓𝒆𝒔𝒕𝒐𝒕𝒂𝒍𝒎𝒂𝒙(𝒔). Numeric values of these 

terms can be estimated from historical data analysis using any of the data inference techniques reported in 

literature [3]. 

 

4. MICROGRID PROBLEM FORMULATION 

 

Minimization of energy generation cost being the prime objective of the microgrid utility operator, it can 

be stated as in (20) 

 

𝑚𝑖𝑛∑ ∑ 𝑓[𝑃𝑛(𝑡)]
𝑇
𝑡=1

𝑁
𝑛=1 ,                                                                                                                          (20) 

 

where 

𝑓[𝑃𝑛(𝑡)] =

{
  
 

  
 ∑ ∑ [𝑊𝑖

𝑐𝑜𝑛(𝑡) ∗ 𝑐𝑖
𝑐𝑜𝑛(𝑡) ∗ 𝑃𝑖

𝑐𝑜𝑛(𝑡) + 𝑥𝑖 ∗ 𝑐𝑖
𝑐𝑜𝑛𝑢𝑝 + 𝑦𝑖 ∗ 𝑐𝑖

𝑐𝑜𝑛𝑑𝑜𝑤𝑛]𝐼
𝑖=1

𝑇
𝑡=1

+∑ ∑ [𝑋𝑗
𝑟𝑒𝑠(𝑡) ∗ 𝑐𝑗

𝑟𝑒𝑠(𝑡) ∗ 𝑃𝑗
𝑟𝑒𝑠(𝑡) + 𝑥𝑗 ∗ 𝑐𝑗

𝑟𝑒𝑠𝑢𝑝 + 𝑦𝑖 ∗ 𝑐𝑗
𝑟𝑒𝑠𝑑𝑜𝑤𝑛]

𝐽
𝑗=1

𝑇
𝑡=1

+∑ ∑ [𝑌𝑘
𝑠𝑡𝑔(𝑡) ∗ 𝑐𝑘

𝑠𝑡𝑔(𝑡) ∗ 𝜂𝑘 ∗ 𝑃𝑘
𝑠𝑡𝑔(𝑡)]𝐾

𝑘=1
𝑇
𝑡=1

+𝑐𝑔𝑟𝑑(𝑡) ∗ 𝑃𝑔𝑟𝑑(𝑡) + ∑ ∑ [𝑍𝑚
𝑠ℎ𝑑(𝑡) ∗ 𝑐𝑚

𝑠ℎ𝑑(𝑡) ∗ 𝐿𝑚
𝑠ℎ𝑑(𝑡)]𝑀

𝑚=1
𝑇
𝑡=1 ,

𝑖, 𝑗, 𝑘,𝑚 ∈ 𝑛, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 }
  
 

  
 

,                      (21) 

 

subject to the following constraints.   

4.1. Power balance constraints  

 

𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑(𝑡) = 𝑃𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡), 
 

where  

𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑(𝑡) = ∑ 𝑃𝑖
𝑐𝑜𝑛𝐼

𝑖=1 (𝑡) + ∑ 𝑃𝑗
𝑟𝑒𝑠𝐽

𝑗=1 (𝑡) + ∑ 𝑃𝑘
𝑠𝑡𝑔𝑑𝑐ℎ𝐾

𝑘=1 (𝑡) + 𝑃𝑔𝑟𝑑(𝑡), 

 

𝑃𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡) = ∑ [𝐿𝑚(𝑡) − 𝐿𝑚
𝑠ℎ𝑒𝑑(𝑡)]𝑀

𝑚=1 + ∑ 𝑃𝑘
𝑠𝑡𝑔𝑐ℎ𝐾

𝑘=1 (𝑡), 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇.           (22) 

 

Equation (22) is the power balance equation. 
 

