TRANSLATIONS OF FUZZY IDEALS IN BCK/BCI-ALGEBRAS

Young Bae Jun[∗]

Received 14 : 09 : 2009 : Accepted 02 : 10 : 2010

Abstract

Based on fuzzy set theory, extensions, translations and multiplications of ideals in BCK/BCI-algebras are discussed. Relations among fuzzy translations, fuzzy extensions and fuzzy multiplications of fuzzy ideals are investigated.

Keywords: Fuzzy ideal, Fuzzy translation, Fuzzy extension, Fuzzy multiplication.

2000 AMS Classification: 06 F 35, 03 G 25, 08 A 72.

1. Introduction

The study of BCK-algebras was initiated by K. Iséki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. For the general development of BCK/BCI-algebras, the ideal theory and its fuzzification play an important role. Jun (together with Kim, Meng, Song and Xin) studied fuzzy aspects of several notions in BCK/BCI-algebras (see [2, 3, 4, 7]).

Lee et al. [5] discussed fuzzy translations, (normalized, maximal) fuzzy extensions and fuzzy multiplications of fuzzy subalgebras in BCK/BCI-algebras. They investigated relations among fuzzy translations, (normalized, maximal) fuzzy extensions and fuzzy multiplications.

In this paper, we discuss fuzzy translations, fuzzy extensions and fuzzy multiplications of fuzzy ideals in BCK/BCI-algebras. We investigate relations among fuzzy translations, fuzzy extensions and fuzzy multiplications of fuzzy ideals in in BCK/BCI-algebras.

[∗]Department of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Korea. E-mail: skywine@gmail.com

2. Preliminaries

A BCK-algebra is an important class of logical algebras introduced by K. Iséki, and has been extensively investigated by several researchers.

An algebra $(X; *, \theta)$ of type $(2, 0)$ is called a *BCI-algebra* if it satisfies the following conditions:

(I) $(\forall x, y, z \in X)$ $(((x * y) * (x * z)) * (z * y) = \theta),$

(II) $(\forall x, y \in X) ((x * (x * y)) * y = \theta),$

(III) $(\forall x \in X)$ $(x * x = \theta)$,

(IV) $(\forall x, y \in X)$ $(x * y = \theta, y * x = \theta \Rightarrow x = y)$.

If a BCI-algebra X satisfies the following identity:

(V) $(\forall x \in X)$ $(\theta * x = \theta)$,

then X is called a BCK -algebra. Any BCK-algebra X satisfies the following axioms:

- (a1) $(\forall x \in X)$ $(x * \theta = x),$
- (a2) $(\forall x, y, z \in X)$ $(x * y = \theta \Rightarrow (x * z) * (y * z) = \theta, (z * y) * (z * x) = \theta$,

(a3) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),$

(a4) $(\forall x, y, z \in X) ((x * z) * (y * z)) * (x * y) = \theta).$

A subset S of a BCK/BCI-algebra X is called a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$.

A subset A of a BCK/BCI-algebra X is called an *ideal* of X, denoted by $A \triangleleft X$, if it satisfies:

(b1) $\theta \in A$,

(b2) $(\forall x, y \in X)$ $(x * y \in A, y \in A \Rightarrow x \in A)$.

We refer the reader to the books [1] and [6] for further information regarding BCK/BCIalgebras.

A fuzzy subset μ of a BCK/BCI-algebra X is called a *fuzzy subalgebra* of X it it satisfies:

 $(\forall x, y \in X)(\mu(x * y) \ge \min\{\mu(x), \mu(y)\}).$

A fuzzy subset μ of a BCK/BCI-algebra X is called a fuzzy ideal of X, denoted by $\mu \lhd_f X$, it it satisfies:

(b3) $(\forall x \in X)$ $(\mu(\theta) \geq \mu(x)),$

(b4) $(\forall x, y \in X)$ $(\mu(x) \ge \min{\mu(x * y), \mu(y)}$.

