TRANSLATIONS OF FUZZY IDEALS IN BCK/BCI-ALGEBRAS

Young Bae Jun^{*}

Received 14:09:2009 : Accepted 02:10:2010

Abstract

Based on fuzzy set theory, extensions, translations and multiplications of ideals in BCK/BCI-algebras are discussed. Relations among fuzzy translations, fuzzy extensions and fuzzy multiplications of fuzzy ideals are investigated.

Keywords: Fuzzy ideal, Fuzzy translation, Fuzzy extension, Fuzzy multiplication.

2000 AMS Classification: 06 F 35, 03 G 25, 08 A 72.

1. Introduction

The study of BCK-algebras was initiated by K. Iséki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. For the general development of BCK/BCI-algebras, the ideal theory and its fuzzification play an important role. Jun (together with Kim, Meng, Song and Xin) studied fuzzy aspects of several notions in BCK/BCI-algebras (see [2, 3, 4, 7]).

Lee *et al.* [5] discussed fuzzy translations, (normalized, maximal) fuzzy extensions and fuzzy multiplications of fuzzy subalgebras in BCK/BCI-algebras. They investigated relations among fuzzy translations, (normalized, maximal) fuzzy extensions and fuzzy multiplications.

In this paper, we discuss fuzzy translations, fuzzy extensions and fuzzy multiplications of fuzzy ideals in BCK/BCI-algebras. We investigate relations among fuzzy translations, fuzzy extensions and fuzzy multiplications of fuzzy ideals in in BCK/BCI-algebras.

^{*}Department of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Korea. E-mail: skywine@gmail.com

2. Preliminaries

A BCK-algebra is an important class of logical algebras introduced by K. Iséki, and has been extensively investigated by several researchers.

An algebra $(X; *, \theta)$ of type (2, 0) is called a *BCI-algebra* if it satisfies the following conditions:

(I) $(\forall x, y, z \in X)$ $(((x * y) * (x * z)) * (z * y) = \theta),$

(II) $(\forall x, y \in X) ((x * (x * y)) * y = \theta),$

(III) $(\forall x \in X) \ (x * x = \theta),$

(IV) $(\forall x, y \in X) \ (x * y = \theta, y * x = \theta \Rightarrow x = y).$

If a BCI-algebra \boldsymbol{X} satisfies the following identity:

(V) $(\forall x \in X) \ (\theta * x = \theta),$

then X is called a *BCK-algebra*. Any BCK-algebra X satisfies the following axioms:

- (a1) $(\forall x \in X) (x * \theta = x),$
- (a2) $(\forall x, y, z \in X)$ $(x * y = \theta \Rightarrow (x * z) * (y * z) = \theta, (z * y) * (z * x) = \theta),$

(a3) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),$

(a4) $(\forall x, y, z \in X) (((x * z) * (y * z)) * (x * y) = \theta).$

A subset S of a BCK/BCI-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$.

A subset A of a BCK/BCI-algebra X is called an *ideal* of X, denoted by $A \triangleleft X$, if it satisfies:

(b1) $\theta \in A$,

(b2) $(\forall x, y \in X) \ (x * y \in A, y \in A \Rightarrow x \in A).$

We refer the reader to the books [1] and [6] for further information regarding BCK/BCIalgebras.

A fuzzy subset μ of a BCK/BCI-algebra X is called a $\mathit{fuzzy}\ subalgebra$ of X it it satisfies:

 $(\forall x, y \in X)(\mu(x * y) \ge \min\{\mu(x), \mu(y)\}).$

A fuzzy subset μ of a BCK/BCI-algebra X is called a *fuzzy ideal* of X, denoted by $\mu \triangleleft_f X$, it it satisfies:

(b3) $(\forall x \in X) \ (\mu(\theta) \ge \mu(x)),$

(b4) $(\forall x, y \in X) \ (\mu(x) \ge \min\{\mu(x * y), \mu(y)\}).$

3. Fuzzy translations and fuzzy multiplications of fuzzy ideals

In what follows let $X = (X, *, \theta)$ denote a BCK/BCI-algebra, and for any fuzzy subset μ of X, we let

 $\top := 1 - \sup\{\mu(x) \mid x \in X\}$

unless otherwise specified.