4.2. Generator constraints 

 

𝑃𝑖,𝑡𝑚𝑖𝑛
𝑐𝑜𝑛 ≤ 𝑃𝑖,𝑡

𝑐𝑜𝑛 ≤ 𝑃𝑖,𝑡𝑚𝑎𝑥
𝑐𝑜𝑛 , 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇,                                                                                                       (23) 

𝑃𝑗,𝑡𝑚𝑖𝑛
𝑟𝑒𝑠 ≤ 𝑃𝑗,𝑡

𝑟𝑒𝑠 ≤ 𝑃𝑗,𝑡𝑚𝑎𝑥
𝑟𝑒𝑠 , 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇.                                                                                                       (24) 

Equation (23) refers to minimum/maximum power generating limits of conventional generators whereas 

(24) refers to that of RES generators. 

   

4.3. Storage facility constraints 

 

The limits of battery/storage power exchange with the microgrid while charging and discharging are 

given by (25) 

0 ≤ 𝑃𝑘
𝑠𝑡𝑔𝑐ℎ(𝑡) ≤ 𝑃𝑘

𝑠𝑡𝑔𝑐ℎ𝑚𝑎𝑥 , 0 ≤ 𝑃𝑘
𝑠𝑡𝑔𝑑𝑐ℎ(𝑡) ≤ 𝑃𝑘

𝑠𝑡𝑔𝑑𝑐ℎ𝑚𝑎𝑥 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇.                                               (25) 

The battery is charged from excess energy available. This constraint for the charging of the battery may be 

modelled as (26) 

𝑃𝑘
𝑠𝑡𝑔𝑐ℎ(𝑡) > 0|{𝑃𝑖

𝑐𝑜𝑛(𝑡) + 𝑃𝑗
𝑟𝑒𝑠(𝑡) + 𝑃𝑔𝑟𝑑(𝑡)} > [𝐿𝑚(𝑡) − 𝐿𝑚

𝑠ℎ𝑒𝑑(𝑡)] 𝑎𝑛𝑑 𝑃𝑘
𝑠𝑡𝑔𝑐ℎ(𝑡) = 0|𝑒𝑙𝑠𝑒           (26) 

𝑆𝑜𝐶𝑘,𝑡
𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑘(𝑡) ≤ 𝑆𝑜𝐶𝑘,𝑡

𝑚𝑎𝑥 , 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾.                                                                                          (27) 
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Equation (27) restricts the state of charge of the battery/storage facility. 

 

4.4. Grid power drawl constraints 

 

𝑃𝑔𝑟𝑑(𝑡) ≤ 𝑃𝑔𝑟𝑑𝑚𝑎𝑥 .                                                                                                                                  (28) 

Equation (28) imposes limits on power drawl from the grid and restricts it to the DMO imposed award, as 

explained in section 3.3. 

 

5. ALGORITHM FOR PROPOSED ENERGY MANAGEMENT SYSTEM 

 

The proposed algorithm for day ahead energy management is implemented in following steps. 

1. Read data and initialize. 

2. Generate scenarios of uncertainty for RES generators and loads. 

3. For each scenario 

a. If total generation available is more than loads 

i. Find power required = load + Pcharge. 

ii. Implement AFS algorithm and schedule generation. 

iii. Charge the battery with excess power available and update state of charge. 

b. If the total generation is less than loads 

i. Find load shedding = load – (Sum of all generation available+ Pdischrge) 

ii. Implement load shedding. 

iii. Find power required = load-loadshedding 

iv. Use all the available generation 

v. Discharge the battery to meet load and update state of charge 

4. Evaluate cost of generation 

5. Save data and end. 

The objective of the proposed Energy Management Algorithm (EMA) is to schedule the generation and 

storage in a microgrid to reduce the effect of uncertainty in RES power availability and loads. Optimization 

of cost of generation is only a part of proposed EMA. The proposed EMA calls the Artifical Fish Swarm 

(AFS) algorithm when there is a chance to optimize the cost of generation in step 3.a. Optimization is 

possible only during excess generation, i.e., when the generation is more than the load. On the other hand, 

during deficit generation i.e., when the generation is less than the load, all the sources should be used and 

hence there is no chance for optimization. After using all the generators to the full capacity, the EMA uses 

storage and load shedding as options to match the load with generation in step 3.b of the proposed algorithm. 

