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• It was shown numerically that the proposed methods were superior to all their competitors. 
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Abstract 

The problem of parameters estimation plays a significant role in various areas of academic 

researches. In this article, we propose three different methods of estimation for the parameters of 

location-scale family under ranked set sampling in the view of missing data mechanism. Through 

a series of Monte Carlo simulations, it is well investigated that the proposed methods are 

relatively robust from violating the perfect ranking condition and provide better performance over 

their competitors using bias and MSE (mean square error) criteria. An empirical data set is also 

used for illustrative purposes. 
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1. INTRODUCTION 

 

The problem of parameters estimation occupied an important position in various areas of researches such 

as agricultural, biological, ecological, engineering, medical, physical, and social sciences. As parameters 

estimation can be considered as an essential step during performing many statistical aspects (e.g. testing 

hypotheses, goodness of fit, reliability analysis, … etc.). With this motivation, many efforts are devoted to 

produce several estimation methods which are available in the literature. However, the appeal of the 

estimation methods vary from researcher to another. For instance, one may prefer to use the moment 

estimators (MEs) rather than the maximum likelihood estimators (MLEs) in the case that the parent 

distribution is a more complicated leading the computations may not converge. For more discussion about 

different types of methods estimation, one can refer to Mittelhammer [1]. 

In the real life, there are several situations that the variable of interest 𝑌 can be more easily ranked by either 

visual inspection or using a concomitant variable 𝑋 than quantified, ranked set sample (RSS) introduced by 

McIntyre [2] is widely recommended to be adopted in such these situations. The attractive property of RSS 

is it provides an informative image of the population in a more efficient way than other traditional sampling 

techniques such as simple random sample (SRS). The reason is that RSS depends on the information 

supported by not only the exact quantification of the 𝑌’s items but also their rankings. The basic procedures 

of concomitant-based RSS can be briefly described as follows:  

First, draw 𝑘 random samples each of size 𝑘 of the bivariate variables (𝑋, 𝑌). Second, for each sample, 𝑋 

values are fully measured and sorted in ascending way. Then, measure only the 𝑌 values associated with 

the 𝑖𝑡ℎ smallest observation of 𝑋 corresponding to the 𝑖𝑡ℎ sample (𝑖 = 1…𝑘). Finally, repeat the preceding 
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steps 𝑚 times (cycles) in order to obtain 𝑛 = 𝑘𝑚 values of 𝑌. If the number of the selected items across the 

cycles equals, RSS is hence called balanced RSS. Otherwise, it is called unbalanced RSS. It should be 

emphasized that we will confine ourselves that (𝑋, 𝑌) are continuous variables drawn through balanced 

RSS. In order to ease the notation, let 𝑥𝑙𝑗(𝑖) be the 𝑖𝑡ℎ smallest observation from 𝑗𝑡ℎ sample corresponding 

to 𝑙𝑡ℎ cycle. And also, let 𝑦𝑙𝑖[𝑖] be the interested variable’s values associated with 𝑥𝑙𝑗(𝑖) ((𝑖, 𝑗) = 1. . 𝑘, 𝑙 =

1…𝑚). Further, Perfect (Imperfect) ranking refers that the rankings are done without (with) errors denoted 

by rounded (squared) bracket. 

 

Although RSS actually is a nonparametric in its nature, a large number of publications for parametric 

estimation has been produced in the literature. From those, Abu-Dayyeh et al. [3] used different estimation 

methods for estimating the shape and scale parameters of Pareto distribution based on RSS and SRS. 

Sarikavanij et al. [4] made a comparison study between SRS and RSS for estimating the location and scale 

parameters of a two-parameter exponential distribution. Hassan [5] did a study about exponentiated 

exponential distribution using both SRS and RSS techniques based on maximum likelihood and Bayesian 

estimation methods. Yousef and Al-Subh [6] compared between the efficiency of RSS and SRS in 

estimating the location and scale parameters of the Gumbel distribution using different estimation method. 

Dey et al. [7] addressed the estimation of the parameter of Rayleigh distribution using different methods of 

frequentist and Bayesian estimation approaches based on SRS and RSS and other sampling schemes. For 

other interesting works related to RSS, see Arslan and Ozturk [8]. 

It is well established by many publications that the superiority of RSS depends heavily on the quality of 

ranking information. As this superiority increases (decreases) in the case of perfect (imperfect) ranking. 

Therefore it is expected that the statistical procedures which assume the perfect assumption have a poor 

performance when this assumption is violated. One way to overcome this problem is to construct such these 

statistical procedures under imperfect ranking models. This motivated us to derive parametric methods for 

estimating the location and scale parameters which implicitly use the stochastic order property and be less 

sensitive to the departure of the perfect ranking as well. In this article, three novel methods of estimation 

of the parameters are proposed. The first one is derived under Fraction-of-random rankings model, the 

others are constructed based on Pool-Adjacent-Violators Algorithm (PAVA).  

The remainder of this manuscript is structured as follows. Section 2 exhibits several popular methods of 

parameter estimation. Section 3 presents the three proposed estimation methods. The numerical 

comparisons using Monte Carlo simulation are summarized and organized in Section 4. In Section 5, real 

data set is used to present the applicability of the estimation methods, and lastly Section 6 shows our 

concluding points and some possible extension works.  

2. THE ESTIMATION METHODS 

Let {𝑦𝑙𝑖[𝑖]: 𝑖 = 1…𝑘; 𝑙 = 1…𝑚} be a concomitant-based RSS of size 𝑛 drawn from a location and scale 

family of distribution 𝐹 (
𝑦−ℳ

𝛿
), where 𝐹(.) is the cumulative distribution function (CDF) having mean zero 

and scale 1 of the standardized random variable 
𝑌−ℳ

𝛿
 , and the support of 𝐹(.) does not depend on 𝜃 =

(ℳ, 𝛿). Although several methods are available to estimate 𝜃, there is no universal agreement about the 

most efficient method. In this part, four estimation procedures are briefly discussed one by one as follows.   

2.1.  Moments Estimators 

This method is firstly used by Karl Pearson (see Rajagopalan and Dhanavanthan [9]) which is based on the 

well-known fact that the population moments are functions of the unknown parameters and because of the 

consistency of the sample moments to the population moments, this method works through solving a system 

of equations constructing by equating the first 𝑀 raw moments for the population distribution with their 

correspomding raw sampling moments. Mathematically, the system of equations can be expressed as: 
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𝐸(𝑌𝑟) = �̂�𝑟 =
1

𝑛
∑ ∑ 𝑦𝑙𝑖[𝑖]

𝑟𝑚
𝑙=1

𝑘
𝑖=1        𝑟 = 1,2…𝑀,                            (1) 

where 𝑀 is the number of the unknown parameters. Here 𝑀 = 2 and the estimates obtained by solving (1) 

will be denoted as 𝜃𝑀 = (ℳ̂𝑀 , 𝛿𝑀). 

