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Abstract

In this paper we describe generalized left (θ, φ)-derivations in prime
rings, and prove that an additive mapping in a ring R acting as a
homomorphism or anti-homomorphism on an additive subgroup S of
R must be either a mapping acting as a homomorphism on S or a
mapping acting as an anti-homomorphism on S, through which some
related results are improved.
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1. Introduction

Let R be an associative ring. Recall that an additive mapping µ : R → R is called
a derivation if µ(xy) = xµ(y) + µ(x)y holds for all x, y ∈ R. An additive mapping
δ : R → R is called a generalized derivation if there exists a derivation µ of R such
that δ(xy) = xδ(y) + µ(x)y holds for all x, y ∈ R. An additive mapping µ : R → R is
called a (θ, φ)-derivation if µ(xy) = θ(x)µ(y) + µ(x)φ(y) holds for all x, y ∈ R, where
θ, φ are endomorphisms of R. An additive mapping δ : R → R is called a generalized
(θ, φ)-derivation if there exists a (θ, φ)-derivation µ such that δ(xy) = θ(x)δ(y)+µ(x)φ(y)
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holds for all x, y ∈ R, where θ, φ are endomorphisms of R. Obviously the relations among
these concepts can be described as the following diagram

generalized derivations
ր ց

derivations generalized (θ, φ)-derivations,
ց ր

(θ, φ)-derivations

where → denotes that the right covers the left as concepts. Generalized derivations,
(θ, φ)-derivations and generalized (θ, φ)-derivations are studied mainly in (semi)-prime
rings. For example one can search them in Brešar [6], Havala [10], Lee [11], Chang et al.
[8], Cheng et al. [9], Ashraf et al. [3], and so on.

The concept of left derivations was given by Brešar and Vukman in [7]. Recall that
an additive mapping µ : R → R is called a left derivation if µ(xy) = xµ(y) + yµ(x)
holds for all x, y ∈ R. They proved that a prime ring R having a nonzero left derivation
must be commutative. In fact, they stated the results in a more general form (see [7,
Proposition 1.6]).

Similar to the development of the concept of derivations, the development of the
concept of left derivations should have an analogue

generalized left derivations
ր ց

left derivations generalized left (θ, φ)-derivations.
ց ր

left (θ, φ)-derivations

In fact, Ashraf and copartners have given the concept of left (θ, φ)-derivations in [12, 2],
and generalized left derivations in [4]. According to Ashraf et al., an additive mapping
δ : R → R is called a generalized left derivation if there exists a left derivation µ : R → R

such that δ(xy) = xδ(y)+yµ(x) holds for all x, y ∈ R. An additive mapping µ : R → R is
called a left (θ, φ)-derivation if µ(xy) = θ(x)µ(y)+φ(y)µ(x) holds for all x, y ∈ R, where
θ, φ are endomorphisms of R. And so it is natural to give the concept of generalized left
(θ, φ)-derivations as that an additive mapping δ : R → R is called a generalized left (θ, φ)-
derivation if there exists a left (θ, φ)-derivation µ such that δ(xy) = θ(x)δ(y) + φ(y)µ(x)
holds for all x, y ∈ R, where θ, φ are endomorphisms of R.

Particularly in a prime ring, for a generalized left (θ, φ)-derivation δ of R, the left
(θ, φ)-derivation µ such that δ(xy) = θ(x)δ(y) + φ(y)µ(x) holds for all x, y ∈ R in the
definition is unique. Hence generally in a prime ring, the unique µ decided by δ is called
the associated left (θ, φ)-derivation of δ.

Obviously in commutative rings, derivations (resp. generalized derivations, (θ, φ)-
derivations, generalized (θ, φ)-derivations) act in accord with left derivations (resp. gener-
alized left derivations, left (θ, φ)-derivations, generalized left (θ, φ)-derivations). However
in a noncommutative ring, the case is quite different in general.

In this paper, firstly, we will give a note which describes the form of generalized left
(θ, φ)-derivations in prime rings under the assumption that θ, φ are automorphisms of R
(see Theorem 2.1).

At the other hand, Bell and Kappe [5] discussed derivations acting as homomorphisms
or anti-homomorphisms on a nonzero right ideal of a prime ring. Recall that an addi-
tive mapping f from a ring R into itself is said to act as a homomorphism or as an
anti-homomorphism on S, an additive subgroup of R, if for each pair x, y ∈ S, either
f(xy) = f(x)f(y) or f(xy) = f(y)f(x) holds. Certainly the concept of mappings acting
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as homomorphisms on S, and the concept of mappings acting as anti-homomorphisms
on S can be defined in a similar way.