 

6. NUMERICAL EXAMPLE 

 

To test the performance of the proposed EMS algorithm, a microgrid with a mix of definite energy sources 

(one fuel cell, one micro turbine and grid connection with upper limit of power drawl- whose maximum 

power availability is defined) and uncertain energy sources (one wind turbine and two photovoltaic panels) 

is considered . The details of the mentioned power generators are as tabulated in Table 1. The forecast of 

the maximum power available with the wind turbine, photovoltaic panel and the loads are as plotted in 

Figure 2. The sampling and scheduling is done on hourly basis for 24 hours. The dynamic prices of energy 

generation from fuel cell, micro turbine and the utility grid are as tabulated in Table 2. A battery of 300 

kW, which is optimum [30], approximately 15% of the microgrid capacity, is considered for back-up, 

whose technical details are as shown in Table 1. The DMO imposed upper limit for grid power drawl is 

fixed at 300 kW. 

 

Table 1. Technical Details of the generators used (kW) 

Type Capacity Max power 

limit 

Min power 

limit 

Cost of energy 

(Euro/kW) 

Wind tubine 800 800 -- 0.0307 

PV panels, 1 

and 2 

200 200 -- 0.0307 

Fuel cell 500 500 30 As per Table-2 
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Micro turbine 500 500 30 As per Table-2 

Grid -- 300 -- As per Table 2 

Battery 300 100 

(Charge/disch) 

Max SoC 

(300) 

 

 

   Min SoC 

(30) 

 

 

 
Figure 2. Forecasted power availability of RES generators and load 

Table 2. Cost of energy in Euros/kWh 

Hour Pgrid Pmt Pfc Hour Pgrid Pmt Pfc 

1 0.027 0.0823 0.1277 13 0.572 0.0885 0.1308 

2 0.02 0.0831 0.1285 14 0.286 0.0885 0.138 

3 0.017 0.0831 0.129 15 0.279 0.09 0.1315 

4 0.017 0.0838 0.1285 16 0.086 0.0908 0.1331 

5 0.029 0.0838 0.1292 17 0.059 0.0915 0.1331 

6 0.033 0.0846 0.1292 18 0.05 0.0908 0.1338 

7 0.054 0.0854 0.13 19 0.061 0.0885 0.1331 

8 0.215 0.0862 0.1308 20 0.181 0.0862 0.1315 

9 0.572 0.0862 0.1315 21 0.077 0.0846 0.1308 

10 0.572 0.0892 0.1323 22 0.043 0.0838 0.13 

11 0.572 0.09 0.1315 23 0.037 0.0831 0.1285 

12 0.215 0.0885 0.1308 24 0.035 0.0832 0.1281 

 

To treat the uncertainty in maximum power availability from RES generators and hourly loads, several 

scenarios are generated using the uncertainty model explained in (19) and presented graphically in Figure 

3 to Figure 6. The proposed energy management algorithm is implemented in scenario 3 using AFS 

algorithm and the results are tabulated in Table 4. The numeric data of scenario 3 is presented in Table 3 

for easy comprehension. To initialize the parameters, the scheduled power of each generator (artificial 

fishes) is set to minimum power limit according to Table 1, the vision of the fishes is set to the maximum 

power limit of the generator and the step is set to 1 kW in common to all the generators.  The results 

obtained using AFS algorithm are validated by comparing with the results obtained for implementing the 

same problem using AIMD algorithm. The results using AIMD algorithm are shown in Table 5.  
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Figure 3. Scenarios for Max Power available with 

PV1 

Figure 4. Scenarios for Max Power available with 

PV2 

 

 

  
 

 Figure 5. Scenarios for Max Power available 

with wind turbine 

 

Figure 6. Scenarios for loads 

 

Table 3. Power availability and load in  uncertainty scenario 3 (kW) 