2.2.  Maximum Likelihood Estimators 

Stokes [10] utilized the fact the items of RSS are, under the perfectness, a random sample of 𝑖𝑡ℎ order 

statistics of size 𝑘 with alternatively likelihood function given by: 

𝐿𝑆(ℳ , 𝛿|𝑌) =∑∑log(𝑓𝑖 (
𝑦𝑙𝑖[𝑖] −ℳ

𝛿
))

𝑘

𝑖=1

𝑚

𝑙=1

∝−𝑛 log(𝛿) +∑∑log(𝑓 (
𝑦𝑙𝑖[𝑖] −ℳ

𝛿
))

𝑘

𝑖=1

𝑚

𝑙=1

+∑∑(𝑖 − 1) log(𝐹 (
𝑦𝑙𝑖[𝑖] −ℳ

𝛿
))

𝑘

𝑖=1

𝑚

𝑙=1

+∑∑(𝑘 − 𝑖) log(1 − 𝐹 (
𝑦𝑙𝑖[𝑖] −ℳ

𝛿
))

𝑘

𝑖=1

𝑚

𝑙=1

, 

where 𝑓𝑖(.) is the probability density function (pdf) of 𝑖𝑡ℎ order statistics. The MLE of ℳ and 𝛿 can be 

obtained by either maximizing 𝐿𝑆(ℳ , 𝛿|𝑌) or solving simultaneously the following two equations: 

𝜕𝐿𝑆(ℳ ,𝛿|𝑌)

𝜕ℳ
= ∑ ∑

𝑓𝑖
′ℳ(

𝑦𝑙𝑖[𝑖]−ℳ

𝛿
)

𝑓𝑖(
𝑦𝑙𝑖[𝑖]−ℳ

𝛿
)

𝑘
𝑖=1

𝑚
𝑙=1 = 0

𝜕𝐿𝑆(ℳ ,𝛿|𝑌)

𝜕𝛿
= ∑ ∑

𝑓𝑖
′𝛿(

𝑦𝑙𝑖[𝑖]−ℳ

𝛿
)

𝑓𝑖(
𝑦𝑙𝑖[𝑖]−ℳ

𝛿
)

𝑘
𝑖=1

𝑚
𝑙=1 = 0

}
 
 

 
 

                                                    (2) 

where 𝑓′𝑎(.) is the first derivative of 𝑓(.) with respect to 𝑎. The corresponding estimates of solving (2) will 

be denoted as 𝜃𝐿 = (ℳ̂𝐿, 𝛿𝐿). 

2.3.  Cramér-von-Mises Estimators 

Another class of parameters estimation method can be obtained by using the well-known goodness of fit 

statistics such as Kolmogorov–Smirnov, Cramér–von Mises and Anderson–Darling statistics. The idea is 

to select the estimates that minimize the distance between the sampling distribution function and the parent 

CDF. Interestingly, Macdonald [11] provided empirical evidence that the bias of the estimates based on 

Cramér–von Mises is smaller than those based on the other goodness of fit statistics. This motivated us to 

adopt Cramér–von Mises statistic which can be expressed as: 

𝐿𝐶
∗ (ℳ , 𝛿|𝑌) = 𝑛 ∫ (𝐹 (

𝑦−ℳ

𝛿
) − �̂�(𝑦))

2
∞

−∞
𝑑𝐹 (

𝑦−ℳ

𝛿
),                                    (3) 

where �̂�(𝑦) is the sampling CDF frequentely be estimated by the empirical distribution function (EDF) 

leading (3) takes a simpler formula given by: 

𝐿𝐶(ℳ , 𝛿|𝑌) =
1

12𝑛
+
1

𝑛
∑ (𝐹 (

𝑦(𝑖)
∗ −ℳ

𝛿
)−

(2𝑖 − 1)

2𝑛
)

2𝑛

𝑖=1
  

where 𝑦𝑖
∗’s are the pooled values of 𝑦𝑙[𝑖]’s across all the cycles, 𝑦(𝑖)

∗ ’s are ordered values of 𝑦𝑖
∗’s. Hence 

Cramér–von Mises estimators can be obtained either by minimizing 𝐿𝐶(ℳ , 𝛿|𝑌) or equivalently solving 

simultaneously the following equations: 
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𝜕𝐿𝐶(ℳ , 𝛿|𝑌)

𝜕ℳ
= ∑ (𝐹 (

𝑦(𝑖)
∗ −ℳ

𝛿
)−

(2𝑖 − 1)

2𝑛
)

𝑛

𝑖=1
𝐹′ℳ (

𝑦(𝑖)
∗ −ℳ

𝛿
) = 0

𝜕𝐿𝐶(ℳ , 𝛿|Y)

𝜕𝛿
= ∑ (𝐹 (

𝑦(𝑖)
∗ −ℳ

𝛿
)−

(2𝑖 − 1)

2𝑛
)

𝑛

𝑖=1
𝐹′𝛿 (

𝑦(𝑖)
∗ −ℳ

𝛿
) = 0  

.              

The Cramér–von Mises estimators will be denoted as 𝜃𝐶 = (ℳ̂𝐶 , 𝛿𝐶). For further interesting properties 

about Cramér–von Mises estimators, reader can refer to Ozturk and Hettmansperger [12]. 