3. Fuzzy translations and fuzzy multiplications of fuzzy ideals

In what follows let $X = (X, *, \theta)$ denote a BCK/BCI-algebra, and for any fuzzy subset μ of X, we let

 $\top := 1 - \sup\{\mu(x) \mid x \in X\}$

unless otherwise specified.

3.1. Definition. [5] Let μ be a fuzzy subset of X and let $\alpha \in [0, \top]$. A mapping $\mu_{\alpha}^{T}: X \to [0, 1]$ is called a *fuzzy* α -translation of μ if it satisfies:

$$
(\forall x \in X)(\mu_{\alpha}^{T}(x) = \mu(x) + \alpha).
$$

3.2. Theorem. If μ is a fuzzy ideal of X, then the fuzzy α -translation μ_{α}^T of μ is a fuzzy *ideal of* X for all $\alpha \in [0, \top]$.

Proof. Assume that $\mu \lhd_f X$ and let $\alpha \in [0, T]$. Then

$$
\mu_{\alpha}^{T}(\theta) = \mu(\theta) + \alpha \ge \mu(x) + \alpha = \mu_{\alpha}^{T}(x)
$$

and

$$
\mu_{\alpha}^{T}(x) = \mu(x) + \alpha \ge \min\{\mu(x * y), \mu(y)\} + \alpha
$$

$$
= \min\{\mu(x * y) + \alpha, \ \mu(y) + \alpha\}
$$

$$
= \min\{\mu_{\alpha}^{T}(x * y), \ \mu_{\alpha}^{T}(y)\}
$$
for all $x, y \in X$. Hence $\mu_{\alpha}^{T} \lhd_{f} X$.

3.3. Theorem. Let μ be a fuzzy subset of X such that the fuzzy α -translation μ_{α}^{T} of μ is a fuzzy ideal of X for some $\alpha \in [0, \top]$. Then μ is a fuzzy ideal of X.

Proof. Assume that μ_{α}^T is a fuzzy ideal of X for some $\alpha \in [0, T]$. Let $x, y \in X$. Then

$$
\mu(\theta) + \alpha = \mu_{\alpha}^{T}(\theta) \ge \mu_{\alpha}^{T}(x) = \mu(x) + \alpha,
$$

and so $\mu(\theta) \geq \mu(x)$. Now, we have

$$
\mu(x) + \alpha = \mu_{\alpha}^{T}(x) \ge \min{\mu_{\alpha}^{T}(x * y), \mu_{\alpha}^{T}(y)}
$$

$$
= \min{\mu(x * y) + \alpha, \mu(y) + \alpha}
$$

$$
= \min{\mu(x * y), \mu(y)} + \alpha,
$$

which implies that $\mu(x) \ge \min{\mu(x * y), \mu(y)}$. Hence μ is a fuzzy ideal of X.

3.4. Theorem. Let $\alpha \in [0, \top]$ and let μ be a fuzzy ideal of X. If X is a BCK-algebra, then the fuzzy α -translation μ_{α}^T of μ is a fuzzy subalgebra of X.

Proof. Since $x * y \leq x$ for any $x, y \in X$ and any fuzzy ideal is order reversing, we have

$$
\mu_{\alpha}^{T}(x * y) = \mu(x * y) + \alpha \geq \mu(x) + \alpha
$$

\n
$$
\geq \min\{\mu(x * y), \mu(y)\} + \alpha
$$

\n
$$
\geq \min\{\mu(x), \mu(y)\} + \alpha
$$

\n
$$
= \min\{\mu(x) + \alpha, \mu(y) + \alpha\}
$$

\n
$$
= \min\{\mu_{\alpha}^{T}(x), \mu_{\alpha}^{T}(y)\}.
$$

Hence μ_{α}^{T} is a fuzzy subalgebra of X.

The following example shows that if X is a BCI-algebra, then Theorem 3.4 is not true.

3.5. Example. Consider the direct product $X := Y \times \mathbb{Z}$ where $(Y, *, 0)$ is a BCI-algebra and $(\mathbb{Z}, -, 0)$ is the adjoint BCI-algebra of the additive group $(\mathbb{Z}, +, 0)$ of integers. Let $A = Y \times \mathbb{N}$, where $\mathbb N$ is the set of nonnegative integers.