Hour Pwind Ppv1 Ppv2 load Hour Pwind Ppv1 Ppv2 Load 

1 415 0 0 1352 13 198 125 160 1721 

2 231 0 0 1162 14 79 125 136 1968 

3 39 0 0 1069 15 19 124 140 1837 

4 20 0 0 1192 16 116 70 80 1793 

5 155 0 0 1149 17 324 46 39 2035 

6 412 0 15 1268 18 617 0 1 2590 

7 479 43 74 1497 19 756 0 0 2096 

8 518 90 90 1392 20 572 0 0 2358 

9 464 103 120 1644 21 870 0 0 2676 

10 422 118 165 1332 22 786 0 0 1935 

11 432 157 160 1702 23 825 0 0 1637 

12 332 144 196 1699 24 865 0 0 1649 

Total energy availability over 24 hours (kWh) 9946 1145 1376  
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Table 4. Scheduling results for scenario 3 using AFS algorithm (power in kW and cost in Euros) 

Hour Pgwind Pgpv1. Pgpv2 Pgfc Pgmt Pgrid Pdisch Cost Pcharge SoC Loadshed 

1 415 0 0 237 500 300 0 92.26 100 130 0 

2 231 0 0 220 481 300 0 81.33 70 230 0 

3 36 0 0 240 500 293 0 78.6 0 300 0 

4 5 0 0 399 488 300 0 97.42 0 300 0 

5 151 0 0 224 499 275 0 83.37 0 300 0 

6 389 0 8 153 448 270 0 78.77 0 300 0 

7 472 8 70 189 477 281 0 97.36 0 300 0 

8 495 79 54 205 499 60 0 102.01 0 300 0 

9 423 51 116 498 488 68 0 164.56 0 300 0 

10 415 102 106 230 470 9 0 96.63 0 300 0 

11 412 126 132 459 489 84 0 172.99 0 300 0 

12 312 144 119 440 491 192 0 160.15 0 300 0 

13 198 125 160 500 500 238 0 260.61 0 300 0 

14 79 125 136 500 500 300 100 209.49 0 300 228 

15 19 124 140 500 500 300 100 203.14 0 200 154 

16 116 70 80 500 500 300 70 145.92 0 100 157 

17 324 46 39 500 500 300 0 142.56 0 30 326 

18 617 0 1 500 500 300 0 146.27 0 30 672 

19 756 0 0 500 500 300 0 152.31 0 30 40 

20 572 0 0 500 500 300 0 180.71 0 30 486 

21 870 0 0 500 500 300 0 157.51 0 30 506 

22 786 0 0 486 463 300 0 139.01 100 30 0 

23 820 0 0 137 480 300 0 93.77 100 130 0 

24 836 0 0 160 423 300 0 91.85 70 230 0 

   

 

 

Table 5. Scheduling results for scenario 3 using AIMD algorithm (powers in kW and cost in Euros) 

Hour Pgwind Pgpv1. Pgpv2 Pgfc Pgmt Pgrid Pdisch Cost Pcharge SoC Loadshed 

1 364 0 0 394 394 300 0 102.01 100 130 0 

2 231 0 0 350.5 350.5 300 0 87.26 70 230 0 

3 39 0 0 365 365 300 0 83.71 0 300 0 

4 20 0 0 436 436 300 0 98.28 0 300 0 

5 155 0 0 347 347 300 0 87.37 0 300 0 

6 298.25 0 15 328.25 328.25 298.25 0 89.64 0 300 0 

7 340 43 74 370 370 300 0 109.93 0 300 0 

8 288 90 90 318 318 288 0 145.29 0 300 0 

9 353.68 103 120 383.67 383.67 299.98 0 272.82 0 300 0 

10 247.26 117.98 165 277.25 277.25 247.25 0 219.12 0 300 0 

11 341.68 157 160 371.67 371.67 299.98 0 274.13 0 300 0 

12 332 144 196 363.5 363.5 300 0 167.85 0 300 0 

13 198 125 160 469 469 300 0 289.28 0 300 0 

14 79 125 136 500 500 300 100 209.49 0 300 228 

15 19 124 140 500 500 300 100 203.14 0 200 154 

16 116 70 80 500 500 300 70 145.92 0 100 157 

17 324 46 39 500 500 300 0 142.56 0 30 326 

18 617 0 1 500 500 300 0 146.27 0 30 672 

19 756 0 0 500 500 300 0 152.31 0 30 40 

20 572 0 0 500 500 300 0 180.71 0 30 486 
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21 870 0 0 500 500 300 0 157.51 0 30 506 