2.4. Maximum Product Of Spacings Estimators 

Mahdizadeh and Tamandi [13] suggested recently to adopt the maximum product of spacing (MPS) 

Method, proposed by Cheng and Amin [14], for getting the parameter estimates rather than using MLE 

approach proposed by Stokes [10] under RSS. MPS is based on the idea of expressing the likelihood 

function by differences between the values of the CDF at consecutive data points which can be expressed 

as:  

𝐿𝑇(ℳ , 𝛿|𝑌) =∑ log(𝐹 (
𝑦(𝑖)
∗ −ℳ

𝛿
)− 𝐹 (

𝑦(𝑖−1)
∗ −ℳ

𝛿
))

𝑛+1

𝑖=1
, 

where 𝐹 (
𝑦(0)
∗ −ℳ

𝛿
) = 0 and 𝐹 (

𝑦(𝑛+1)
∗ −ℳ

𝛿
) = 1. Hence the estimates of 𝜃 = (ℳ, 𝛿) can be obtained either 

by maximizing 𝐿𝑇(ℳ , 𝛿|𝑌) or equivalently solving simultaneously the equations in (4): 

𝜕𝐿𝑇(ℳ ,𝛿|𝑌)

𝜕ℳ
= ∑

𝐹′ℳ(
𝑦(𝑖)
∗ −ℳ

𝛿
)−𝐹′ℳ(

𝑦(𝑖−1)
∗ −ℳ

𝛿
)

𝐹(
𝑦(𝑖)
∗ −ℳ

𝛿
)−𝐹(

𝑦(𝑖−1)
∗ −ℳ

𝛿
)

= 0𝑛+1
𝑖=1

𝜕𝐿𝑇(ℳ ,𝛿|Y)

𝜕𝛿
= ∑

𝐹′𝛿(
𝑦(𝑖)
∗ −ℳ

𝛿
)−𝐹′𝛿(

𝑦(𝑖−1)
∗ −ℳ

𝛿
)

𝐹(
𝑦(𝑖)
∗ −ℳ

𝛿
)−𝐹(

𝑦(𝑖−1)
∗ −ℳ

𝛿
)

= 0𝑛+1
𝑖=1   

}
 
 
 

 
 
 

.                                              (4) 

The corresponding estimates of 𝜃 = (ℳ, 𝛿) for MPS method will be denoted as 𝜃𝑇 = (ℳ̂𝑇 , 𝛿𝑇). 
 

3. THE PROPOSED ESTIMATION METHODS 

In this part three novel parametric methods of estimation under RSS are suggested and presented. Our idea 

is to incorporate the information supported by the unmeasured items together with the measured items for 

suggesting new parametric method as shown below. 

3.1 . Iterative Moments Estimators 

Our first proposed estimation method is based on incorporating the stochastic relationship between the 

measured items and the unmeasured items to estimate 𝜃 = (ℳ, 𝛿). In more precise, our strategy is to 

impute the unmeasured items in the view of the measured items, then estimate 𝜃 = (ℳ, 𝛿) using (1) based 

on the information provided by both the measured items and the imputed unmeasured items, finally use the 

parameters’ estimates to upgrade these imputed unmeasured items. By repeating these steps iteratively until 

the convergence of the parameters’ estimates occurs. Imputing the unmeasured items will be achieved in a 

parametric fashion using the conditional order statistics pdf as explained below: 

 If 𝑦𝑙𝑗[𝑖] > 𝑦𝑙𝑖[𝑖], then:  
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𝐸(𝑦𝑟|𝑦 > 𝑦𝑙𝑖[𝑖]) = ∫ 𝑦𝑟𝑓𝑗,𝑖
1 (𝑦,ℳ , 𝛿|𝑦𝑙𝑖[𝑖])   𝑑𝑦

∞

𝑦𝑙𝑖[𝑖]
.                                        (5) 

 In contradiction, if 𝑦𝑙𝑗[𝑖] < 𝑦𝑙𝑖[𝑖], then: 

𝐸(𝑦𝑟|𝑦 < 𝑦𝑙𝑖[𝑖]) = ∫ 𝑦𝑟𝑓𝑗,𝑖
2 (𝑦,ℳ , 𝛿|𝑦𝑙𝑖[𝑖])𝑑𝑦

𝑦𝑙𝑖[𝑖]
−∞

.                                       (6) 

where 𝑓𝑗,𝑖
1 (𝑦|𝑦𝑙𝑖[𝑖]) and 𝑓𝑗,𝑖

2 (𝑦|𝑦𝑙𝑖[𝑖]) are the conditional order statistics pdfs respectively expressed as: 

𝑓𝑗,𝑖
1 (𝑦|w) = 

(𝑘 − 𝑖)!

(𝑗 − 𝑖 − 1)! (𝑘 − 𝑗)!
(
𝐹(𝑦,ℳ , 𝛿) − 𝐹(w,ℳ , 𝛿)

1 − 𝐹(𝑤,ℳ , 𝛿)
)

𝑗−𝑖−1

(1 −
𝐹(𝑦,ℳ , 𝛿) − 𝐹(𝑤,ℳ , 𝛿)

1 − 𝐹(𝑤,ℳ , 𝛿)
)

𝑘−𝑗
𝑓(𝑦,ℳ , 𝛿)

1 − 𝐹(𝑤,ℳ , 𝛿)
 

𝑤 ≤ 𝑦 ≤ ∞ 

and 

𝑓𝑗,𝑖
2 (𝑦|w) =

(𝑖 − 1)!

(𝑗 − 1)! (𝑖 − 𝑗 − 1)!
(
𝐹(𝑦,ℳ , 𝛿)

𝐹(𝑤,ℳ , 𝛿)
)

𝑗−1

(1 −
𝐹(𝑦,ℳ , 𝛿)

𝐹(𝑤,ℳ , 𝛿)
)

𝑖−𝑗−1
𝑓(𝑦,ℳ , 𝛿)

𝐹(𝑤,ℳ , 𝛿)
 ,   

−∞ ≤ 𝑦 ≤ 𝑤. 

By applying (5) and (6) to the entire sample and putting them together, we will get: 

𝜇𝐸
𝑟∗(ℳ , 𝛿) =

1

𝑘𝑛
∑∑(𝑦𝑙𝑖[𝑖]

𝑟 + 𝐸(𝑦𝑟|𝑦 > 𝑦𝑙𝑖[𝑖]) + 𝐸(𝑦
𝑟|𝑦 < 𝑦𝑙𝑖[𝑖]))

𝑘

𝑖=1

𝑚

𝑙=1

. 

It is observant that 𝜇𝐸
𝑟∗(ℳ , 𝛿) is dependable only if the perfectness assumption is hold. However when this 

condition is violated, 𝜇𝐸
𝑟∗(ℳ , 𝛿) may give illogical values. To tackle this dilemma, we resort to use 

fraction-of-random-rankings model proposed by Frey et al. [15] to modify 𝜇𝐸
𝑟∗(ℳ , 𝛿) as being more robust 

to the departure from perfect rankings as presented below: 

𝜇𝐸
𝑟 (ℳ , 𝛿) =

1

𝑘𝑛
∑∑((1 − 𝜆) (𝑦𝑙𝑖[𝑖]

𝑟 + 𝐸(𝑦𝑟|𝑦 > 𝑦𝑙𝑖[𝑖]) + 𝐸(𝑦
𝑟|𝑦 < 𝑦𝑙𝑖[𝑖])) +  𝜆𝐸(𝑦

𝑟))

𝑘

𝑖=1

𝑚

𝑙=1

 . 