Define a fuzzy subset μ of X as follows:

$$
\mu: X \to [0, 1], \quad x \mapsto \begin{cases} 0.7 & \text{if } x \in A, \\ 0.2 & \text{otherwise.} \end{cases}
$$

Then μ is a fuzzy ideal of X and $\top = 0.3$. For $\alpha \in [0, \top]$, we have

$$
\mu_{\alpha}^{T}((0,0)*(0,1)) = \mu_{\alpha}^{T}((0,-1)) = \mu((0,-1)) + \alpha = 0.2 + \alpha
$$

< 0.7 + \alpha = min{\mu((0,0)), \mu((0,1))} + \alpha
= min{\mu((0,0))} + \alpha, \mu((0,1)) + \alpha}
= min{\mu_{\alpha}^{T}((0,0)), \mu_{\alpha}^{T}((0,1))}

352 Y. B. Jun

3.6. Definition. [5] Let μ_1 and μ_2 be fuzzy subsets of X. If $\mu_1(x) \leq \mu_2(x)$ for all $x \in X$, then we say that μ_2 is a *fuzzy extension* of μ_1 .

3.7. Definition. Let μ_1 and μ_2 be fuzzy subsets of X. Then μ_2 is called a *fuzzy ideal* extension of μ_1 if the following assertions are valid:

- (b5) μ_2 is a fuzzy extension of μ_1 .
- (b6) $\mu_1 \lhd_f X \Rightarrow \mu_2 \lhd_f X$.

3.8. Example. Consider a set $X = \{\theta, 1, 2, 3, 4\}$. The Hasse diagram (Figure 1)

Figure 1. Hasse diagram

makes X into a BCK-algebra, where the BCK-operation $*$ on X is given as follows:

$$
x * y := \begin{cases} \theta & \text{if } x \le y, \\ x & \text{if } y = \theta, \ y < x \text{ or } x \text{ and } y \text{ are incomparable} \end{cases}
$$

for every $x, y \in X$. Let μ_1 be a fuzzy subset of X defined by

 $\mu_1 = \begin{pmatrix} \theta & 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ 0.7 0.5 0.4 0.6 0.3 $\big)$.

It is routine to check that μ_1 is a fuzzy ideal of X. Let μ_2 be a fuzzy subset of X given by

 $\mu_2 = \left(\begin{matrix} \theta & 1 & 2 & 3 & 4 \ 0.75 & 0.53 & 0.47 & 0.61 & 0.38 \end{matrix} \right).$

Note that $\mu_2(x) \geq \mu_1(x)$ for all $x \in X$, that is, μ_2 is a fuzzy extension of μ_1 , and μ_2 is a fuzzy ideal of X. Hence μ_2 is a fuzzy ideal extension of μ_1 .

For a fuzzy subset μ of X, $\alpha \in [0, \top]$ and $t \in [0, 1]$ with $t \ge \alpha$, let

 $U_{\alpha}(\mu;t) := \{x \in X \mid \mu(x) \geq t - \alpha\}.$

It is clear that if $\mu \lhd_f X$, then $U_\alpha(\mu;t) \lhd X$ for all $t \in \text{Im}(\mu)$ with $t \geq \alpha$. But, if we do not give a condition that μ is a fuzzy ideal of X then $U_{\alpha}(\mu;t)$ may not be an ideal of X, as seen in the following example.

3.9. Example. Consider the BCK-algebra X which is given in Example 3.8. Let μ be a fuzzy subset of X defined by

$$
\mu = \begin{pmatrix} \theta & 1 & 2 & 3 & 4 \\ 0.8 & 0.5 & 0.7 & 0.3 & 0.2 \end{pmatrix}.
$$

Since $\mu(1) = 0.5 < 0.7 = \min{\mu(1*2), \mu(2)}$, we know that μ is not a fuzzy ideal of X. Also, $U_{0,1}(\mu; 0.63) = \{0, 2\}$ is not an ideal of X since $1 * 2 = 0 \in \{0, 2\}$, but $1 \notin \{0, 2\}$.