3.1. Definition. [5] Let μ be a fuzzy subset of X and let $\alpha \in [0, \top]$. A mapping $\mu_{\alpha}^{T}: X \to [0, 1]$ is called a *fuzzy* α -translation of μ if it satisfies:

$$(\forall x \in X)(\mu_{\alpha}^{T}(x) = \mu(x) + \alpha).$$

3.2. Theorem. If μ is a fuzzy ideal of X, then the fuzzy α -translation μ_{α}^{T} of μ is a fuzzy ideal of X for all $\alpha \in [0, T]$.

Proof. Assume that $\mu \triangleleft_f X$ and let $\alpha \in [0, \top]$. Then

$$\mu_{\alpha}^{T}(\theta) = \mu(\theta) + \alpha \ge \mu(x) + \alpha = \mu_{\alpha}^{T}(x)$$

and

$$\mu_{\alpha}^{T}(x) = \mu(x) + \alpha \ge \min\{\mu(x * y), \mu(y)\} + \alpha$$

= $\min\{\mu(x * y) + \alpha, \ \mu(y) + \alpha\}$
= $\min\{\mu_{\alpha}^{T}(x * y), \ \mu_{\alpha}^{T}(y)\}$
 $y \in X$. Hence $\mu_{\alpha}^{T} \triangleleft_{f} X$.

for all $x, y \in X$. Hence $\mu_{\alpha}^T \triangleleft_f X$.

3.3. Theorem. Let μ be a fuzzy subset of X such that the fuzzy α -translation μ_{α}^{T} of μ is a fuzzy ideal of X for some $\alpha \in [0, \top]$. Then μ is a fuzzy ideal of X.

Proof. Assume that μ_{α}^{T} is a fuzzy ideal of X for some $\alpha \in [0, \top]$. Let $x, y \in X$. Then

$$\mu(\theta) + \alpha = \mu_{\alpha}^{T}(\theta) \ge \mu_{\alpha}^{T}(x) = \mu(x) + \alpha,$$

and so $\mu(\theta) \ge \mu(x)$. Now, we have

$$\mu(x) + \alpha = \mu_{\alpha}^{T}(x) \ge \min\{\mu_{\alpha}^{T}(x * y), \mu_{\alpha}^{T}(y)\}$$
$$= \min\{\mu(x * y) + \alpha, \mu(y) + \alpha\}$$
$$= \min\{\mu(x * y), \mu(y)\} + \alpha,$$

which implies that $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$. Hence μ is a fuzzy ideal of X.

3.4. Theorem. Let $\alpha \in [0, \top]$ and let μ be a fuzzy ideal of X. If X is a BCK-algebra, then the fuzzy α -translation μ_{α}^{T} of μ is a fuzzy subalgebra of X.

Proof. Since $x * y \leq x$ for any $x, y \in X$ and any fuzzy ideal is order reversing, we have

$$\begin{aligned} \mu_{\alpha}^{I}(x * y) &= \mu(x * y) + \alpha \geq \mu(x) + \alpha \\ &\geq \min\{\mu(x * y), \mu(y)\} + \alpha \\ &\geq \min\{\mu(x), \mu(y)\} + \alpha \\ &= \min\{\mu(x) + \alpha, \mu(y) + \alpha\} \\ &= \min\{\mu_{\alpha}^{T}(x), \mu_{\alpha}^{T}(y)\}. \end{aligned}$$

Hence μ_{α}^{T} is a fuzzy subalgebra of X.

The following example shows that if X is a BCI-algebra, then Theorem 3.4 is not true.