Since 𝜇𝐸
𝑟 (ℳ , 𝛿) can not be directly computed as it simply relies on the unknown parameters  ℳ , 𝛿 and 𝜆, 

EM algorithm is adopted to overcome this problem whose steps are described below. 

1- Let (ℳ̂(0), 𝛿(0)) be the seed estimates for ℳ , 𝛿. 

2- Set 𝑝 = 0. 

3- Estimate the parameter 𝜆 by the corresponding likelihood function of fraction-of-random-rankings 

model (see Frey and Zhang [16] and Ashour and Abdallah [17]): 

 

�̂� = Max
𝜆∈[0,1]

 ∏ ∏ ((1 − 𝜆) 𝑏𝑖,𝑘−𝑖+1(𝐹(𝑦[𝑖,𝑙]), ℳ̂
(𝑝) , 𝛿(𝑝)) + 𝜆)ℎ

𝑙=1
𝑘
𝑖=1 .  

where 𝑏𝑎,𝑏(𝑡) is the pdf of the Beta distribution with parameters 𝑎 and 𝑏 at the point 𝑡. 
4- In the light of (5) and (6), compute the sampling raw moments by the following equation: 

�̂�𝐸
𝑟 (ℳ̂(𝑝) , 𝛿(𝑝)) =

1

𝑘𝑛
∑∑((1 − �̂�) (𝑦𝑙𝑖[𝑖]

𝑟 + 𝐸(𝑦𝑟|𝑦 > 𝑦𝑙𝑖[𝑖]) + 𝐸(𝑦
𝑟|𝑦 < 𝑦𝑙𝑖[𝑖])) + �̂� 𝐸(𝑦

𝑟))

𝑘

𝑖=1

𝑚

𝑙=1

 . 
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5- Use �̂�𝐸
1(ℳ , 𝛿) and �̂�𝐸

2(ℳ , 𝛿) for estimating ℳ , 𝛿 by solving the following system: 

𝐸(𝑌𝑟) = �̂�𝐸
𝑟 (ℳ , 𝛿) .                            𝑟 = 1,2                          (7) 

Denote the solution of (7) by (ℳ̂(𝑝+1) , 𝛿(𝑝+1)). 
6- Set 𝑝 = 𝑝 + 1. 

7- Repeat steps (3 − 6) until stopping rule satisfies. i.e. 

Max(|ℳ̂(𝑝) − ℳ̂(𝑝−1)|, |𝛿(𝑝) − 𝛿(𝑝−1)|) ≤ .001. 

8- The final estimates are 𝜃𝐸 = (ℳ̂𝐸 , 𝛿𝐸) = (ℳ̂
(𝑝), 𝛿(𝑝)). 

Remark 𝟏. In the light of the condition (10) of Wu [18], the suggested EM algorithm will always converge 

to a local maximum as long as 𝐹(.) belongs to the exponential family. It is hence advisable to adopt 𝜃𝐸 in 

the case of 𝐹(.) as a member of the exponential family. 

Remark 𝟐. Under the perfectness assumption and in the light of the law of large numbers, one can show 

that �̂�𝐸
𝑟 (ℳ̂𝐸 , 𝛿𝐸) is a consistent estimator to 𝐸(𝑌𝑟) causing 𝜃𝐸 to be a consistent estimator to 𝜃. 

3.2.  Modified Moments Estimators 

The second modification of 𝜃𝑀 consists of replacing �̂�𝑟 in (1) by another more efficient estimator. As 

opposite to 𝜃𝐸, one can also impute the unmeasured items in a nonparametric way using the information 

ranking supported by 𝑋. In the light of Zamanzade and Mohammadi [19], 𝐸(𝑌𝑟) can be estimated through 

applying the following steps: 

1- Combining  𝑦𝑙[𝑖] and their corresponding values of 𝑥𝑙𝑖(𝑖) into two new variables (𝑦𝑧
∗, 𝑥𝑧

∗  , 𝑧 = 1…𝑛) 
respectively.  

2- Sorting ascending  (𝑦𝑧
∗, 𝑥𝑧

∗) according to 𝑥∗ values yielding (𝑦[𝑧]
∗ , 𝑥(𝑧)

∗ ). 

3- Computing the 𝑟th raw sampling moments as:  

�̂�𝑋
𝑟 =

1

𝑛𝑘
∑ ℎ1

𝑟(𝑥(𝑡)
∗ )

𝑛𝑘

𝑡=1
,                                                                𝑟 = 1,2. 

where 

ℎ1
𝑟(𝑥) =

{
 
 
 

 
 
 𝑦𝑟[1]

𝑖𝑠𝑜 𝑥 < 𝑥(1)
∗ .

𝑦𝑟[𝑡]
𝑖𝑠𝑜 +

𝑦𝑟[𝑡+1]
𝑖𝑠𝑜 − 𝑦𝑟[𝑡]

𝑖𝑠𝑜

𝑥(𝑡+1)
∗ − 𝑥(𝑡)

∗ (𝑥 − 𝑥(𝑡)
∗ ) 𝑥(𝑡)

∗ < 𝑥 < 𝑥(𝑡+1)
∗   𝑡 = 1…𝑛 − 1   

𝑦𝑟[𝑛]
𝑖𝑠𝑜 𝑥(𝑛)

∗ < 𝑥 .

𝑦𝑟[𝑡]
𝑖𝑠𝑜 𝑥 = 𝑥(𝑡)

∗   𝑡 = 1…𝑛

  ,  

and 𝑦𝑟𝑖𝑠𝑜is the isotonized values of 𝑦𝑟 obtained by the PAVA. For more discussion about PAVA, one can 

refer to Ozturk [20].   

By replacing �̂� with �̂�𝑋
𝑟  in (1), we will get that: 

𝐸(𝑌𝑟) = �̂�𝑋
𝑟 =

1

𝑛𝑘
∑ ℎ1

𝑟(𝑥(𝑡)
∗ )𝑛𝑘

𝑡=1 .                         𝑟 = 1,2                            (8) 
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The estimates produced by solving (8) will be denoted as 𝜃𝑋 = (ℳ̂𝑋, 𝛿𝑋).  

3.3.  Modified Cramér–Von Mises Estimators 

Due to a plethora CDF estimators provided in the literature particularly in the case of RSS, it is quite 

reasonable to replace �̂�(𝑦) with an efficient CDF estimator rather than the EDF in (4). Most recently, 

Zamanzade and Mahdizadeh [21] suggested a novel CDF estimator based on a concomitant-based RSS. 

