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Abstract

Autoregressive models which include lags of the dependent variable are
usually used in time series analysis. The corelogram of the series and
some information criteria can be used in order to determine the order
of these models. In this paper the information complexity criterion is
considered for autoregressive time series models. A simulation study
is performed in order to examine the performance of information com-
plexity and compare it with some ordinary information criteria.
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1. Introduction

The autoregressive (AR) models have been widely used as a valuable tool to fit a va-
riety of practical data in several different areas, such as statistical time series, geophysics
and signal processing. For a given set of observations {yt; t = 1, 2, . . . , n} of a zero-mean
stationary stochastic process, the AR model is defined by

(1) yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt,

where φi (i = 1, 2, . . . , p) denotes the unknown parameters, εt denotes the white noise
error term with mean zero and variance σ2, p is the number of parameters and also the
model order [10].

There are various methods used in order to estimate the parameters of the model
given in (1). The best known are estimating the parameters by using the well-known
Yule-Walker equations, and Burg’s [6] method. The steps are given below to estimate
the parameters of the AR model by using the Yule-Walker equations [8,9]:
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• By multiplying both sides of the model given in (1) by yt−1, yt−2, yt−3, . . . , yt−p

separately and recursively, then taking the expectance of each new model, a
system of equations is obtained and written in matrix form,

(2)





c1
c2
...
cp




=





c0 c1 · · · cp−1

c1 c0 · · · cp−2

...
...

...
...

cp−1 cp−2 · · · c0









φ1

φ2

...
φp




or c = Cφ,

where the autocovariances in the first row of C are given as

(3)
E (yt−1yt−1) = c0, E (yt−1yt−2) = c1, . . . , E (yt−1yt−p) = cp−1,

E (yt−1εt) = 0.

• Equations (2) are known as the Yule-Walker equations, and the vector of esti-
mated parameters is obtained by

(4) φ̂ = C−1c,

where C is a full-ranked symmetric matrix. Moreover, the autocorrelation values
can also be used instead of the autocovariances in (2) in order to obtain the
parameter estimates [7].

By considering the first step giving (2) only for yt and evaluating (4), the variance
estimator can be defined by

(5) σ̂
2 = c0 − φ̂

′

c.

In this study some information criteria are considered for autoregressive time series
models by using the findings obtained from the Yule-Walker equations. The rest of this
article is organized as follows. In section 2 some ordinary and recently popular informa-
tion criteria are described and viewed in terms of order determination for autoregressive
models. In section 3 a simulation study is performed in order to examine and compare
the performance of the information criteria. Finally, a conclusion is given containing a
short discussion.

2. Order determination for AR models

The problems of model selection in regression and order determination for AR models
are closely related. Therefore, besides ordinary corelograms, model selection criteria can
also be used to determine the model order in AR processes. Two of the leading criteria
are the Akaike information criterion and the information complexity criterion, which is
the primary focus of this paper.

2.1. Akaike information criterion. The Akaike information criterion (AIC) [1] was
designed to be an approximately unbiased estimator of the expected Kullback-Leibler
(KL) information of a fitted model. KL information can be used as a measure of goodness
of fit. The rationale of Akaike’s concept of choosing the best approximating model from
finite samples can be formulated as maximizing entropy, or equivalently as minimizing
KL information [4].

Considering a probability density function f(y|φ∗) of the continuous random variable
y of interest, and f (y|φ) ≡ g (y|φ) is the density function that specifies the model or is an
approximation to f (y|φ∗) with a given parameter vector φ ≡ φp = (φ1, φ2, . . . , φp) ∈ Rp.
The goodness of fit of f (y|φ∗) with respect to the model f (y|φ) ≡ g (y|φ) is measured
by the generalized entropy (B) or KL information (I) given in [4].
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The original AIC takes the form of a penalized likelihood (a negative log likelihood
plus a penalty term),

(6) AIC = −2 logL
(
φ̂
)
+ 2p,

where L
(
φ̂
)
is the maximized likelihood function and p is the number of free parameters

in the model. The model with a minimum AIC value is chosen as the best model to fit
the data [2,3]. In a similar manner, under the assumption of a Gaussian model, the AIC
statistic for the pth order autoregressive model can be defined by

(7) AIC = n
(
log σ̂2 + 1

)
+ 2 (p+ 1) ,

where σ̂2 is given in (5).