3.5. Example. Consider the direct product $X := Y \times \mathbb{Z}$ where (Y, *, 0) is a BCI-algebra and $(\mathbb{Z}, -, 0)$ is the adjoint BCI-algebra of the additive group $(\mathbb{Z}, +, 0)$ of integers. Let $A = Y \times \mathbb{N}$, where \mathbb{N} is the set of nonnegative integers.

Define a fuzzy subset μ of X as follows:

$$\mu: X \to [0,1], \quad x \mapsto \begin{cases} 0.7 & \text{if } x \in A, \\ 0.2 & \text{otherwise} \end{cases}$$

Then μ is a fuzzy ideal of X and $\top = 0.3$. For $\alpha \in [0, \top]$, we have

$$\mu_{\alpha}^{T}((0,0)*(0,1)) = \mu_{\alpha}^{T}((0,-1)) = \mu((0,-1)) + \alpha = 0.2 + \alpha$$

$$< 0.7 + \alpha = \min\{\mu((0,0)), \mu((0,1))\} + \alpha$$

$$= \min\{\mu((0,0)) + \alpha, \mu((0,1)) + \alpha\}$$

$$= \min\{\mu_{\alpha}^{T}((0,0)), \mu_{\alpha}^{T}((0,1))\}$$

Y.B. Jun

3.6. Definition. [5] Let μ_1 and μ_2 be fuzzy subsets of X. If $\mu_1(x) \leq \mu_2(x)$ for all $x \in X$, then we say that μ_2 is a *fuzzy extension* of μ_1 .

3.7. Definition. Let μ_1 and μ_2 be fuzzy subsets of X. Then μ_2 is called a *fuzzy ideal* extension of μ_1 if the following assertions are valid:

- (b5) μ_2 is a fuzzy extension of μ_1 .
- (b6) $\mu_1 \triangleleft_f X \Rightarrow \mu_2 \triangleleft_f X$.

3.8. Example. Consider a set $X = \{\theta, 1, 2, 3, 4\}$. The Hasse diagram (Figure 1)

Figure 1. Hasse diagram

makes X into a BCK-algebra, where the BCK-operation * on X is given as follows:

$$x * y := \begin{cases} \theta & \text{if } x \leq y, \\ x & \text{if } y = \theta, \ y < x \text{ or } x \text{ and } y \text{ are incomparable} \end{cases}$$

for every $x, y \in X$. Let μ_1 be a fuzzy subset of X defined by

 $\mu_1 = \begin{pmatrix} \theta & 1 & 2 & 3 & 4 \\ 0.7 & 0.5 & 0.4 & 0.6 & 0.3 \end{pmatrix}.$

It is routine to check that μ_1 is a fuzzy ideal of X. Let μ_2 be a fuzzy subset of X given by

$$\mu_2 = \begin{pmatrix} \theta & 1 & 2 & 3 & 4 \\ 0.75 & 0.53 & 0.47 & 0.61 & 0.38 \end{pmatrix}.$$

Note that $\mu_2(x) \ge \mu_1(x)$ for all $x \in X$, that is, μ_2 is a fuzzy extension of μ_1 , and μ_2 is a fuzzy ideal of X. Hence μ_2 is a fuzzy ideal extension of μ_1 .

For a fuzzy subset μ of X, $\alpha \in [0, \top]$ and $t \in [0, 1]$ with $t \ge \alpha$, let

$$U_{\alpha}(\mu; t) := \{ x \in X \mid \mu(x) \ge t - \alpha \}$$

It is clear that if $\mu \triangleleft_f X$, then $U_{\alpha}(\mu; t) \triangleleft X$ for all $t \in \text{Im}(\mu)$ with $t \ge \alpha$. But, if we do not give a condition that μ is a fuzzy ideal of X then $U_{\alpha}(\mu; t)$ may not be an ideal of X, as seen in the following example.