3.10. Theorem. For $\alpha \in [0, \top]$, let μ_{α}^{T} be the fuzzy α -translation of μ . Then the following are equivalent:

- (1) $\mu_{\alpha}^T \lhd_f X$.
- (2) $(\forall t \in \text{Im}(\mu))$ $(t > \alpha \Rightarrow U_{\alpha}(\mu; t) \triangleleft X)$.

Proof. Assume that $\mu_{\alpha}^T \lhd_f X$ and let $t \in \text{Im}(\mu)$ be such that $t > \alpha$. Since $\mu_{\alpha}^T(\theta) \geq \mu_{\alpha}^T(x)$ for all $x \in X$, we have

$$
\mu(\theta) + \alpha = \mu_{\alpha}^{T}(\theta) \ge \mu_{\alpha}^{T}(x) = \mu(x) + \alpha \ge t
$$

for $x \in U_{\alpha}(\mu; t)$. Hence $\theta \in U_{\alpha}(\mu; t)$. Let $x, y \in X$ be such that $x * y \in U_{\alpha}(\mu; t)$ and $y \in U_{\alpha}(\mu; t)$. Then $\mu(x * y) \ge t - \alpha$ and $\mu(y) \ge t - \alpha$, i.e., $\mu_{\alpha}^{T}(x * y) = \mu(x * y) + \alpha \ge t$ and $\mu_{\alpha}^{T}(y) = \mu(y) + \alpha \geq t$. Since $\mu_{\alpha}^{T} \lhd_{f} X$, it follows that

$$
\mu(x) + \alpha = \mu_{\alpha}^T(x) \ge \min\{\mu_{\alpha}^T(x*y), \mu_{\alpha}^T(y)\} \ge t,
$$

that is, $\mu(x) \geq t - \alpha$ so that $x \in U_{\alpha}(\mu; t)$. Therefore $U_{\alpha}(\mu; t) \triangleleft X$.

Conversely, suppose that $U_{\alpha}(\mu;t) \triangleleft X$ for every $t \in \text{Im}(\mu)$ with $t > \alpha$. If there exists $a \in X$ such that $\mu_{\alpha}^{T}(\theta) < \beta \leq \mu_{\alpha}^{T}(a)$, then $\mu(a) \geq \beta - \alpha$ but $\mu(\theta) < \beta - \alpha$. This shows that $a \in U_{\alpha}(\mu; t)$ and $\theta \notin U_{\alpha}(\mu; t)$. This is a contradiction, and so $\mu_{\alpha}^{T}(\theta) \geq \mu_{\alpha}^{T}(x)$ for all $x \in X$.

Now assume that there exist $a, b \in X$ such that $\mu_{\alpha}^{T}(a) < \gamma \leq \min{\{\mu_{\alpha}^{T}(a * b), \mu_{\alpha}^{T}(b)\}}$. Then $\mu(a * b) \geq \gamma - \alpha$ and $\mu(b) \geq \gamma - \alpha$, but $\mu(a) < \gamma - \alpha$. Hence $a * b \in U_{\alpha}(\mu; \gamma)$ and $b \in U_{\alpha}(\mu; \gamma)$, but $a \notin U_{\alpha}(\mu; \gamma)$. This is impossible, and therefore

$$
\mu_{\alpha}^{T}(x) \ge \min\{\mu_{\alpha}^{T}(x * y), \mu_{\alpha}^{T}(y)\}
$$

for all $x, y \in X$. Consequently, $\mu_{\alpha}^{T} \triangleleft f X$.

In Theorem 3.10(2), if $t \leq \alpha$, then $U_{\alpha}(\mu; t) = X$.

3.11. Theorem. Let $\mu \lhd_f X$ and $\alpha, \beta \in [0, \top]$. If $\alpha \geq \beta$, then the fuzzy α -translation μ_{α}^T of μ is a fuzzy ideal extension of the fuzzy β -translation μ_{β}^T of μ .

