ON SEMISYMMETRIC CUBIC GRAPHS OF ORDER 10p³

Mehdi Alaeiyan*† and B. Naimeh Onagh‡

Received 17:04:2010: Accepted 09:11:2010

Abstract

Connected cubic graphs of order 10p³ which admit an automorphism group acting semisymmetrically are investigated. We prove that every connected cubic edge-transitive graph of order 10p³ is vertex-transitive, where p is a prime.

Keywords: Automorphism group, Regular cover, Semisymmetric graph.

2000 AMS Classification: 05 C 10, 05 C 25, 20 B 25.

1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For the group-theoretic concepts and notation not defined here we refer the reader to [4, 8, 14]. Given a graph X, we let \(V(X) \), \(E(X) \), \(A(X) \) and \(\text{Aut}(X) \) be the vertex set, the edge set, the arc set and the automorphism group of \(X \), respectively.

If a subgroup \(G \) of \(\text{Aut}(X) \) acts transitively on \(V(X) \), \(E(X) \) and \(A(X) \), then \(X \) is said to be \(G \)-vertex-transitive, \(G \)-edge-transitive and \(G \)-arc-transitive, respectively. It is easily seen that a graph \(X \) which is \(G \)-edge- but not \(G \)-vertex-transitive is necessarily bipartite, with the two parts of the bipartition coinciding with the orbits of \(G \). In particular, if \(X \) is a regular, then these two parts have equal cardinalities, and such a graph is then referred to as being \(G \)-semisymmetric. In the case where \(G = \text{Aut}(X) \) the symbol \(G \) may be omitted from the definitions above, so that \(X \) is called semisymmetric if it is regular and \(\text{Aut}(X) \)-edge-transitive but not \(\text{Aut}(X) \)-vertex-transitive.

An \(s \)-arc in a graph \(X \) is an ordered \((s + 1)\)-tuple \((v_0, v_1, \ldots, v_s)\) of vertices of \(X \) such that \(v_{i-1} \) is adjacent to \(v_i \) for \(1 \leq i \leq s \), and \(v_{i-1} \neq v_{i+1} \) for \(1 \leq i < s \). A graph \(X \) is said to be \(s \)-arc-transitive if \(\text{Aut}(X) \) is transitive on the set of \(s \)-arcs of \(X \). In particular, \(0 \)-arc-transitive means vertex-transitive, and \(1 \)-arc-transitive means arc-transitive or symmetric.

The study of semisymmetric graphs was initiated by Folkman [7].

*Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran. E-mail: alaeiyan@iust.ac.ir
†Corresponding Author.
‡Department of Mathematics, Golestan University, Gorgan, Iran. E-mail: bonagh@yahoo.com