THE SECOND AND THIRD GEOMETRIC-ARITHMETIC INDICES OF UNICYCLIC GRAPHS ${ }^{\ddagger}$

Ping Liu* and Bolian Liu* \dagger

Received 13:07:2010 : Accepted 17:01:2011

Abstract

Recently, G. Fath-Tabar, B. Furtula and I. Gutman (A new geometricarithmetic index, J. Math. Chem. 47, 477-486, 2010) proposed the second geometric-arithmetic index $G A_{2}$ and B. Zhou, I. Gutman, B. Furtula and Z. Du (On two types of geometric-arithmetic index, Chem. Phys. Lett. 482, 153-155, 2009) put forward the third geometricarithmetic index $G A_{3}$, respectively. In (Gutman, I. and Furtula, B. Estimating the second and third geometric-arithmetic indices, Hacet. J. Math. Stat. $40(1), 69-76,2011)$, inequalities between $G A_{2}$ and $G A_{3}$ for trees, with the number of vertices and the number of pendent vertices, were obtained by I. Gutman and B. Furtula. In this paper, we obtain inequalities between the two indices for unicyclic graphs.

Keywords: Distance between vertex and edge, Geometric-arithmetic index, Unicyclic graph.
2000 AMS Classification: 05 C 12.

1. Introduction

Let $G=(V, E)$ be a connected simple graph with $|V|=n$ and $|E|=m$. The distance $d(u, v)$ of two vertices $u, v \in V(G)$ is the length of the shortest path connecting u and v in G. A pendent vertex of G is a vertex of degree one. An edge connecting a pendent vertex with its unique neighbor is called a pendent edge.

For any edge $e=u v \in E(G)$, we denote by $N_{u}=\{w \in V(G): d(w, u)<d(w, v)\}$. Let $n_{u}=\left|N_{u}\right|$, i.e., n_{u} counts the number of vertices which are in positions closer to u than v of the edge $u v$.

[^0]Let $w \in V(G)$ and $e=x y \in E(G)$. Define the distance $d(w, e)$ between w and e as $\min \{d(w, x), d(w, y)\}$. For an edge $u v \in E(G)$, let $M_{u}=\{e \in E(G): d(e, u)<d(e, v)\}$. Then $m_{u}=\left|M_{u}\right|$ counts the number of edges of G lying closer to vertex u than to vertex v of the edge $u v$.

In [4], the geometric-arithmetic index $G A$ was first defined as

$$
G A=G A(G)=\sum_{u v \in E(G)} \frac{\sqrt{d_{u} d_{v}}}{\frac{1}{2}\left(d_{u}+d_{v}\right)}
$$

where d_{u} stands for the degree of the vertex u.
Recently, G. Fath-Tabar et al. generalized $G A$ to $G A_{\text {general }}(G)$, which was defined as [1] as

$$
G A_{\text {general }}=G A_{\text {general }}(G)=\sum_{u v \in E(G)} \frac{\sqrt{Q_{u} Q_{v}}}{\frac{1}{2}\left(Q_{u}+Q_{v}\right)},
$$

where Q_{u} is some quantity associated with the vertex u.
Replacing Q_{u} by n_{u}, G. Fath-Tabar et al. [1] defined it as the second geometricarithmetic index, i.e.,

$$
\begin{equation*}
G A_{2}=G A_{2}(G)=\sum_{u v \in E(G)} \frac{\sqrt{n_{u} n_{v}}}{\frac{1}{2}\left(n_{u}+n_{v}\right)} \tag{1}
\end{equation*}
$$

B. Zhou et al. [5] replaced Q_{u} by m_{u}, and then defined the third geometric-arithmetic index, i.e.,

$$
\begin{equation*}
G A_{3}=G A_{3}(G)=\sum_{u v \in E(G)} \frac{\sqrt{m_{u} m_{v}}}{\frac{1}{2}\left(m_{u}+m_{v}\right)} \tag{2}
\end{equation*}
$$

Geometric-arithmetic indices are a new class of topological descriptors, which are based on some properties of vertices of graphs. Details of their theory can be found in [2].

For unicyclic graphs with girth g, let $c_{1}, c_{2}, \ldots, c_{g}$ be the vertices on the cycle C, i.e., $V(C)=\left\{c_{1}, c_{2}, \ldots, c_{g}\right\}$.

Denote by $E(T)$ the set $\{e \in E(G) \mid e$ is a non-pendent edge and $e \notin E(C)\}$, by $E(P)$ the set of all pendent edges of G, and put $|E(P)|=p$.