Moreover, a corrected version of AIC (CAIC) is defined by

(8) CAIC = AIC +
2 (p+ 1) (p+ 2)

n− p− 2
.

As given in (8), CAIC is the sum of AIC and an additional nonstochastic penalty term
[11].

2.2. Information complexity criterion. The information complexity criterion
(ICOMP) is related to AIC. However, ICOMP is based on the structural complexity
of an element or set of random vectors via a generalization of the information-based
covariance complexity index [3].

ICOMP is designed to estimate a loss function (lack of fit plus lack of parsimony plus
profusion of complexity). ICOMP, penalizing the covariance complexity of the model, is
defined by

(9) ICOMP = −2 log L
(
φ̂
)
+ 2∁

(
Σ̂model

)
,

where L
(
φ̂
)
is the maximized likelihood function, ∁ denotes a real-valued complexity

measure and Cov
(
φ̂
)
= Σ̂model denotes the estimated covariance matrix of the parameter

vector of the model [5].

ICOMP can be considered as an approximation to the sum of two KL distances.
The new model selection criterion is called ICOMP(IFIM) and it resembles a penalized
likelihood method similar to AIC except that the penalty depends on the curvature of
the log likelihood function via the scalar complexity value ∁1(·) of the estimated inverse
Fisher information matrix (IFIM). ICOMP(IFIM) is defined by

(10) ICOMP(IFIM) = −2 log L
(
φ̂
)
+ 2∁1

(
F̂

−1
(
φ̂
))
,

where ∁1 denotes the maximal informational complexity of F̂−1. The first component of
ICOMP(IFIM) in (10) measures the lack of fit of the model and the second component
measures the complexity of the estimated IFIM [5].

Considering ICOMP given in (9), ICOMP for multiple linear regression models is
defined in [5]. In a similar manner, ICOMP for the AR model defined in (1) can be
obtained as

(11)

ICOMPAR = n log (2π) + n log
(
σ̂
2
)
+ n

+ 2

[
p

2
log

(
trace

(
σ̂2C−1

)

p

)
−

1

2
log

∣∣σ̂2C−1
∣∣
]
,

where σ̂2 is given in (5) and C is defined by the Yule-Walker equations in (2).
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Considering ICOMP(IFIM) given by (10), ICOMP(IFIM) for multiple linear regres-
sion models is defined in [5]. In a similar manner, ICOMP(IFIM) for the AR model
defined in (1) can be obtained as

(12) ICOMP(IFIM)
AR

= n log (2π) + n log
(
σ̂
2
)
+ n+ ∁1

(
F̂

−1
(
φ̂
))
,

where

(13) ∁1
(
F̂

−1
(
φ̂
))

= (p+ 1) log

[
trace

(
σ̂2C−1

)
+ 2σ̂4

n

p+ 1

]

− log
∣∣σ̂2C−1

∣∣− log

(
2σ̂4

n

)
,

σ̂2 is given by (5) and C is defined by the Yule-Walker equations in (2).

In this paper it is considered as a contribution that a penalty term 2(p+1) given
in (7) can be added to the information complexity criteria in order to indicate the
usual differences among model orders and determine the true model order. These mod-
ified criteria are called penalized ICOMP (ICOMP PN) and penalized ICOMP(IFIM)
(ICOMP(IFIM) PN), respectively.