The authors showed numerically that their estimator is at least as efficient as EDF which can be expressed 

as:  

�̂�𝑋(𝑡) =
1

𝑘𝑛
∑ ∑ ∑ �̂�𝑥𝑙𝑗(𝑖)(𝑡)

𝑚

𝑙=1

𝑘

𝑗=1

𝑘

𝑖=1
. 

where 

�̂�𝑥(𝑡) =

{
 
 

 
 

�̂�𝑧
𝑖𝑠𝑜(𝑡)

�̂�1
𝑖𝑠𝑜(𝑡) 𝑥 ≤ 𝑥(1)

∗

+
�̂�𝑧+1
𝑖𝑠𝑜 (𝑡) − �̂�𝑧

𝑖𝑠𝑜(𝑡)

𝑥(𝑧+1)
∗ − 𝑥(𝑧)

∗  [𝑥 − 𝑥(𝑧)
∗ ] 𝑥(𝑧)

∗ ≤ 𝑥 < 𝑥(𝑧+1)
∗    𝑧 = 1…𝑛 − 1

�̂�𝑛
𝑖𝑠𝑜(𝑡) 𝑥 ≥ 𝑥(𝑛)

∗

, 

where �̂�𝑧
𝑖𝑠𝑜(𝑡) is the isotonized values of 𝐼(𝑦[𝑧]

∗ ≤ 𝑡) and 𝐼(.) is the indicator function. For a more discussion 

about �̂�𝑋(𝑡), see Ashour and Abdallah [22]. One can rewrite the Cramér–von Mises statistic into another 

general formula as: 

𝐿𝐹
∗ (ℳ , 𝛿|𝑌) = 𝑛∑ ∫ (𝐹 (

𝑦−ℳ

𝛿
) − �̂�(𝑦[𝑖]

∗ ))
2𝑦(𝑖+1)

∗

𝑦(𝑖)
∗

𝑛
𝑖=0 𝑑𝐹 (

𝑦−ℳ

𝛿
)   

=
𝑛

3
∑ ((𝐹 (

𝑦(𝑖+1)
∗ −ℳ

𝛿
) − �̂�(𝑦(𝑖)

∗ ))
3

− (𝐹 (
𝑦(𝑖)
∗ −ℳ

𝛿
) − �̂�(𝑦(𝑖)

∗ ))
3

)𝑛
𝑖=0 .                                    (9) 

where 𝑦(0)
∗ = −∞ , 𝑦(𝑛+1)

∗ = ∞. By replacing �̂�(𝑦(𝑖)
∗ ) with �̂�𝑥(𝑦(𝑖)

∗ ) yields to:   

𝐿𝐹(ℳ , 𝛿|𝑌) =
𝑛

3
∑ ((𝐹 (

𝑦(𝑖+1)
∗ −ℳ

𝛿
) − �̂�𝑥(𝑦(𝑖)

∗ ))

3

− (𝐹 (
𝑦(𝑖)
∗ −ℳ

𝛿
) − �̂�𝑥(𝑦(𝑖)

∗ ))

3

)𝑛
𝑖=0 .                     (10) 

Hence the modified Cramér–von Mises estimators can be obtained either by minimizing 𝐿𝐹(ℳ , 𝛿|𝑌) or 

equivalently solving simultaneously the following equations: 

𝜕𝐿𝐹(ℳ ,𝛿|𝑌)

𝜕ℳ
= ∑ ((𝐹 (

𝑦(𝑖+1)
∗ −ℳ

𝛿
) − �̂�𝑥(𝑦(𝑖)

∗ ))

2

𝐹′ℳ (
𝑦(𝑖+1)
∗ −ℳ

𝛿
) − (𝐹 (

𝑦(𝑖)
∗ −ℳ

𝛿
) − �̂�𝑥(𝑦(𝑖)

∗ ))

2

𝐹′ℳ (
𝑦(𝑖)
∗ −ℳ

𝛿
))𝑛

𝑖=0 = 0

𝜕𝐿𝐹(ℳ ,𝛿|Y)

𝜕𝛿
= ∑ ((𝐹 (

𝑦(𝑖+1)
∗ −ℳ

𝛿
) − �̂�𝑥(𝑦(𝑖)

∗ ))

2

𝐹′𝛿 (
𝑦(𝑖+1)
∗ −ℳ

𝛿
) − (𝐹 (

𝑦(𝑖)
∗ −ℳ

𝛿
) − �̂�𝑥(𝑦(𝑖)

∗ ))

2

𝐹′𝛿 (
𝑦(𝑖)
∗ −ℳ

𝛿
))𝑛

𝑖=0 = 0  

}
 
 
 

 
 
 

.          (11) 

The estimates based on solving (11) will be denoted as 𝜃𝐹 = (ℳ̂𝐹 , 𝛿𝐹). To close this section, it should be 

indicated that Ozturk [23] used EM algorithm to suggest a new estimation method under RSS. However, 

his strategy required heavy computations and time consuming causing to be omitted in this work. Another 

important point deserves to be mentioned is to obtain the variances estimates of the proposed estimators. 



1363 Samir K. Ashour, Mohamed S. Abdallah/ GU J Sci, 32(4): 1356-1368 (2019) 

 

Since we feel that deriving these variances seems not an easy mission, an approximation can be simply 

obtained by using bootstrap RSS by rows (BRSSR) method proposed by Modarres et al. [24] similar to 

what is done in Mahdizadeh and Tamandi [13].  

4. EFFICIENCY COMPARISON USING SIMULATED DATA SET 

This part exhibits the performance of the aforementioned estimation methods based on the simulated data 

generated through Dell and Clutter [25] model which assuming (𝑌, 𝑋) has a standard bivariate normal 

distribution with a correlation coefficient 𝜌. The chosen values of 𝜌 are: 𝜌 = 1, .80 and . 50. To illustrate 

the effect of set and sample sizes, we considered four different configurations: (𝑘,𝑚) =
(2,5), (2,10), (5,2) and (5,4). Then we take 𝑌, 𝜙𝐿

−1(𝜙𝑛(𝑌)), 𝜙𝐺
−1(𝜙𝑛(𝑌)) and 𝜙𝐸

−1(𝜙𝑛(𝑌)) as the target 

variables, where 𝜙𝑛(.) is the CDF for the standard normal and 𝜙𝐿
−1(.) , 𝜙𝐺

−1(.) and 𝜙𝐸
−1(.) are respectively 

the quantile function for logistic, gumbel and exponential distributions. For each combination of 𝜌, 𝑘 and 

𝑚, data sets are generated from the target variables based on 5,000 samples under RSS. The biases and the 

MSEs for 𝜃𝐿, 𝜃𝑇, 𝜃𝐶, 𝜃𝐸, 𝜃𝑋 and 𝜃𝐹 estimators were computed and reported as shown by Table 1.  