3.9. Example. Consider the BCK-algebra X which is given in Example 3.8. Let μ be a fuzzy subset of X defined by

$$\mu = \begin{pmatrix} \theta & 1 & 2 & 3 & 4 \\ 0.8 & 0.5 & 0.7 & 0.3 & 0.2 \end{pmatrix}$$

Since $\mu(1) = 0.5 < 0.7 = \min\{\mu(1 * 2), \mu(2)\}$, we know that μ is not a fuzzy ideal of X. Also, $U_{0,1}(\mu; 0.63) = \{0, 2\}$ is not an ideal of X since $1 * 2 = 0 \in \{0, 2\}$, but $1 \notin \{0, 2\}$.

3.10. Theorem. For $\alpha \in [0, \top]$, let μ_{α}^{T} be the fuzzy α -translation of μ . Then the following are equivalent:

- (1) $\mu_{\alpha}^{T} \triangleleft_{f} X.$ (2) $(\forall t \in \operatorname{Im}(\mu)) (t > \alpha \Rightarrow U_{\alpha}(\mu; t) \triangleleft X).$

Proof. Assume that $\mu_{\alpha}^{T} \triangleleft_{f} X$ and let $t \in \text{Im}(\mu)$ be such that $t > \alpha$. Since $\mu_{\alpha}^{T}(\theta) \ge \mu_{\alpha}^{T}(x)$ for all $x \in X$, we have

$$\mu(\theta) + \alpha = \mu_{\alpha}^{T}(\theta) \ge \mu_{\alpha}^{T}(x) = \mu(x) + \alpha \ge t$$

for $x \in U_{\alpha}(\mu; t)$. Hence $\theta \in U_{\alpha}(\mu; t)$. Let $x, y \in X$ be such that $x * y \in U_{\alpha}(\mu; t)$ and $y \in U_{\alpha}(\mu; t)$. Then $\mu(x * y) \ge t - \alpha$ and $\mu(y) \ge t - \alpha$, i.e., $\mu_{\alpha}^{T}(x * y) = \mu(x * y) + \alpha \ge t$ and $\mu_{\alpha}^{T}(y) = \mu(y) + \alpha \ge t$. Since $\mu_{\alpha}^{T} \triangleleft_{f} X$, it follows that

$$\mu(x) + \alpha = \mu_{\alpha}^{T}(x) \ge \min\{\mu_{\alpha}^{T}(x * y), \mu_{\alpha}^{T}(y)\} \ge t$$

that is, $\mu(x) \ge t - \alpha$ so that $x \in U_{\alpha}(\mu; t)$. Therefore $U_{\alpha}(\mu; t) \triangleleft X$.

Conversely, suppose that $U_{\alpha}(\mu; t) \triangleleft X$ for every $t \in \text{Im}(\mu)$ with $t > \alpha$. If there exists $a \in X$ such that $\mu_{\alpha}^{T}(\theta) < \beta \leq \mu_{\alpha}^{T}(a)$, then $\mu(a) \geq \beta - \alpha$ but $\mu(\theta) < \beta - \alpha$. This shows that $a \in U_{\alpha}(\mu; t)$ and $\theta \notin U_{\alpha}(\mu; t)$. This is a contradiction, and so $\mu_{\alpha}^{T}(\theta) \geq \mu_{\alpha}^{T}(x)$ for all $x \in X$.

Now assume that there exist $a, b \in X$ such that $\mu_{\alpha}^{T}(a) < \gamma \leq \min\{\mu_{\alpha}^{T}(a * b), \mu_{\alpha}^{T}(b)\}$. Then $\mu(a * b) \geq \gamma - \alpha$ and $\mu(b) \geq \gamma - \alpha$, but $\mu(a) < \gamma - \alpha$. Hence $a * b \in U_{\alpha}(\mu; \gamma)$ and $b \in U_{\alpha}(\mu; \gamma)$, but $a \notin U_{\alpha}(\mu; \gamma)$. This is impossible, and therefore

$$\mu_{\alpha}^{T}(x) \geq \min\{\mu_{\alpha}^{T}(x \ast y), \mu_{\alpha}^{T}(y)\}$$

for all $x, y \in X$. Consequently, $\mu_{\alpha}^T \triangleleft_f X$.