3. Monte Carlo simulation

In this section a simulation study is considered in order to observe and compare the
performances of the various information criteria by determining the autoregressive model
order. The conditions under which the simulation was performed are as follows:

(1) Four different wide-sense stationary models are considered in this study:
• AR(1) Model: yt = 0.9yt−1 + εt,

• AR(2) Model: yt = 0.99yt−1 − 0.8yt−2 + εt,

• AR(3) Model: yt = 1.42yt−1 − 1.31yt−2 + 0.56yt−3 + εt,

• AR(4) Model: yt = 1.82yt−1 − 1.32yt−2 + 0.46yt−3 − 0.06yt−4 + εt,

(2) The error terms (εt) are independent and identically distributed from N(0, 1),

(3) The sample size is determined as n = 25, 50, 100, 1000, 5000 and 10000,

(4) An ideal maximum model order cut-off is used as 8(AR(1) - AR(8)),

(5) This simulation study is repeated 1000 times for each model and sample size.

Under these conditions, the simulation results were obtained by using the program MAT-
LAB 7.1 and are given in Table 1. This table shows the percentage of true order deter-
mination by using each information criterion for each model and sample size.

Moreover, Figure 1, Figure 2, Figure 3 and Figure 4 are given in order to visualize the
performance of each information criterion for each model and sample size.
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Table 1. Simulation result for determination of model order

MODELS

AR(1) AR(2) AR(3) AR(4)

AIC 82 85 51 4

CAIC 91 92 46 2

n = 25 ICOMP 39 67 55 5

ICOMP PN 93 94 40 1

ICOMP(IFIM) 59 78 52 2

ICOMP(IFIM) PN 96 95 34 1

AIC 79 77 75 9

CAIC 84 85 80 7

n = 50 ICOMP 34 62 77 7

ICOMP PN 91 94 83 2

ICOMP(IFIM) 61 76 81 4

ICOMP(IFIM) PN 96 96 79 1

AIC 74 73 73 11

CAIC 77 78 77 10

n = 100 ICOMP 31 58 78 9

ICOMP PN 91 94 95 3

ICOMP(IFIM) 60 77 86 7

ICOMP(IFIM) PN 96 97 96 2

AIC 73 73 71 45

CAIC 73 74 72 45

n = 1000 ICOMP 32 63 83 40

ICOMP PN 92 95 96 28

ICOMP(IFIM) 63 79 89 36

ICOMP(IFIM) PN 97 98 98 25

AIC 72 72 73 74

CAIC 72 72 73 74

n = 5000 ICOMP 29 61 85 76

ICOMP PN 92 95 97 92

ICOMP(IFIM) 58 79 91 80

ICOMP(IFIM) PN 97 97 98 93

AIC 71 73 73 74

CAIC 71 73 73 74

n = 10000 ICOMP 29 63 85 76

ICOMP PN 91 95 97 94

ICOMP(IFIM) 59 78 91 81

ICOMP(IFIM) PN 97 97 98 96
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Figure 1. Simulation result Figure 2. Simulation result
for AR(1) model for AR(2) model
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Figure 3. Simulation result Figure 4. Simulation result
for AR(3) model for AR(4) model
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4. Discussion and conclusion

In the simulation the variance of the error term is also changed, but there is no
observable difference in the performance of the information criteria. When the cut-
off value is increased, the percentage of true order determinations for each information
criterion decreases. On the other hand, ICOMP PN and ICOMP(IFIM) PN are affected
less in this respect. Moreover, the stationarity of the autoregressive models is important
since unexpected results can appear for some nonstationary models.

As stated in [11], it can be seen from the simulation that CAIC performs well for
small sample sizes, especially in the AR(1) and AR(2) models. ICOMP(IFIM) PN, as a
modified information criterion, has the best performance in the AR(1) and AR(2) models,
also for big sample sizes in the AR(3) and AR(4) models. If the sample size is small,
as the model order increases the performance of each information criterion will be worse
and there can be problems in analyzing these models in some sense. As the sample size
increases in the AR(3) and AR(4) models, the percentage of true order determination for
each information criterion increases. Specifically, if the sample size and the autoregressive
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model order increase together, the performances of ICOMP PN and ICOMP(IFIM) PN
increase noticeably.

As a conclusion, it is proposed that the information criteria ICOMP PN and ICOMP
(IFIM) PN can be used to determine the true orders of AR models since they show more
consistent behaviour.
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