In the context of the simulation results, the following points can be concluded:  

1- For a fixed sample size, increasing the set size rather than the number of cycles has a positive effect 

on the biases and the MSEs of the estimators provided that the rankings are perfect done.  

2- For a fixed set size increasing the sample size has a positive effect on the biases and the MSEs of 

the estimators regardless the quality ranking.  

3- As expected, there is a touchable effect of the values of 𝜌 on the behavior of the considered 

estimators, as increasing the values of 𝜌 decreases the biases and MSEs of all estimators and vice 

versa.  

4- Concerned about estimating ℳ, it is clear to say that the differences between the performance of 

the considered estimators are quite close and can be ignorable. Therefore, it does not matter which 

estimation method should be adopted for estimating ℳ.  

5- On the other hand, concerned about estimating 𝛿, it is easily to see that the behavior of the 

estimators has various patterns. Under the perfect ranking, 𝜃𝐿 and 𝜃𝐹 are the best estimators with 

respect to the bias and the MSE criteria with a few exceptions. Whereas this superiority decreases 

in favor to 𝜃𝑋 and 𝜃𝐸 as the quality of the ranking goes to the imperfect case.  

6- Although both 𝜃𝐿 and 𝜃𝐸 deal with the RSS items as independent order statistics, it is apparent that 

𝜃𝐸 is much less sensitive to the perfectness assumption than 𝜃𝐿. The reason for this phenomenon 

is that 𝜃𝐸 uses the fraction-of-random-rankings model which reduces the effect of violating the 

perfectness assumption.  

7- It is also evident that 𝜃𝑋 outperforms 𝜃𝐶 in all the situations as long as the rankings are done either 

perfect or nearly perfect. 
 

5. EFFICIENCY COMPARISON USING EMPIRICAL DATA SET  

In what follows, we assess the performances of 𝜃𝐿, 𝜃𝑇, 𝜃𝐶, 𝜃𝐸, 𝜃𝑋 and 𝜃𝐹 estimators using the empirical 

data set known as Veterans’ Administration Lung Cancer Study (WALCS) data set and is available in 

survival package of R statistical software. We will consider this data set as the target population which 

includes eight variables with 137 observations yet only two variables will be considered: the "karno" as the 

concomitant variable 𝑋 and the "time" as the variable of interest 𝑌. These two variables are not highly 

correlated as their Pearson correlation coefficient is only 37.5%, thus one can expect that if RSS is collected 

it will be nearly imperfect. In the light of the fact that Zamanzade [26] demonstrated that 𝑌 follows the 

exponential distribution with 𝛿 = 121.67 using CDF based goodness of fit tests, another comparison study 

is performed by the following procedures. For the same values of (𝑘,𝑚) determined in the preceding 

Section, 5,000 concomitant-based RSS with replacement were selected from the target population. For 

each sample, 𝛿𝐿, 𝛿𝑇, 𝛿𝐶 , 𝛿𝐸 , 𝛿𝑋 and 𝛿𝐹 estimators were estimated and their biases and MSEs were also 

obtained and plotted as presented by Figure 1. 
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Table 1.  Estimated biases and MSEs of the methods of estimation using the simulated data 

   ℳ  𝛿  

 

(𝑘.𝑚) 
 ρ = 1 ρ = 0.80 ρ = 0.50 ρ = 1 ρ = 0.80 ρ = 0.50 

  Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

S
ta

n
d

a
rd

 N
o

rm
a

l 

(2,5) 

�̂�𝐿 0.002 0.065 0.005 0.081 0.017 0.088 0.052 0.045 0.012 0.056 0.040 7100.  

�̂�𝑇 0.003 0.066 0.005 0.083 0.015 0.087 0.222 0.089 0.234 0.098 0.241 0.099 

�̂�𝐶 0.005 0.069 0.005 0.089 00.01  0.091 0.018 0.087 0.035 0.085 0.051 0.080 

�̂�𝐸 0.002 0.065 0.005 0.081 0.017 0.087 0.065 0.046 0.053 0.057 0.051 0.054 

�̂�𝑋 0.002 0.052 0.001 0.076 0.012 0.085 0.054 0.044 0.063 0.057 0.072 0.054 

�̂�𝐹 0.005 0.053 10.00  0.085 0.004 0.091 0.033 0.048 50.05  0.085 0.071 0.092 

(2,10) 

�̂�𝐿 0.004 0.033 0.006 0.038 10.00  0.042 0.038 0.023 0.003 0.025 0.083 0.040 

�̂�𝑇 0.004 0.033 80.00  0.038 10.00  0.042 0.142 0.043 20.15  0.045 40.14  0.043 

�̂�𝐶 70.00  60.03  50.00  420.0  40.00  60.04  0.025 0.043 0.037 0.042 0.027 20.04  

�̂�𝐸 0.004 0.033 0.007 0.038 0.002 0.041 0.046 0.024 0.027 0.024 0.001 0.028 

�̂�𝑋 0.004 0.027 0.004 0.038 0.002 0.041 0.046 0.021 0.049 0.025 0.037 0.027 

�̂�𝐹 30.00  290.0  20.00  70.03  80.00  50.04  30.03  10.02  30.04  0.036 0.028 0.044 

(5,2) 

�̂�𝐿 0.007 0.036 0.017 0.060 0.003 0.079 0.039 0.031 0.066 0.062 0.282 0.194 

�̂�𝑇 60.00  0.036 0.017 40.06  0.003 0.082 0.210 0.074 80.23  0.092 0.244 0.097 

�̂�𝐶 10.00  80.03  60.01  60.06  40.00  0.089 0.008 0.061 0.031 0.076 0.056 0.083 

�̂�𝐸 0.007 0.031 0.018 0.06 0.004 0.079 0.043 0.031 0.012 0.051 0.037 0.064 

�̂�𝑋 0.008 0.022 0.022 0.055 0.002 0.084 0.055 0.031 0.07 0.046 0.082 0.051 

�̂�𝐹 40.00  220.0  210.0  30.06  10.00  0.096 0.032 0.023 0.048 0.074 0.070 0.087 

(5,4) 