In Theorem 3.10(2), if $t \leq \alpha$, then $U_{\alpha}(\mu; t) = X$.

3.11. Theorem. Let $\mu \triangleleft_f X$ and $\alpha, \beta \in [0, \top]$. If $\alpha \geq \beta$, then the fuzzy α -translation μ_{α}^T of μ is a fuzzy ideal extension of the fuzzy β -translation μ_{β}^T of μ .

Proof. Straightforward.

For every fuzzy ideal μ of X and $\beta \in [0, \top]$, the fuzzy β -translation μ_{β}^{T} of μ is a fuzzy ideal of X. If ν is a fuzzy ideal extension of μ_{β}^{T} , then there exists $\alpha \in [0, \top]$ such that $\alpha \geq \beta$ and $\nu(x) \geq \mu_{\alpha}^{T}(x)$ for all $x \in X$. Hence we have the following theorem.

3.12. Theorem. Let μ be a fuzzy ideal of X and $\beta \in [0, \top]$. For every fuzzy ideal extension ν of the fuzzy β -translation μ_{β}^{T} of μ , there exists $\alpha \in [0, \top]$ such that $\alpha \geq \beta$ and ν is a fuzzy ideal extension of the fuzzy α -translation μ_{α}^{T} of μ .

The following example illustrates Theorem 3.12.

3.13. Example. Consider a BCI-algebra $X = \{\theta, 1, 2, a, b\}$ where the *-multiplication is defined by Table 1.

Table 1. *-multiplication table for X

*	θ	1	2	a	b
θ	θ	θ	θ	b	a
1	1	θ	1	b	a
2	2	2	θ	b	a
a	a	a	a	θ	b
b	b	b	b	a	θ

Y.B. Jun

Let μ be a fuzzy subset of X defined by

$$\mu = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.7 & 0.4 & 0.5 & 0.3 & 0.3 \end{pmatrix}.$$

Then μ is a fuzzy ideal of X, and $\top = 0.3$. If we take $\beta = 0.15$, then the fuzzy β -translation μ_{β}^{T} of μ is as follows:

$$\mu_{\beta}^{T} = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.85 & 0.55 & 0.65 & 0.45 & 0.45 \end{pmatrix}$$

Let ν be a fuzzy subset of X defined by

$$\nu = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.88 & 0.57 & 0.69 & 0.47 & 0.47 \end{pmatrix}.$$

Then ν is a fuzzy ideal extension of the fuzzy β -translation μ_{β}^{T} of μ . But ν is not a fuzzy α -translation of μ for all $\alpha \in [0, \top]$. If we take $\alpha = 0.17$, then $\alpha = 0.17 > 0.15 = \beta$ and the fuzzy α -translation μ_{α}^{T} of μ is given as follows:

$$\mu_{\alpha}^{T} = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.87 & 0.57 & 0.67 & 0.37 & 0.37 \end{pmatrix}.$$

Note that $\nu(x) \ge \mu_{\alpha}^{T}(x)$ for all $x \in X$, and hence ν is a fuzzy ideal extension of the fuzzy α -translation μ_{α}^{T} of μ .

By means of the definition of fuzzy α -translation, we know that $\mu_{\alpha}^{T}(x) \geq \mu(x)$ for all $x \in X$. Hence we have the following theorem.

3.14. Theorem. Let μ be a fuzzy ideal of X and $\alpha \in [0, \top]$. Then the fuzzy α -translation μ_{α}^{T} of μ is a fuzzy ideal extension of μ .

A fuzzy ideal extension of a fuzzy ideal μ may not be represented as a fuzzy α -translation of μ , that is, the converse of Theorem 3.14 is not true in general as shown by the following example.

3.15. Example. (1) In Example 3.8, μ_2 cannot be represented as a fuzzy α -translation of μ_1 for all $\alpha \in [0, \top]$.