22 735 0 0 500 500 300 0 142.36 100 30 0 

23 459 0 0 489 489 300 0 128.66 100 130 0 

24 453 0 0 483 483 300 0 126.47 70 230 0 

  

 

 

 

 

Figure 7. Scheduling results using AFS algorithm Figure 8. Scheduling results using AIMD algorithm 

 

 

 
Figure 9. Comparison of cost of generation using AFS and AIMD algorithms 

 

 

  
Figure 10. Battery power exchange Figure 11. State of charge of battery 
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7. RESULTS AND DISCUSSIONS 

 

The results of generation scheduling by implementing proposed algorithm for scenario-3 is presented in 

Table 4 and that using AIMD algorithm in Table 5. The term Pg with suffix in the Tables 4 and 5 refers to 

the power generation scheduled to the respective generators after implementing the proposed Energy 

Management Algorithm. In either case, the fundamental constraint of energy balance as laid down by (19) 

is verified and the power produced (Power produced=Power generated by conventional generators+Power 

generated by renewable generators+Power obtained by battery discharge+Power drawn from grid, (22)] is 

exactly matching the power required [Power required = Total load on microgrid-Load shed+Powre required 

to charge battery, (22)] at each hour. A close comparison of Table 4 and Table 5 shows that AFS algorithm 

is far better than AIMD algorithm in optimizing the cost of generation. For example at hour 1, the cost of 

grid energy is the cheapest, followed by wind and PV power, micro turbine and fuel cell in sequence of 

increasing cost of generation. During this hour, the proposed EMS using AFS algorithm is able to schedule 

complete power available from cheaper sources (grid, wind turbine, PV panels, micro turbine) and use the 

costliest source, i.e., fuel cell very sparingly. Whereas AIMD algorithm is unable to do the same. It is 

scheduling equal powers to all the generators subject to min and max powers. For micro turbine and fuel 

cell, the min powers are 30 kW (Table 1) and for wind turbine and PV panels, the min powers are zero. 

Max powers available for wind turbine and PV panels are 415 kW,0 kW,0 kW (Table-3, uncertainty 

scenario 3) during hour 1 and for micro turbine, fuel cell and grid it is 500 kW,500 kW and 300 kW 

respectively (Table 1). At hour 1, AIMD algorithm is allocating equal power scheduling to wind (364 kW), 

fuel cell (394-30 (min power) = 364 kW) and micro turbine (394-30 (min power) = 364 kW) and 300 kW 

to grid as its maximum power limit is 300 kW. In other words, the AFS algorithm is able to choose the 

cheaper sources and schedule more load to them compared to the costlier sources, whereas AIMD algorithm 

is scheduling equal amounts of loads to all the sources available irrespective of their cost of energy 

generation and that is the reason why there is a difference in cost of energy generation estimated by the two 

algorithms. Similar scheduling is done for hours 1-13 and hours 22-24. During these hours, the demand is 

less than the total power availability and hence the AFS algorithm is able to search for the most economic 

mix of power generation from different sources. During the hours 14 -21, the demand is more than the total 

power available, and hence both the algorithms are using entire power available, there is no choice of 

selection of generators for scheduling and hence the cost estimation by both the algorithms is same. The 

above discussion compares the performance of two tools used for optimization, i.e., AIMD algorithm and 

AFS algorithm. Figure 7 and Figure 8 show the scheduling results using two algorithms. Figure 9 compares 

the costs of energy generation estimated by the two optimization tools. As far as the performance of the 

Energy Management System proposed, it is able to balance the power required with the power generation 

at each hour. The battery is assumed to be at min state of charge (30 kW) at the beginning of hour 1. The 