�̂�𝐿 0.003 80.01  0.005 0.028 0.019 0.043 0.020 0.016 0.120 0.045 0.190 0.346 

�̂�𝑇 50.00  90.01  0.005 0.028 0.019 0.043 40.12  0.031 0.136 00.04  0.043 0.142 

�̂�𝐶 10.00  10.01  40.00  300.0  220.0  90.04  0.004 0.029 0.020 0.038 0.040 0.029 

�̂�𝐸 0.003 0.011 0.006 0.028 0.02 0.043 0.021 0.016 0.074 0.033 0.052 0.052 

�̂�𝑋 0.003 0.017 0.002 0.025 0.02 0.044 0.035 0.014 0.036 0.024 0.028 0.041 

�̂�𝐹 20.00  60.01  10.00  70.02  20.02  520.0  0.018 100.0  0.031 0.038 0.044 0.039 

S
ta

n
d

a
rd

 L
o

g
is

ti
c

 

(2,5) 

�̂�𝐿 0.027 0.220 0.011 0.243 0.014 0.271 0.045 0.056 0.005 0.072 0.068 0.103 

�̂�𝑇 0.025 0.223 0.011 0.244 0.015 0.271 0.214 0.094 0.233 0.104 0.249 0.108 

�̂�𝐶 0.024 0.226 0.012 0.247 0.018 0.282 0.002 0.087 0.028 0.095 0.052 0.089 

�̂�𝐸 0.032 0.225 0.009 0.261 0.015 0.271 0.084 0.062 0.065 0.072 0.069 0.073 

�̂�𝑋 0.025 0.198 0.014 0.233 0.011 0.272 0.077 0.059 0.084 0.073 0.102 0.075 

�̂�𝐹 0.020 0.174 0.017 0.232 0.010 0.281 0.039 0.047 0.049 0.098 0.071 0.094 

(2,10) 

�̂�𝐿 0.007 0.096 0.006 0.117 0.020 0.140 0.024 0.032 0.028 0.038 0.123 0.069 

�̂�𝑇 0.008 0.096 0.008 0.118 0.019 0.140 0.131 0.047 0.130 0.048 0.131 0.050 

�̂�𝐶 0.006 0.096 0.006 0.121 0.018 0.142 0.016 0.048 0009 0.052 0.008 0.056 

�̂�𝐸 0.006 0.106 0.009 0.12 0.023 0.15 0.041 0.038 0.017 0.036 0.011 0.045 

�̂�𝑋 0.001 0.088 0.006 0.116 0.014 0.154 0.042 0.034 0.043 0.037 0.035 0.043 

�̂�𝐹 0.004 0.077 0.011 0.110 0.010 0.141 0.021 0.024 0.026 0.045 0.011 0.057 

(5,2) 

�̂�𝐿 0.014 0.100 0.011 0.206 0.013 0.243 0.043 0.045 0.123 0.093 0.371 0.352 

�̂�𝑇 0.12 0.099 0.011 0.205 0.015 0.252 0.213 0.085 0.213 0.093 0.243 0.112 

�̂�𝐶 0.014 0.099 0.013 0.209 0.015 0.263 0.006 0.069 0.023 0.093 0.042 0.123 

�̂�𝐸 0.019 0.073 0.011 0.212 0.011 0.243 0.054 0.049 0.044 0.076 0.042 0.087 

�̂�𝑋 0.019 0.105 0.023 0.203 0.009 0.253 0.081 0.048 0.068 0.074 0.092 0.073 

�̂�𝐹 0.006 0.105 0.032 0.192 0.014 0.274 0.044 0.024 0.066 0.083 0.071 0.112 

(5,4) 

�̂�𝐿 0.003 0.046 0.035 0.090 0.001 0.119 0.016 0.021 0.137 0.062 0.409 0.254 

�̂�𝑇 0.004 0.047 0.035 0.089 0.001 0.121 0.122 0.036 0.134 0.045 0.139 0.047 

�̂�𝐶 0.007 0.048 0.036 0.092 0.002 0.123 0.001 0.034 0.178 0.044 0.020 0.047 

�̂�𝐸 0.008 0.047 0.037 0.094 0.001 0.122 0.026 0.022 0.078 0.043 0.126 0.07 

�̂�𝑋 0.007 0.033 0.03 0.091 0.001 0.126 0.048 0.022 0.052 0.033 0.053 0.037 

�̂�𝐹 0.003 0.030 0.028 0.083 0.002 0.128 0.018 0.009 0.018 0.044 0.026 0.052 
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Table 1.  Continue 

   ℳ  𝛿  

 

(𝑘.𝑚) 
 ρ = 1 ρ = 0.80 ρ = 0.50 ρ = 1 ρ = 0.80 ρ = 0.50 

  Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

S
ta

n
d

a
rd

 G
u

m
b

el
 

(2,5) 

�̂�𝐿 0.049 0.089 0.009 0.084 0.009 0.109 0.066 0.059 0.010 0.060 0.048 0.096 

�̂�𝑇 0.090 0.100 0.060 0.091 0.074 0.119 0.230 0.102 0.223 0.100 0.235 0.109 

�̂�𝐶 0.045 0.099 0.016 0.094 0.036 0.123 0.016 0.100 0.015 0.110 0.031 0.110 

�̂�𝐸 0.069 0.092 0.031 0.086 0.047 0.114 0.104 0.075 0.062 0.085 0.068 0.093 

�̂�𝑋 0.056 0.069 0.042 0.08 0.057 0.115 0.114 0.059 0.087 0.077 0.099 0.099 

�̂�𝐹 0.040 0.072 0.031 0.084 0.040 0.122 0.038 0.059 0.038 0.103 0.041 0.120 

(2,10) 

�̂�𝐿 0.006 0.037 0.014 0.046 0.005 0.064 0.035 0.025 0.007 0.031 0.064 0.088 

�̂�𝑇 0.021 0.038 0.049 0.049 0.044 0.055 0.142 0.045 0.152 0.050 0.139 0.044 

�̂�𝐶 0.003 0.043 0.029 0.053 0.024 0.062 0.028 0.045 0.037 0.049 0.020 0.044 

�̂�𝐸 0.006 0.039 0.028 0.047 0.023 0.055 0.041 0.046 0.031 0.041 0.006 0.047 

�̂�𝑋 0.009 0.029 0.029 0.042 0.035 0.053 0.057 0.032 0.067 0.041 0.056 0.048 

�̂�𝐹 0.001 0.030 0.022 0.046 0.025 0.055 0.026 0.022 0.036 0.045 0.026 0.046 

(5,2) 