(2) Consider a BCI-algebra $X = \{\theta, 1, a, b, c\}$ where the *-multiplication is defined by Table 2.

\mathbf{Ta}	ble	2 .	*-mul	tip	licat	ion	tab	le :	for	Χ
---------------	-----	------------	-------	-----	-------	-----	-----	------	-----	---

*	θ	1	a	b	c
θ	θ	θ	a	b	c
1	1	θ	a	b	c
a	a	a	θ	c	b
b	b	b	c	θ	a
c	c	c	b	a	θ

Let μ be a fuzzy subset of X defined by

$$\mu = \begin{pmatrix} \theta & 1 & a & b & c \\ 0.9 & 0.6 & 0.3 & 0.3 & 0.5 \end{pmatrix}$$

Then μ is a fuzzy ideal of X. Let ν be a fuzzy subset of X given by

$$\nu = \begin{pmatrix} \theta & 1 & a & b & c \\ 0.94 & 0.66 & 0.38 & 0.38 & 0.57 \end{pmatrix}.$$

Then ν is a fuzzy ideal extension of μ . But it is not the fuzzy α -translation μ_{α}^{T} of μ for all $\alpha \in [0, \top]$.

Clearly, the intersection of fuzzy ideal extensions of a fuzzy subset μ of X is a fuzzy ideal extension of μ . But the union of fuzzy ideal extensions of a fuzzy subset μ of X is not a fuzzy ideal extension of μ as seen in the following example.

3.16. Example. Consider a BCI-algebra $X = \{\theta, a, b, c\}$ with Cayley table (Table 3).

		-	-	
*	θ	a	b	c
θ	θ	a	b	c
a	a	θ	c	b
b	b	c	θ	a
c	c	b	a	θ

Table 3. Cayley table

Let μ , ν and δ be fuzzy subsets of X defined by

$$\mu = \begin{pmatrix} \theta & a & b & c \\ 0.7 & 0.3 & 0.5 & 0.3 \end{pmatrix},$$
$$\nu = \begin{pmatrix} \theta & a & b & c \\ 0.8 & 0.6 & 0.5 & 0.5 \end{pmatrix},$$

and

$$\delta = \begin{pmatrix} \theta & a & b & c \\ 0.9 & 0.4 & 0.6 & 0.4 \end{pmatrix},$$

respectively. Then ν and δ are fuzzy ideal extensions of μ . Obviously, the union $\nu \cup \delta$ is a fuzzy extension of μ , but it is not a fuzzy ideal extension of μ since

 $(\nu \cup \delta)(c) = 0.5 \ge 0.6 = \min\{(\nu \cup \delta)(c * b), (\nu \cup \delta)(b)\}.$

3.17. Definition. Let μ be a fuzzy subset of X and $\gamma \in [0, 1]$. A fuzzy γ -multiplication of μ , denoted by μ_{γ}^{m} , is defined to be a mapping

 $\mu_{\gamma}^{m}: X \to [0, 1], \ x \mapsto \mu(x) \cdot \gamma.$

For any fuzzy subset μ of X, a fuzzy 0-multiplication μ_0^m of μ is clearly a fuzzy ideal of X.

3.18. Theorem. If μ is a fuzzy ideal of X, then the fuzzy γ -multiplication of μ is a fuzzy ideal of X for all $\gamma \in [0, 1]$.

Proof. Straightforward.

3.19. Theorem. For any fuzzy subset μ of X, the following are equivalent:

(1) μ is a fuzzy ideal of X.