For any edge $e=u v \in E(T)$, there must exist a path $P: v_{0} v_{1} v_{2} \cdots v_{k}\left(=c_{i}\right)$ that contains the edge e, where $v_{i}(0 \leq i \leq k)$ are vertices in the same component of $G-E(C)$, v_{0} is a pendent vertex and $c_{i} \in \bar{V}(\bar{C})$.

Throughout this paper, for every edge $u v \notin E(C)$, let u be the vertex closer to v_{0} than v. This means that u is more distant from C than v.
I. Gutman and B. Furtula [3] obtained inequalities between $G A_{2}$ and $G A_{3}$ for trees to estimate the second and third geometric-arithmetic indices. As a consequence, we continue to deduce inequalities for unicyclic graphs with even and odd girths, respectively.

2. Inequalities of unicyclic graphs with even girth

From (1) and (2), for a unicyclic graph G with even girth, it is easy to obtain:
(I) if $e=u v \in E(T)$, then $n_{u}+n_{v}=n, m_{u}=n_{u}-1, m_{v}=n_{v}$ and $m_{u}+m_{v}=n-1$.
(II) if $e=u v \in E(C)$, then $n_{u}+n_{v}=n, m_{u}=n_{u}-1, m_{v}=n_{v}-1$ and $m_{u}+m_{v}=$ $n-2$.
Let s be the number of vertices of one of the maximal components of $G-V(C)$.
2.1. Theorem. Let G be a unicyclic graph with even girth and p pendent edges. If $s \leq \frac{n}{2}$, then

$$
\begin{align*}
\frac{n}{n-1} & G A_{2}(G)-\left(\frac{2}{\sqrt{n-1}}-\frac{\sqrt{2}}{\sqrt{n-2}}\right) p-\frac{\sqrt{2} n}{\sqrt{n-2}} \\
& <G A_{3}(G) \tag{3}\\
& <\frac{n}{n-2} G A_{2}(G)-\left(\frac{2 \sqrt{n-1}}{n-2}-\frac{n-1}{(n-2) \sqrt{\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil}}\right) p-\frac{(n-1) n}{(n-2) \sqrt{\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil}}
\end{align*}
$$

Proof. From above discussions, it follows that

$$
\begin{equation*}
G A_{2}=\sum_{u v \in E(G)} \frac{\sqrt{n_{u} n_{v}}}{\frac{1}{2}\left(n_{u}+n_{v}\right)}=\sum_{u v \in E(G)} \frac{2 \sqrt{n_{u} n_{v}}}{n} \tag{4}
\end{equation*}
$$

and

$$
G A_{3}(G)=\sum_{u v \in E(T)} \frac{2 \sqrt{\left(n_{u}-1\right) n_{v}}}{(n-1)}+\sum_{u v \in E(C)} \frac{2 \sqrt{\left(n_{u}-1\right)\left(n_{v}-1\right)}}{(n-2)} .
$$

Bearing in mind that $n_{u}+n_{v}=n$,

$$
\sqrt{\left(n_{u}-1\right)\left(n_{v}-1\right)}=\sqrt{n_{u} n_{v}} \sqrt{1-\frac{n-1}{n_{u} n_{v}}} .
$$

For any non-pendent edge $e=u v \in E(G)$, there is $0<(n-1) /\left(n_{u} n_{v}\right)<1$. Since for any real number $x \in(0,1)$,

$$
1-x<\sqrt{1-x}<1-\frac{x}{2}
$$

we have

$$
\sqrt{1-\frac{n-1}{n_{u} n_{v}}}>1-\frac{n-1}{n_{u} n_{v}}
$$

and

$$
\sqrt{1-\frac{n-1}{n_{u} n_{v}}}<1-\frac{n-1}{2 n_{u} n_{v}} .
$$

Proof of lower bound. Let e be a non-pendent edge $u v$, then $n_{u} n_{v} \geq 2(n-2)$ holds because of $n_{u}+n_{v}=n$. It is easy to see that

$$
\begin{aligned}
\sqrt{n_{u} n_{v}} \sqrt{1-\frac{n-1}{n_{u} n_{v}}} & >\sqrt{n_{u} n_{v}}\left(1-\frac{n-1}{n_{u} n_{v}}\right) \\
& =\sqrt{n_{u} n_{v}}-\frac{n-1}{\sqrt{n_{u} n_{v}}} \\
& \geq \sqrt{n_{u} n_{v}}-\frac{n-1}{\sqrt{2(n-2)}}
\end{aligned}
$$