Particularly mappings acting as homomorphisms on S and mappings acting as anti-
homomorphisms on S are all mappings acting as homomorphisms or anti-homomorphisms
on S. But one will ask whether or not these two kinds of mappings are the unique
mappings acting as homomorphisms or anti-homomorphisms on an additive subgroup S

of R. In this paper, secondly, we will give another note which gives a firm answer on this
problem (see Lemma 2.3).

Finally in this paper, using the two results above, we will generalize the following
results on left (θ, φ)-derivations to those on generalized left (θ, φ)-derivations (see Corol-
lary 2.5 and Proposition 2.8).

1.1. Theorem. [2, Theorem 4.2] Let R be a prime ring and K a nonzero ideal of R,

and let θ, φ be automorphisms of R. Suppose d : R → R is a left (θ, φ)-derivation of R.

(1) If d acts as a homomorphism on K, then d = 0 on R.

(2) If d acts as an anti-homomorphism on K, then d = 0 on R.

1.2. Theorem. [1, Theorem 2.7] Let R be a 2-torsion free prime ring and J a nonzero

Jordan ideal and a subring of R. Suppose that θ, φ are automorphisms of R, and that

d : R → R is a left (θ, φ)-derivation of R.

(1) If d acts as a homomorphism on J, then d = 0 on R.

(2) If d acts as an anti-homomorphism on J, then d = 0 on R.

2. Results

Now we describe the generalized left (θ, φ)-derivation of a prime ring R under the
assumption that θ, φ are automorphisms of R.

2.1. Theorem. Let R be a prime ring with automorphisms θ, φ. Then a generalized left

(θ, φ)-derivation δ must take one of the following forms:

(1) There exists a left R-homomorphism d :R R →R R such that δ = θ ◦ d.
(2) R is a commutative domain with δ as its a generalized (θ, φ)-derivation.

Proof. Let µ be the associated left (θ, φ)-derivation of δ.

Firstly, we consider the case that µ = 0. Then δ(xy) = θ(x)δ(y) holds for all x, y ∈ R.
Let d = θ−1 ◦ δ, we can obtain δ = θ ◦ d with d a left R-homomorphism from RR into
itself, which is the first case.

Finally, we consider the case that µ 6= 0. Then for all x, y, z ∈ R, we have

δ(xyz) = δ((xy)z) = θ(xy)δ(z) + φ(z)µ(xy)

= θ(x)θ(y)δ(z) + φ(z)θ(x)µ(y) + φ(z)φ(y)µ(x).

At the other hand, for all x, y, z ∈ R, we have

δ(xyz) = δ(x(yz)) = θ(x)δ(yz) + φ(yz)µ(x)

= θ(x)θ(y)δ(z) + θ(x)φ(z)µ(y) + φ(y)φ(z)µ(x).

So for all x, y, z ∈ R, we have

(2.1) [θ(x), φ(z)]µ(y) + [φ(y), φ(z)]µ(x) = 0.

Setting z = y in (2.1), we have that

(2.2) [θ(x), φ(y)]µ(y) = 0
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holds for all x, y ∈ R. Setting x = xz in (2.2), we have

θ(x)[θ(z), φ(y)]µ(y) + [θ(x), φ(y)]θ(z)µ(y) = 0

holds for all x, y, z ∈ R. By (2.2), for all x, y, w ∈ R, we have [θ(x), φ(y)]wµ(y) = 0.
Hence for each y ∈ R, either µ(y) = 0 or φ(y) ∈ Z(R) since R is a prime ring. That is

{y ∈ R | φ(y) ∈ Z(R)} ∪ {y ∈ R | µ(y) = 0} = R.

Hence either {y ∈ R | φ(y) ∈ Z(R)} = R or {y ∈ R | µ(y) = 0} = R. Since µ 6= 0, we
have {y ∈ R | φ(y) ∈ Z(R)} = R. Then R is a commutative domain which completes
the proof. �

By Theorem 2.1, we give the form of the left (θ, φ)-derivation of a prime ring R under
the assumption that θ, φ are automorphisms of R.