�̂�𝐿 0.007 0.036 0.006 0.064 0.044 0.108 0.050 0.038 0.069 0.070 0.299 0.240 

�̂�𝑇 0.045 0.039 0.075 0.071 0.087 0.116 0.218 0.081 0.234 0.100 0.238 0.102 

�̂�𝐶 0.002 0.038 0.031 0.073 0.042 0.114 0.001 0.068 0.032 0.095 0.029 0.091 

�̂�𝐸 0.02 0.036 0.026 0.066 0.026 0.105 0.068 0.058 0.02 0.09 0.058 0.131 

�̂�𝑋 0.024 0.025 0.047 0.064 0.071 0.114 0.11 0.043 0.101 0.075 0.086 0.099 

�̂�𝐹 0.010 0.023 0.034 0.070 0.026 0.118 0.034 0.025 0.065 0.081 0.035 0.098 

(5,4) 

�̂�𝐿 0.007 0.020 0.025 0.034 0.082 0.056 0.027 0.018 0.013 0.045 0.341 0.196 

�̂�𝑇 0.027 0.022 0.029 0.036 0.039 0.052 0.129 0.034 0.017 0.043 0.160 0.049 

�̂�𝐶 0.004 0.022 0.008 0.039 0.015 0.054 0.011 0.033 0.014 0.041 0.043 0.045 

�̂�𝐸 0.013 0.02 0.011 0.036 0.013 0.051 0.032 0.028 0.071 0.047 0.102 0.078 

�̂�𝑋 0.018 0.012 0.021 0.034 0.026 0.048 0.071 0.019 0.066 0.033 0.076 0.045 

�̂�𝐹 0.006 0.011 0.013 0.034 0.014 0.050 0.023 0.010 0.022 0.038 0.047 0.052 

S
ta

n
d

a
rd

 E
x

p
o

n
en

ti
a

l 

(2,5) 

�̂�𝐿 --- --- --- --- --- --- 0.074 0.101 0.057 0.130 0.023 0.112 

�̂�𝑇 --- --- --- --- --- --- 0.187 0.156 0.197 0.217 0.201 0.207 

�̂�𝐶 --- --- --- --- --- --- 0.060 0.122 0.095 0.251 0.088 0.187 

�̂�𝐸 --- --- --- --- --- --- 0.084 0.105 0.082 0.139 0.078 0.135 

�̂�𝑋 --- --- --- --- --- --- 0.09 0.085 0.097 0.129 0.1 0.141 

�̂�𝐹 --- --- --- --- --- --- 0.048 0.087 0.083 0.172 0.098 0.215 

(2,10) 

�̂�𝐿 --- --- --- --- --- --- 0.037 0.044 0.016 0.047 0.009 0.056 

�̂�𝑇 --- --- --- --- --- --- 0.105 0.065 0.111 0.070 0.116 0.085 

�̂�𝐶 --- --- --- --- --- --- 0.031 0.054 0.031 0.058 0.052 0.084 

�̂�𝐸 --- --- --- --- --- --- 0.04 0.045 0.029 0.049 0.031 0.061 

�̂�𝑋 --- --- --- --- --- --- 0.048 0.035 0.051 0.046 0.056 0.067 

�̂�𝐹 --- --- --- --- --- --- 0.029 0.039 0.034 0.051 0.058 0.088 

(5,2) 

�̂�𝐿 --- --- --- --- --- --- 0.043 0.043 0.019 0.067 0.015 0.099 

�̂�𝑇 --- --- --- --- --- --- 0.152 0.077 0.185 0.134 0.221 0.204 

�̂�𝐶 --- --- --- --- --- --- 0.044 0.068 0.070 0.116 0.095 0.173 

�̂�𝐸 --- --- --- --- --- --- 0.045 0.043 0.038 0.073 0.064 0.124 

�̂�𝑋 --- --- --- --- --- --- 0.066 0.031 0.093 0.086 0.132 0.151 

�̂�𝐹 --- --- --- --- --- --- 0.028 0.028 0.064 0.109 0.112 0.203 

(5,4) 

�̂�𝐿 --- --- --- --- --- --- 0.024 0.019 0.026 0.032 0.098 0.046 

�̂�𝑇 --- --- --- --- --- --- 0.091 0.032 0.094 0.050 0.081 0.060 

�̂�𝐶 --- --- --- --- --- --- 0.015 0.021 0.018 0.045 0.008 0.060 

�̂�𝐸 --- --- --- --- --- --- 0.024 0.018 0.012 0.032 0.032 0.044 

�̂�𝑋 --- --- --- --- --- --- 0.0947 0.014 0.044 0.033 0.023 0.047 

�̂�𝐹 --- --- --- --- --- --- 0.017 0.014 0.027 0.041 0.006 0.057 
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One can easily deduce that there is a high agreement between the results shown by Figure 1 and those 

reported by Table 1. As due to the weakness of the relation between 𝑋 and 𝑌, for a fixed sample size, 

increasing the cycle size rather than the set size has a better effect on all the considered estimators 

particularly 𝛿𝐿 which is uniformly the worst estimator in terms of both the bias and MSE criteria. In 

contradiction, 𝛿𝐸  and 𝛿𝑋 have satisfied behavior particularly at the small sample sizes yet 𝛿𝐹 has relatively 

high bias in almost cases. In spite of the superiority of 𝛿𝑇 in terms of bias criterion, it has a slight higher 

MSE. Finally it should be informed that all simulation studies in this work are programmed using R 

statistical software and available under request from the second author. 

 

 

Figure 1. Estimated biases and MSEs of the methods of estimation using the empirical data. This figure 

appears in color in the electronic version of this article 

6. CONCLUSION 

In this study, we provide three novel methods for estimating location-scale parameters under RSS namely 

Iterative Moments, Modified Moments and Modified Cramér–Von Mises. The first method is based on EM 

algorithm, while the second and the third methods are derived under existing of the concomitant based-

information. In the view of bias and MSE, the numerical findings recommended that the proposed methods 

are more efficient than their competitors in almost cases and they are relatively less sensitive to the 

perfectness assumption. Although we confine our attention on the location-scale family, the proposed 

methods can be straightforwardly extended to the non location-scale family either by directly applying the 

proposed methods or transforming to a distribution belongs to the location-scale family. For instance, if 𝑌 

follows a Weibull distribution then {− log(𝑌)} follows a Gumbel distribution (see Cabana and Quiroz [27]). 

Recently, Ozturk et al. [28] constructed a Rao-Blackwellized version of maximum likelihood estimators 

(MLE) and best linear unbiased estimators (BLUE) under judgment post stratified (JPS) samples, therefore 

it might be a good potential point for future works to extend our proposed methods to JPS samples. 
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