Then

$$
\begin{align*}
G A_{3}(G) & >\sum_{u v \in E(T)} \frac{2 \sqrt{\left(n_{u}-1\right)\left(n_{v}-1\right)}}{n-1}+\sum_{u v \in E(C)} \frac{2 \sqrt{\left(n_{u}-1\right)\left(n_{v}-1\right)}}{n-2} \\
& >\sum_{u v \in E(T) \cup E(C)} \frac{2 \sqrt{\left(n_{u}-1\right)\left(n_{v}-1\right)}}{n-1} \\
& =\sum_{u v \in E(T) \cup E(C)} \frac{2}{n-1} \sqrt{n_{u} n_{v}} \sqrt{1-\frac{n-1}{n_{u} n_{v}}} \\
& \geq \frac{2}{n-1} \sum_{u v \in E(T) \cup E(C)}\left(\sqrt{n_{u} n_{v}}-\frac{n-1}{\sqrt{2(n-2)}}\right) . \tag{5}
\end{align*}
$$

From (4), we have

$$
\sum_{E(T) \cup E(C)} \sqrt{n_{u} n_{v}}=\frac{n}{2} G A_{2}(G)-p \sqrt{n-1},
$$

which substitutes back into (5) to yield

$$
G A_{3}>\frac{n}{n-1} G A_{2}(G)-\left(\frac{2}{\sqrt{n-1}}-\frac{\sqrt{2}}{\sqrt{n-2}}\right) p-\frac{\sqrt{2} n}{\sqrt{n-2}} .
$$

Thus the lower bound of (3) is obtained.
Proof of upper bound. Now it can be seen that

$$
\sqrt{1-\frac{n-1}{n_{u} n_{v}}}<1-\frac{n-1}{2 n_{u} n_{v}} .
$$

For any edge $u v$ of $G, n_{u} n_{v} \leq\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ holds. It follows that

$$
\begin{aligned}
\sqrt{n_{u} n_{v}} \sqrt{1-\frac{n-1}{n_{u} n_{v}}} & <\sqrt{n_{u} n_{v}}\left(1-\frac{n-1}{2 n_{u} n_{v}}\right) \\
& =\sqrt{n_{u} n_{v}}-\frac{n-1}{2 \sqrt{n_{u} n_{v}}} \\
& \leq \sqrt{n_{u} n_{v}}-\frac{n-1}{2 \sqrt{\left[\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil}}
\end{aligned}
$$

Since $s \leq \frac{n}{2}$ and $n_{u}+n_{v}=n$, we get $n_{u} \leq n_{v}$ for each $e \in E(T)$. Suppose that

$$
f(x)=\frac{c x}{(c+x)^{2}}
$$

where c is a constant. By calculating the derivative of $f(x)$:

$$
f^{\prime}(x)=\frac{c(c+x)(c-x)}{(c+x)^{4}}
$$

one can see easily that $f(x)$ decreases with increasing of x for $x \geq c$. Let $c=n_{u}-1$. If $n_{u} \leq n_{v}=x$, then $n_{u}-1 \leq n_{v}-1=x-1$ and $f\left(n_{v}-1\right)>f\left(n_{v}\right)$ hold, which implies that

$$
\begin{equation*}
\sum_{u v \in E(T)} \frac{2 \sqrt{\left(n_{u}-1\right) n_{v}}}{(n-1)}<\sum_{u v \in E(T)} \frac{2 \sqrt{\left(n_{u}-1\right)\left(n_{v}-1\right)}}{(n-2)} . \tag{6}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
& G A_{3}(G)<\sum_{u v \in E(T) \cup E(C)} \frac{2 \sqrt{\left(n_{u}-1\right)\left(n_{v}-1\right)}}{n-2} \\
&=\sum_{u v \in E(T) \cup E(C)} \frac{2}{n-2} \sqrt{n_{u} n_{v}} \sqrt{1-\frac{n-1}{n_{u} n_{v}}} \\
&<\sum_{u v \in E(T) \cup E(C)} \frac{2}{n-2}\left(\sqrt{n_{u} n_{v}}-\frac{n-1}{2 \sqrt{\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil}}\right) \\
&<\frac{2}{n-2} \sum_{u v \in E(T) \cup E(C)} \sqrt{n_{u} n_{v}}-\frac{(n-1)(n-p)}{(n-2) \sqrt{\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil}} \\
&<\frac{n}{n-2} G A_{2}(G)-\left(\frac{2 \sqrt{n-1}}{n-2}-\frac{n-1}{(n-2) \sqrt{\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil}}\right) p \\
&-\frac{(n-1) n}{(n-2) \sqrt{\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil}} .
\end{aligned}
$$