EMS is able to charge the battery to its maximum state of charge without violating the maximum rate of 

charge, i.e., 100kW, during the hours when excess generation is available after supplying the load. Similarly 

it is able to discharge the battery when required, i.e., during hours 14,15 and 16 without violating the 

maximum discharge rate, i.e., 100 kW. Figure 10 shows the hourly power exchange of the battery on hourly 

basis. The proposed EMS is also able to maintain the state of charge of the battery within the upper and 

lower limits as mentioned in Table 1. Figure 11 shows the hourly state of charge of the battery over the 

day. The EMS is also able to implement load shedding during deficit generation hours, after discharging 

the battery. During the peak hours, i.e., between hours 14-21, the EMS is implementing load shedding to 

balance the power required with power generated. 

   

8. CONCLUSIONS 

 

An energy management system for day ahead energy planning in a microgrid is proposed in this article 

with an objective to optimize the energy generation cost and to reduce the effect of uncertainty due to 

renewable sources. The proposed EMS is tested on a numerical problem in a grid connected microgrid with 

several hybrid sources like a fuel cell, a micro turbine, PV and wind generators along with battery backup 

under dynamic pricing policy. Several uncertainty scenarios are drawn for power availability from 

renewable generators and the proposed EMS is applied for day ahead scheduling considering the 3rd 

scenario. AFS algorithm which is used as a tool to solve the optimization part, has estimated the total 

generation cost over a day as 3228.9 Euros as against AIMD algorithm, which estimated the same as 3762 
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Euros. The AFS algorithm is better optimizing the generation mix with a net saving of 16.5%. The proposed 

EMS able to balance the generation with load at each interval. The main objective of the proposed EMS is 

reducing the effect of uncertainty of renewable energy generation and it is well attained using battery 

storage. The EMS is able to schedule battery storage during excess generation and discharge the battery 

during deficit generation while maintaining the rate of power exchange and state of charge limits. The EMS 

is also able to implement load shedding when there is no possibility to supply the demand in full during the 

peak hours, i.e., between 14th to 21st hours. 
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APPENDIX 

 

Abbreviations 
𝑃𝑖
𝑐𝑜𝑛(𝑡) Power generated by 𝑖𝑡ℎ  generator at time interval 𝑡. 

𝑃𝑗
𝑟𝑒𝑠(𝑡) Power generated by 𝑗𝑡ℎ  RES generator at time interval  𝑡. 

𝑃𝑖
𝑐𝑜𝑛𝑚𝑎𝑥 , 𝑃𝑖

𝑐𝑜𝑛𝑚𝑖𝑛  Maximum and Minimum power limits of ith generator at time interval 𝑡. 

𝑃𝑗
𝑟𝑒𝑠𝑚𝑎𝑥 , 𝑃𝑗

𝑟𝑒𝑠𝑚𝑖𝑛  Maximum and Minimum power limits of 𝑗𝑡ℎ RES generator at time interval 𝑡. 

𝑊𝑖
𝑐𝑜𝑛(𝑡),𝑊𝑗

𝑟𝑒𝑠(𝑡) State vectors denoting ON/OFF states of 𝑖𝑡ℎ generator and 𝑗𝑡ℎ RES generator at time 

interval 𝑡 respectively. 

𝑃
𝑘

𝑠𝑡𝑔𝑐ℎ𝑚𝑎𝑥 , 𝑃
𝑘

𝑠𝑡𝑔𝑑𝑐ℎ𝑚𝑎𝑥

 
Maximum Charge/Discharge rates of 𝑘𝑡ℎ storage device.  

𝑆𝑜𝐶𝑘(𝑡) 
State of charge (SoC) of 𝑘𝑡ℎ storage device at time interval 𝑡. 

𝑆𝑜𝐶𝑘
𝑚𝑎𝑥 , 𝑆𝑜𝐶𝑘

𝑚𝑖𝑛

 
Maximum and minimum limits of SoC of 𝑘𝑡ℎ  storage device. 