(2) $(\forall \gamma \in (0,1])$ $(\mu_{\gamma}^m \text{ is a fuzzy ideal of } X).$

Proof. Necessity follows from Theorem 3.18. Let $\gamma \in (0, 1]$ be such that μ_{γ}^{m} is a fuzzy ideal of X. Then $\mu(\theta) \cdot \gamma = \mu_{\gamma}^{m}(\theta) \ge \mu_{\gamma}^{m}(x) = \mu(x) \cdot \gamma$ and

$$\mu(x) \cdot \gamma = \mu_{\gamma}^{m}(x) \geq \min\{\mu_{\gamma}^{m}(x * y), \mu_{\gamma}^{m}(y)\}$$

= min{ $\mu(x * y) \cdot \gamma, \mu(y) \cdot \gamma$ }
= min{ $\mu(x * y), \mu(y)$ } · γ

Y.B. Jun

for all $x, y \in X$. Since $\gamma \neq 0$, it follows that $\mu(\theta) \geq \mu(x)$ and

 $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$

for all $x, y \in X$. Hence μ is a fuzzy ideal of X.

3.20. Theorem. Let μ be a fuzzy subset of X, $\alpha \in [0, \top]$ and $\gamma \in (0, 1]$. Then every fuzzy α -translation μ_{α}^{T} of μ is a fuzzy ideal extension of the fuzzy γ -multiplication μ_{γ}^{m} of μ .

Proof. For every $x \in X$, we have

$$\mu_{\alpha}^{T}(x) = \mu(x) + \alpha \ge \mu(x) \ge \mu(x) \cdot \gamma = \mu_{\gamma}^{m}(x)$$

and so μ_{α}^{T} is a fuzzy extension of μ_{γ}^{m} .

Assume that μ_{γ}^{m} is a fuzzy ideal of X. Then μ is a fuzzy ideal of X by Theorem 3.19. It follows from Theorem 3.2 that the fuzzy α -translation μ_{α}^{T} of μ is a fuzzy ideal of X for all $\alpha \in [0, \top]$. Therefore every fuzzy α -translation μ_{α}^{T} is a fuzzy ideal extension of the fuzzy γ -multiplication μ_{γ}^{m} of μ .

The following example shows that Theorem 3.20 is not valid for $\gamma = 0$.

3.21. Example. Consider a BCI-algebra $(\mathbb{Z}, *, 0)$ where \mathbb{Z} is the set of all integers and * is the minus operation. Define a fuzzy subset $\mu : \mathbb{Z} \to [0, 1]$ by

$$\mu(x) := \begin{cases} \frac{1}{5} & \text{if } x > 3, \\ \frac{1}{3} & \text{if } x \le 3. \end{cases}$$

Obviously μ_0^m is a fuzzy ideal of \mathbb{Z} . But

$$\mu_{\alpha}^{T}(4) = \mu(4) + \alpha = \frac{1}{5} + \alpha < \frac{1}{3} + \alpha$$
$$= \min\{\mu(4*1), \mu(1)\} + \alpha$$
$$= \min\{\mu(4*1) + \alpha, \mu(1) + \alpha\}$$
$$= \min\{\mu_{\alpha}^{T}(4*1), \mu_{\alpha}^{T}(1)\}$$

for all $\alpha \in [0, \frac{2}{3}]$, which shows that μ_{α}^{T} is not a fuzzy ideal of X. Hence μ_{α}^{T} is not a fuzzy ideal extension of μ_{0}^{m} for all $\alpha \in [0, \frac{2}{3}]$.

The following examples illustrate Theorem 3.20.

3.22. Example. Consider a BCK-algebra $X = \{\theta, a, b, c, d\}$ where the *-multiplication is defined by Table 4.

Table 4. *-multiplication table for X

*	θ	a	b	c	d
θ	θ	θ	θ	θ	θ
a	a	θ	θ	a	a
b	b	b	θ	b	b
c	c	c	c	θ	c
d	d	d	d	d	θ

Let μ be a fuzzy subset of X defined by

$$\mu = \begin{pmatrix} \theta & a & b & c & d \\ 0.7 & 0.4 & 0.2 & 0.5 & 0.1 \end{pmatrix}.$$