Now, we discuss the case when a graph G with even girth does not satisfy $s \leq \frac{n}{2}$.
2.2. Theorem. Let G be a unicyclic graph with even girth and p pendent edges. Then

$$
\begin{aligned}
\frac{n}{n-1} G A_{2}(G) & -\left(\frac{2}{\sqrt{n-1}}-\frac{\sqrt{2}}{\sqrt{n-2}}\right) p-\frac{\sqrt{2} n}{\sqrt{n-2}} \\
& <G A_{3}(G) \\
& <G A_{2}(G)-\frac{2 p \sqrt{n-1}}{n}+\frac{(3 n-8)(n-6)}{4} .
\end{aligned}
$$

Proof. Note that $n_{u}+n_{v}=n$, and $4 n_{u} n_{v} \leq n^{2}$. It is easy to obtain that:

$$
\frac{n_{u} n_{v}}{n^{2}}>\frac{\left(n_{u}-1\right)\left(n_{v}-1\right)}{(n-2)^{2}} .
$$

That is

$$
\frac{\sqrt{n_{u} n_{v}}}{n}>\frac{\sqrt{\left(n_{u}-1\right)\left(n_{v}-1\right)}}{n-2} .
$$

Suppose $e=u v \in E(T)$. Since $n_{u} \leq n_{v}$, similarly to the proof of (6), there is

$$
\frac{n_{u} n_{v}}{n^{2}}>\frac{\left(n_{u}-1\right) n_{v}}{(n-1)^{2}}
$$

That is

$$
\frac{\sqrt{n_{u} n_{v}}}{n}>\frac{\sqrt{\left(n_{u}-1\right) n_{v}}}{n-1}
$$

It follows that

$$
\begin{aligned}
G A_{3}(G)= & \sum_{u v \in E(T)} \frac{2 \sqrt{\left(n_{u}-1\right) n_{v}}}{(n-1)}+\sum_{u v \in E(C)} \frac{2 \sqrt{\left(n_{u}-1\right)\left(n_{v}-1\right)}}{(n-2)} \\
< & \sum_{\substack{u v \in E(T) \\
n_{u} \leq n_{v}}} \frac{2 \sqrt{\left(n_{u}-1\right) n_{v}}}{(n-1)}+\sum_{\substack{u v \in E(T) \\
n_{u}>n_{v}}} \frac{2 \sqrt{\left(n_{u}-1\right) n_{v}}}{n-1} \\
& +\sum_{u v \in E(C)} \frac{2 \sqrt{n_{u} n_{v}}}{n} \\
< & \sum_{\substack{u v \in E(T) \\
n_{u}>n_{v}}} \frac{2 \sqrt{\left(n_{u}-1\right) n_{v}}}{n-1}+\sum_{\left\{u v \in E(T) \mid n_{u} \leq n_{v}\right\} \cup E(C)} \frac{2 \sqrt{n_{u} n_{v}}}{n} .
\end{aligned}
$$

Thus we conclude that

$$
\begin{align*}
G A_{3}(G)-G A_{2}(G) & <\sum_{\substack{u v \in E(T) \\
n_{u}>n_{v}}}\left(\frac{2 \sqrt{\left(n_{u}-1\right) n_{v}}}{n-1}-\frac{2 \sqrt{n_{u} n_{v}}}{n}\right)-\frac{2 p}{n} \sqrt{n-1} \\
& <\sum_{\substack{u v \in E(T) \\
n_{u}>n_{v}}}\left(\frac{2 \sqrt{n_{u} n_{v}}}{n-1}-\frac{2 \sqrt{n_{u} n_{v}}}{n}\right)-\frac{2 p}{n} \sqrt{n-1} \\
& =\frac{2}{n(n-1)} \sum_{\substack{u v \in E(T) \\
n_{u}>n_{v}}} \sqrt{n_{u} n_{v}}-\frac{2 p}{n} \sqrt{n-1} \\
& <\frac{2}{n(n-1)} \sum_{\substack{u v \in E(T) \\
n_{u}>n_{v}}} n_{u}-\frac{2 p}{n} \sqrt{n-1} . \tag{7}
\end{align*}
$$