2.2. Corollary. Let R be a prime ring with automorphisms θ, φ. Then µ is a nonzero left

(θ, φ)-derivation of R if and only if R is a commutative domain with µ as its a nonzero

(θ, φ)-derivation. �

Now we give another note on mappings acting as homomorphisms or anti-homomor-
phisms on an additive subgroup of a ring.

2.3. Lemma. Let R be a ring with S its an additive subgroup. Let f : R → R be an

additive mapping. Then f acts as a homomorphism or an anti-homomorphism on S if

and only if either f acts as a homomorphism on S or f acts an anti-homomorphism on

S.

Proof. We will deal with the only if part, for the other part is obvious. For each s ∈ S,
let Hs = {x ∈ S | f(sx) = f(s)f(x)} and H ′

s = {x ∈ S | f(sx) = f(x)f(s)}. Obviously
Hs and H ′

s are all subgroups of S, and Hs ∪H ′

s = S. So either Hs = S or H ′

s = S. Let
H = {s ∈ S | Hs = S} and H ′ = {s ∈ S | H ′

s = S}. Obviously H , H ′ are all subgroups
of S and H ∪H ′ = S. So either H = S or H ′ = S which completes the proof. �

Note that Theorem 1.1 and 1.2 can be stated in a new form by an application of
Lemma 2.3, on which we will not say more. Now we give an equivalent condition un-
der which a generalized left (θ, φ)-derivation δ of a prime ring R with the associated
(θ, φ)-derivation µ has the property that µ 6= 0 acts as a homomorphism or an anti-
homomorphism on a nonzero subring of R.

2.4. Theorem. Let R be a prime ring. Let δ be a generalized left (θ, φ)-derivation of R

with associated left (θ, φ)-derivation µ such that µ 6= 0, where θ, φ are automorphisms of

R. Then δ acts as a homomorphism or an anti-homomorphism on S, a nonzero subring

of R, if and only if one of the following holds:

(1) δ = 0 on S.

(2) δ = θ on S and µ = 0 on S.

(3) δ = φ on S and µ = φ− θ on S.

Proof. By Theorem 2.1, R is a commutative domain with δ as its a generalized (θ, φ)-
derivation since µ 6= 0. We will only prove the only if part, the proof for the other part
is obvious. Assume that δ 6= 0 on S. Then for all x, y ∈ S, we have

δ(xy) = θ(x)δ(y) + φ(y)µ(x) = δ(x)δ(y)

since R is commutative. Then

(2.3) (δ − θ)(x)δ(y) = µ(x)φ(y)
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holds for all x, y ∈ S. Setting x = xz in (2.3), then for all x, y, z ∈ S, we have

(δ − θ)(xz)δ(y) = µ(xz)φ(y).

That is

(θ(x)δ(z) + φ(z)µ(x)− θ(x)θ(z))δ(y) = θ(x)µ(z)φ(y) + φ(z)µ(x)φ(y)

holds for all x, y, z ∈ S. Then by (2.3) for all x, y, z ∈ S, we have φ(z)µ(x)(δ−φ)(y) = 0.
Since S 6= 0, µ(S)(δ − φ)(S) = 0. Hence either µ = 0 on S or δ = φ on S. When µ = 0
on S, we obtain δ = θ on S from (2.3). When µ 6= 0 on S, we have δ = φ on S. Then we
obtain µ = φ− θ on S from (2.3). �

Particularly when S is either a nonzero ideal of a prime ring or a nonzero Jordan ideal
and subring of a 2-torsionfree prime ring R in Theorem 2.4, we have

2.5. Corollary. Let S be either a nonzero ideal of a prime ring R or a nonzero Jordan

ideal and subring of a 2-torsionfree prime ring R. Let δ be a generalized left (θ, φ)-
derivation of R with the associated left (θ, φ)-derivation µ such that µ 6= 0, where θ, φ are

automorphisms of R. Then δ acts as a homomorphism or an anti-homomorphism on S

if and only if δ = φ and µ = φ− θ.

Proof. When S is a nonzero ideal of a prime ring R, we consider the three cases in
Theorem 2.4 separately. Firstly, if δ = 0 on S, then for all s ∈ S and for all r ∈ R, we
have that

0 = δ(rs) = θ(r)δ(s) + φ(s)µ(r) = φ(s)µ(r).