𝜂𝑘 
Efficiency (Discharging/Charging) of 𝑘𝑡ℎ  storage device.  

𝐿𝑚
𝑠ℎ𝑑(𝑡)

 
𝑚𝑡ℎ  load shed at time interval 𝑡.  

𝐶𝑚
𝑠ℎ𝑑(𝑡)

 
Compensation due to shedding of 𝑚𝑡ℎ  load at time interval 𝑡. 

𝑌𝑚
𝑠ℎ𝑑(𝑡)

 
State of vector denoting Connected/Shed state of 𝑚𝑡ℎ  load at time interval 𝑡. 

𝐶𝑖
𝑐𝑜𝑛(𝑡)

 
Power generation cost of 𝑖𝑡ℎ   generator at time interval 𝑡. 

𝐶𝑗
𝑟𝑒𝑠(𝑡)

 
Power generation cost of 𝑗𝑡ℎ  RES generator at time interval 𝑡. 

𝑐𝑖
𝑐𝑜𝑛(𝑡)

 
Cost/unit of power generation of 𝑖𝑡ℎ  conventional generator at time 𝑡. 

𝑐𝑖
𝑐𝑜𝑛𝑠𝑡𝑎𝑟𝑡 , 𝑐𝑖

𝑐𝑜𝑛𝑠ℎ𝑢𝑡

 
Start-up and shut-down cost of 𝑖𝑡ℎ  conventional generator. 

𝑈𝑖
𝑐𝑜𝑛(𝑡), 𝑉𝑖

𝑐𝑜𝑛(𝑡)
 

State vectors denoting the shut-down/start-up states of 𝑖𝑡ℎ  generator at time interval 𝑡. 

𝑈𝑗
𝑟𝑒𝑠(𝑡), 𝑉𝑗

𝑟𝑒𝑠(𝑡)
 

State vectors denoting the shut-down/start-up states of 𝑗𝑡ℎ  renewable generator at time 

interval 𝑡. 

𝑋𝑖
𝑐𝑜𝑛(𝑡), 𝑋𝑗

𝑟𝑒𝑠(𝑡)
 

State vectors denoting the OFF/ON position of the generators and RES at time 𝑡.   

𝐶𝑘
𝑠𝑡𝑔
(𝑡)

 
Expenses of energy supply by 𝑘𝑡ℎ  storage device at time interval 𝑡. 

𝑐𝑘
𝑠𝑡𝑔
(𝑡)

 
Unit cost energy supply from 𝑘𝑡ℎ  storage device at time interval 𝑡. 

𝑌𝑘
𝑠𝑡𝑔
(𝑡)

 
State vector denoting the type of power exchange by 𝑘𝑡ℎ storage device at time interval 𝑡. 

𝐶𝑔𝑟𝑑(𝑡)
 

Power drawing expenses  from grid at time interval 𝑡. 

𝑐𝑔𝑟𝑑(𝑡)
 

Unit cost of grid power at time interval 𝑡. 

𝑃𝑔𝑟𝑑(𝑡)
 

Power drawn from grid at time interval 𝑡. 

𝛹𝑗  
Vector denoting all numeric values of 𝑃𝑗

𝑟𝑒𝑠(𝑡).  

Ψ Uncertainty set. 
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𝑃𝑗,𝑠
𝑟𝑒𝑠𝑡𝑜𝑡𝑎𝑙𝑚𝑖𝑛 , 𝑃𝑗,𝑠

𝑟𝑒𝑠𝑡𝑜𝑡𝑎𝑙𝑚𝑎𝑥

 
Upper and lower limits for total energy availability with the 𝑗𝑡ℎ RES over a time sub-

horizon S.  

t Time interval. 

𝑃𝑖(𝑡) 
Power generated by 𝑖𝑡ℎ generator at time interval 𝑡. 

𝑑(𝑡)
 

Demand at time interval 𝑡. 

𝑃𝑖𝑚𝑎𝑥 , 𝑃𝑖𝑚𝑖𝑛  
Generation limits of 𝑖𝑡ℎ  generator. 

 