Now let us estimate the maximum value of

$$
M:=\max \left\{\sum_{\substack{u v \in E(T) \\ n_{u}>n_{v}}} n_{u}\right\} .
$$

First we notice that there must be only one component of $G-E(C)$ that contains edges satisfying $n_{u}>n_{v}$, which implies $n_{u}>\frac{n}{2}$. Denote this component by $G\left(T_{0}\right)$. Let P_{1} be the longest path in $G\left(T_{0}\right)$ with length l_{1}, put $P_{1}:=c_{i} v_{1} v_{2} \ldots v_{l_{1}}$, wherec $_{i} \in V(C)$ and $v_{l_{1}}$ is a pendent vertex. Let P^{*} be the set of pendent vertices that are in $G\left(T_{0}\right)$.

For a non-pendent edge $e \in E\left(T_{0}\right) \backslash E\left(P^{*}\right)$, by the operation of dividing the edge $c_{i} v_{1}$ into $c_{i} v_{e}$ and $v_{e} v_{1}$, and then contracting e (deleting the edge e and then identifying the two ends of e), we get a new graph which we denote by $G\left(T_{1}\right)$. Denote the value of n_{u} for the edge e by $n_{u}(e)$.

Note that $n_{u}\left(v_{e} v_{1} \in G\left(T_{1}\right)\right) \geq n_{u}\left(e \in G\left(T_{0}\right)\right)+\operatorname{dist}\left(v_{1}, v_{l_{1}}\right)-1$. For the other edges f, for edges f on the path from v_{1} to $v \in G\left(T_{0}\right)$, it holds that $n_{u}\left(f \in G\left(T_{1}\right)\right)=n_{u}(f \in$ $\left.G\left(T_{0}\right)\right)-1$; and for all other edges f, it holds that $n_{u}\left(f \in G\left(T_{1}\right)\right)=n_{u}\left(f \in G\left(T_{0}\right)\right)$, thus we have $\sum_{e \in G\left(T_{1}\right)} n_{u}>\sum_{e \in G\left(T_{0}\right)} n_{u}$, i.e., $M\left(G\left(T_{0}\right)\right)<M\left(G\left(T_{1}\right)\right)$. By repeating this process until there exist only pendent edges and the edges on the longest path, we have

$$
M\left(G\left(T_{0}\right)\right)<M\left(G\left(T_{1}\right)\right)<\cdots<M\left(G\left(T_{k}\right)\right) .
$$

If $e=x y$ is a pendent edge with y as its pendent vertex, and $v_{l_{k}}$ is the pendent vertex of the longest path $P_{k}=c_{i} v_{1} v_{2} \ldots v_{l_{k}}$ in $G\left(T_{k}\right)$, let $G^{\prime}\left(T_{1}\right)=G\left(T_{k}\right)-e+x v_{l_{k}-1}$.

Then $n_{u}\left(f \in G^{\prime}\left(T_{1}\right)\right) \geq n_{u}\left(f \in G^{\prime}\left(T_{0}\right)\right)$, and $M\left(G^{\prime}\left(T_{1}\right)\right)<M\left(G\left(T_{k}\right)\right)$. Repeating this operation until all non-pendent edges are incident with $v_{l_{k}-1}$, we get a new graph, denoted by $G^{\prime}\left(T_{r}\right)$. Now we can get the maximum value of M with p pendent edges of the graph in Figure 1.

Figure 1. Unicyclic graphs $G^{\prime}\left(T_{r}\right)$ with even girth, p pendent edges and maximum value of M

$G^{\prime}\left(T_{r}\right)$
Then it follows that

$$
\left.\max \sum_{\substack{u v \in E(T) \\ n_{u}>n_{v}}} n_{u}=\left(\frac{n}{2}\right)+\left(\frac{n}{2}+1\right)+\cdots+(n-c)\right) .
$$

Substituting the above result into (7) and by the lower bound in Theorem 2.1, we complete the proof.