Then since S 6= 0, we have µ = 0, which contradicts µ 6= 0. Secondly, if δ = θ and µ = 0
on S, then for all s ∈ S and for all r ∈ R, we have that

θ(r)θ(s) = θ(rs) = δ(rs) = θ(r)δ(s) + φ(s)µ(r) = θ(r)θ(s) + φ(s)µ(r).

Then φ(s)µ(r) = 0 holds for all s ∈ S and for all r ∈ R, which shows that µ = 0, a
contradiction. Thirdly, if δ = φ and µ = φ− θ on S, then for all s ∈ S and for all r ∈ R,
we have that

φ(r)φ(s) = φ(rs) = δ(rs) = θ(r)δ(s) + φ(s)µ(r) = φ(s)(µ(r) + θ(r)),

which shows that µ(r) = (φ− θ)(r) holds for all r ∈ R since S 6= 0. On the other hand,
for all s ∈ S and for all r ∈ R, we have that

φ(s)φ(r) = φ(sr) = δ(sr) = θ(s)δ(r) + φ(r)µ(s) = θ(s)δ(r) + φ(r)(φ(s)− θ(s)).

Then for all s ∈ S and for all r ∈ R, we have that θ(s)(δ(r) − φ(r)) = 0, which shows
that δ = φ since S 6= 0.

When S is a nonzero Jordan ideal and subring of 2-torsionfree prime ring R, noting
that (2r)s = sr + rs ∈ S for all r ∈ R and for all s ∈ S since R is commutative, in
a similar way to the ideal case, we have that either 2µ(x) = 0 holds for all x ∈ R or
2(δ − φ)(x) = 2(φ− θ − µ)(x) = 0 holds for all x ∈ R. Hence the conclusion is obtained
since R is 2-torsionfree. �

The left (θ, φ)-derivation version of Theorem 2.4 and Corollary 2.5 can be obtained
immediately.

2.6. Corollary. Let R be a prime ring . Let µ be a left (θ, φ)-derivation of R, where θ, φ

are automorphisms of R. Then µ acts as a homomorphism or an anti-homomorphism

on S, a nonzero subring of R, if and only if µ = 0 on S. �
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2.7. Corollary. [Theorem 1.1 and 1.2] Let S be either a nonzero ideal of a prime ring R

or a nonzero Jordan ideal and subring of 2-torsionfree prime ring R. Let µ be a left (θ, φ)-
derivation of R, where θ, φ are automorphisms of R. Then µ acts as a homomorphism

or an anti-homomorphism on S if and only if µ = 0. �

For completeness, we discuss Corollary 2.5 further when µ = 0.

2.8. Proposition. Let S be either a nonzero ideal of a prime ring R or a nonzero

Jordan ideal and subring of a 2-torsionfree prime ring R. Let δ be a generalized left

(θ, φ)-derivation of R with the associated left (θ, φ)-derivation µ such that µ = 0, where
θ, φ are automorphisms of R. Then δ acts as a homomorphism or an anti-homomorphism

on S if and only if either δ = θ or δ = 0.

Proof. By Theorem 2.1, there exists a left R-homomorphism d :R R →R R such that δ =
θ◦d. And it is easy to see that d also acts as a homomorphism or an anti-homomorphism
on S.

Firstly, We consider the case that S is a nonzero ideal of a prime ring R. When d acts
as a homomorphism on S, then for all s, t ∈ S and for all x, y, z ∈ R, we have

d(sxytz) = sxytd(z) = d(sx)d(ytz) = sd(x)ytd(z).

Then s(d(x) − x)ytd(z) = 0 holds for all s, t ∈ S and for all x, y, z ∈ R. Hence either
S(d(x) − x) = 0 holds for all x ∈ R or Sd(z) = 0 holds for all z ∈ R. And so either
d = 1R or d = 0. Thus either δ = θ or δ = 0.

When d acts as an anti-homomorphism on S, then for all s, t ∈ S, we have d(st) =
sd(t) = d(t)d(s). For all x ∈ R, set s = xs in the above formula, we have that

d(t)xd(s) = d(t)d(xs) = d((xs)t) = xsd(t) = xd(t)d(s)

holds for all s, t ∈ S and for all x ∈ R. That is [d(t), x]d(s) = 0 holds for all s, t ∈ S and
for all x ∈ R. Then for all y ∈ R, replacing x by xy in [d(t), x]d(s) = 0, we have that
[d(t), x]yd(s) = 0 holds for all s, t ∈ S and for all x, y ∈ R, which shows that d(S) ⊆ Z(R).
Hence d acts as an anti-homomorphism on S which has been dealt with.