Then μ is a fuzzy ideal of X. If we take $\gamma = 0.2$, then the 0.2-multiplication $\mu_{0.2}^m$ of μ is given by

$$\mu_{0.2}^m = \begin{pmatrix} \theta & a & b & c & d \\ 0.14 & 0.08 & 0.04 & 0.10 & 0.02 \end{pmatrix}.$$

Clearly, $\mu_{0.2}^m$ is a fuzzy ideal of X. Also, for any $\alpha \in [0, 0.3]$, the fuzzy α -translation μ_{α}^T of μ is given as follows:

$$\mu_{\alpha}^{T} = \begin{pmatrix} \theta & a & b & c & d \\ 0.7 + \alpha & 0.4 + \alpha & 0.2 + \alpha & 0.5 + \alpha & 0.1 + \alpha \end{pmatrix}.$$

Then μ_{α}^{T} is a fuzzy extension of $\mu_{0.2}^{m}$ and μ_{α}^{T} is always a fuzzy ideal of X for all $\alpha \in [0, 0.3]$. Therefore μ_{α}^{T} is a fuzzy ideal extension of $\mu_{0.2}^{m}$ for all $\alpha \in [0, 0.3]$.

3.23. Example. Consider a BCI-algebra $X = \{\theta, 1, 2, a, b\}$, where the *-multiplication is defined by Table 5.

Table 5. *-multiplication table for X

*	θ	1	2	a	b
θ	θ	θ	θ	a	a
1	1	θ	1	b	a
2	2	2	θ	a	a
a	a	a	a	θ	θ
b	b	a	b	1	θ

Let μ be a fuzzy subset of X defined by

$$\mu = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.6 & 0.1 & 0.5 & 0.3 & 0.1 \end{pmatrix}.$$

Then μ is a fuzzy ideal of X. If we take $\gamma = 0.1$, then the 0.1-multiplication $\mu_{0.1}^m$ of μ is given by

$$\mu_{0.1}^m = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.06 & 0.01 & 0.05 & 0.03 & 0.01 \end{pmatrix}.$$

Clearly, $\mu_{0.1}^m$ is a fuzzy ideal of X. Also, for any $\alpha \in [0, 0.4]$, the fuzzy α -translation μ_{α}^T of μ is given as follows:

$$\mu_{\alpha}^{T} = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.6 + \alpha & 0.1 + \alpha & 0.5 + \alpha & 0.3 + \alpha & 0.1 + \alpha \end{pmatrix}.$$

Then μ_{α}^{T} is a fuzzy extension of $\mu_{0.1}^{m}$ and μ_{α}^{T} is always a fuzzy ideal of X for all $\alpha \in [0, 0.4]$. Therefore μ_{α}^{T} is a fuzzy ideal extension of $\mu_{0.1}^{m}$ for all $\alpha \in [0, 0.4]$.

Acknowledgement. The author is highly grateful to the referees for their valuable comments and suggestions helpful in improving this paper.

References

- [1] Huang, Y. BCI-algebra (Science Press, Beijing, 2006).
- Jun, Y. B. and Meng, J. Fuzzy commutative ideals in BCI-algebras, Commun. Korean Math. Soc. 9 (1994) (1), 19–25, 1994.
- Jun, Y. B. and Song, S. Z. Fuzzy set theory applied to implicative ideals in BCK-algebras, Bull. Korean Math. Soc. 43 (3), 461–470, 2006.
- [4] Jun, Y.B. and Xin, X.L. Involutory and invertible fuzzy BCK-algebras, Fuzzy Sets and Systems 117, 463–469, 2004.
- [5] Lee, K. J., Jun, Y.B. and Doh, M.I. Fuzzy translations and fuzzy multiplications of BCK/BCI-algebras, Commun. Korean Math. Soc. 24, 353–360, 2009.
- [6] Meng, J. and Jun, Y. B. BCK-algebras (Kyungmoon Sa Co., Seoul, 1994).
- [7] Meng, J., Jun, Y.B. and Kim, H.S. Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems 89, 243–248, 1997.