3. Inequalities of unicyclic graphs with odd girth

3.1. Theorem. If G is a unicyclic graph with odd girth l and p pendent edges, then

$$
\begin{aligned}
G A_{2}(G)-(n- & l-p) \sqrt{n-2}-\frac{2 p \sqrt{n-1}}{n} \\
& <G A_{3}(G) \\
& <G A_{2}(G)-\frac{(n-l-p)}{n(n-1)} \sqrt{2(n-2)}-\frac{2 p \sqrt{n-1}}{n} .
\end{aligned}
$$

Proof. For a unicyclic graph G with odd girth l, if edge $e=u v \in E(G) \backslash E(C)$, then $n_{u}+n_{v}=n, m_{u}=n_{u}-1, m_{v}=n_{v}$, and $m_{u}+m_{v}=n-1$ hold. Let a_{i} be the number of vertices of the component that contains the vertex c_{i} in $G-E(C)$. Then for any edge $e=u v \in E(C)$, there exists a number a_{i} such that $n_{u}+n_{v}=n-a_{i}, m_{u}=n_{u}, m_{v}=n_{v}$, and $m_{u}+m_{v}=n-a_{i}$. Thus

$$
\begin{equation*}
G A_{2}(G)=\sum_{E(T)} \frac{2 \sqrt{n_{u} n_{v}}}{n}+\sum_{E(C)} \frac{2 \sqrt{n_{u} n_{v}}}{n-a_{i}}+\frac{2 p \sqrt{n-1}}{n} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
G A_{3}(G)=\sum_{E(T)} \frac{2 \sqrt{\left(n_{u}-1\right) n_{v}}}{n-1}+\sum_{E(C)} \frac{2 \sqrt{n_{u} n_{v}}}{n-a_{i}} \tag{9}
\end{equation*}
$$

From (8) and (9), we can get

$$
\begin{aligned}
G A_{2}(G)-G A_{3}(G) & =\sum_{E(T)}\left(\frac{2 \sqrt{n_{u} n_{v}}}{n}-\frac{2 \sqrt{\left(n_{u}-1\right) n_{v}}}{n-1}\right)+\frac{2 p \sqrt{n-1}}{n} \\
& <\sum_{E(T)}\left(\frac{2 \sqrt{n_{u} n_{v}}}{n-1}-\frac{2 \sqrt{\left(n_{u}-1\right) n_{v}}}{n-1}\right)+\frac{2 p \sqrt{n-1}}{n} \\
& =\frac{2}{n-1} \sum_{E(T)}\left(\sqrt{n_{u} n_{v}}-\sqrt{\left(n_{u}-1\right) n_{v}}\right)+\frac{2 p \sqrt{n-1}}{n} \\
& <\frac{2}{n-1} \sum_{E(T)} \frac{n_{v}}{2 \sqrt{\left(n_{u}-1\right) n_{v}}}+\frac{2 p \sqrt{n-1}}{n} \\
& =\frac{1}{n-1} \sum_{E(T)} \sqrt{\frac{n_{v}}{n_{u}-1}}+\frac{2 p \sqrt{n-1}}{n} \\
& \leq(n-l-p) \sqrt{n-2}+\frac{2 p \sqrt{n-1}}{n}
\end{aligned}
$$

and

$$
\begin{aligned}
G A_{2}(G)-G A_{3}(G) & >\sum_{E(T)} \sqrt{n_{u} n_{v}}\left(\frac{1}{n}-\frac{1}{n-1}\right)+\frac{2 p \sqrt{n-1}}{n} \\
& \geq \frac{(n-l-p)}{n(n-1)} \sqrt{2(n-2)}+\frac{2 p \sqrt{n-1}}{n} .
\end{aligned}
$$

The proof is completed.

Acknowledgements

The authors would like to thank the two referees very much for their valuable suggestions and corrections, which resulted in a vast improvement of the original manuscript. And we also thank Dr. Zhifu You for careful reading and useful comments.

References

[1] Fath-Tabar, G., Furtula, B. and Gutman, I. A new geometric-arithmetic index, J. Math. Chem. 47, 477-486, 2010.
[2] Furtula, B. and Gutman, I. Geometric-arithmetic indices, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure-Descriptors - Theory and Applications I, Univ. Kragujevac, Kragujevac, 137-172, 2010.
[3] Gutman, I. and Furtula, B. Estimating the second and third geometric-arithmetic indices, Hacet. J. Math. Stat. 40 (1), 69-76, 2011.
[4] Vukičević, D. and Furtula, B. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46, 1369-1376, 2009.
[5] Zhou, B., Gutman, I., Furtula, B. and Du, Z. On two types of geometric-arithmetic index, Chem. Phys. Lett. 482, 153-155, 2009.

[^0]: \ddagger This work was supported by NNSF of China (No. 11071088).
 *School of Mathematical Science, South China Normal University, Guangzhou 510631, P.R. China. E-mail: (P. Liu) 281188354@qq.com (B. Liu) liubl@scnu.edu. cn
 ${ }^{\dagger}$ Corresponding Author.