Secondly, we consider the case that S is a nonzero Jordan ideal and subring of a
2-torsionfree prime ring R. Note the following two facts:

(1) For all s, t ∈ S and for all x ∈ R, 2sxt ∈ S,
(2) For any a ∈ R, either Sa = 0 or aS = 0 implies a = 0.

For all s, t ∈ S and for all x ∈ R, we have

2sxt+ (st)x+ x(st) = s(tx+ xt) + (sx+ xs)t ∈ S.

By (st)x+x(st) ∈ S, the first fact is proved. If Sa = 0, then (sx+xs)a = 0 for all s ∈ S

and all x ∈ R. Then SRa = 0 implies a = 0 since S 6= 0, which proves the second fact.

If d acts as a homomorphism on S, then for all r, s, t ∈ S and for all x ∈ R, we have
d(r(2sxt)) = d(r)d(2sxt) = rd(2sxt). Then 2(d(r) − r)SRd(t) = 0 holds for all r, t ∈ S.
Since R is 2-torsionfree, either d(r) = r holds for all r ∈ S or d = 0 on S. Then for all
x ∈ R and for all r ∈ S, we have either that

xs+ sx = d(xs+ xs) = xd(s) + sd(x) = xs+ sd(x)

or that 0 = d(xs+xs) = xd(s)+sd(x) = sd(x). Then either S(d(x)−x) = 0 holds for all
x ∈ R or Sd(x) = 0 holds for all x ∈ R, which proves the conclusion. If d acts as an anti-
homomorphism on S, then for all s, t ∈ S, we have d(st) = sd(t) = d(t)d(s). For all r ∈ S

and for all x ∈ R, setting s = 2rxs in sd(t) = d(t)d(s), we have 2rxsd(t) = d(t)(2rx)d(s).
At the other hand, multiplying sd(t) = d(t)d(s) by 2rx from the left hand side, we have
2rxsd(t) = 2rxd(t)d(s) for all r, s, t ∈ S and for all x ∈ R. Hence 2[rx, d(t)]d(s) = 0
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holds for all r, s, t ∈ S and for all x ∈ R. And so for all r, r′, s, t ∈ S and for all x, x′ ∈ R,
we have 2[rx, d(t)]r′x′d(s) = 0. Then [rx, d(S)]SRd(S) = 0 holds for all r ∈ S and for
all x ∈ R since R is 2-torsionfree. Hence [rx, d(S)] = 0 holds for all r ∈ S and for all
x ∈ R. For all y ∈ R, setting x = xy, we have that SR[R, d(S)] = 0. So d(S) ⊆ Z(R).
This shows that d acts as a homomorphism on S which we have dealt with. �

Now we give two examples in order to show that for the Jordan ideal case the condition
that R is 2-torsionfree is necessary in Corollary 2.5, Corollary 2.7 and Proposition 2.8.

2.9. Example. Let R = Z2[x, y] and

S = {f(x, y) ∈ R | f(x, y) is a symmetrical polynomial}.

It is easy to see that S is a nonzero Jordan ideal and subring of 2-torsion prime ring R.
Let θ = 1R and φ : R → R such that φ(f(x, y)) = f(y, x) for all f(x, y) ∈ R. It can be
checked that φ is an automorphism of R. Set µ = φ− θ, then µ is a nonzero left (θ, φ)-
derivation of R and µ 6= φ. However µ(S) = 0 shows that µ acts as a homomorphism
or an anti-homomorphism on S. This shows that for the Jordan ideal case the condition
that R is 2-torsionfree is necessary in Corollary 2.5 and 2.7.

2.10. Example. Let R = M2(Z2) and S = {0, I2} ⊆ R. Then S is a nonzero Jordan
ideal and subring of a 2-torsion prime ring R. Let θ = 1R and f : R → R such that
f(x) = xe11 for all x ∈ R. It is easy to see that f acts as a homomorphism on S. However
f 6= 1R = θ and f 6= 0. This shows that for the Jordan ideal case the condition that R

is 2-torsionfree is necessary in Proposition 2.8.
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[6] Brešar, M. On the distance of the composition of two derivations to the generalized deriva-

tions, Glasgow Math. 33, 89–93, 1991.
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