Proof. Straightforward. □

For every fuzzy ideal μ of X and $\beta \in [0, \top]$, the fuzzy β -translation μ_{β}^{T} of μ is a fuzzy ideal of X. If ν is a fuzzy ideal extension of μ_{β}^T , then there exists $\alpha \in [0, T]$ such that $\alpha \geq \beta$ and $\nu(x) \geq \mu_{\alpha}^{T}(x)$ for all $x \in X$. Hence we have the following theorem.

3.12. Theorem. Let μ be a fuzzy ideal of X and $\beta \in [0, \top]$. For every fuzzy ideal extension ν of the fuzzy β -translation μ_{β}^T of μ , there exists $\alpha \in [0, \top]$ such that $\alpha \geq \beta$ and ν is a fuzzy ideal extension of the fuzzy α -translation μ_{α}^T of μ .

The following example illustrates Theorem 3.12.

3.13. Example. Consider a BCI-algebra $X = \{\theta, 1, 2, a, b\}$ where the ∗-multiplication is defined by Table 1.

Table 1. \ast -multiplication table for X

	н		2	\boldsymbol{a}	
θ	θ				\boldsymbol{a}
		H	1	b	\boldsymbol{a}
$\overline{2}$	2	2	θ	b	\boldsymbol{a}
\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{a}	$\it a$	θ	b
		h	b	\boldsymbol{a}	

354 Y. B. Jun

Let μ be a fuzzy subset of X defined by

$$
\mu = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.7 & 0.4 & 0.5 & 0.3 & 0.3 \end{pmatrix}.
$$

Then μ is a fuzzy ideal of X, and $\top = 0.3$. If we take $\beta = 0.15$, then the fuzzy β translation μ_{β}^{T} of μ is as follows:

$$
\mu_{\beta}^{T} = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.85 & 0.55 & 0.65 & 0.45 & 0.45 \end{pmatrix}.
$$

Let ν be a fuzzy subset of X defined by

$$
\nu = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.88 & 0.57 & 0.69 & 0.47 & 0.47 \end{pmatrix}.
$$

Then ν is a fuzzy ideal extension of the fuzzy β -translation μ_{β}^{T} of μ . But ν is not a fuzzy α-translation of μ for all $\alpha \in [0, \top]$. If we take $\alpha = 0.17$, then $\alpha = 0.17 > 0.15 = \beta$ and the fuzzy α -translation μ_{α}^{T} of μ is given as follows:

$$
\mu_{\alpha}^{T} = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.87 & 0.57 & 0.67 & 0.37 & 0.37 \end{pmatrix}.
$$

Note that $\nu(x) \geq \mu_{\alpha}^{T}(x)$ for all $x \in X$, and hence ν is a fuzzy ideal extension of the fuzzy α -translation μ_{α}^T of μ .

By means of the definition of fuzzy α -translation, we know that $\mu_{\alpha}^{T}(x) \geq \mu(x)$ for all $x \in X$. Hence we have the following theorem.

3.14. Theorem. Let μ be a fuzzy ideal of X and $\alpha \in [0, \top]$. Then the fuzzy α -translation μ_{α}^T of μ is a fuzzy ideal extension of μ .

A fuzzy ideal extension of a fuzzy ideal μ may not be represented as a fuzzy α translation of μ , that is, the converse of Theorem 3.14 is not true in general as shown by the following example.

3.15. Example. (1) In Example 3.8, μ_2 cannot be represented as a fuzzy α -translation of μ_1 for all $\alpha \in [0, \top]$.

(2) Consider a BCI-algebra $X = \{\theta, 1, a, b, c\}$ where the *-multiplication is defined by Table 2.

Table 2. \ast -multiplication table for X

\ast	θ		\boldsymbol{a}		\overline{c}
θ	θ	θ	\boldsymbol{a}		c
1		θ	\boldsymbol{a}	b	c
\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{a}	θ	\overline{c}	b
b	b	b	\boldsymbol{c}	θ	\boldsymbol{a}
с	с	с		\boldsymbol{a}	θ

.

Let μ be a fuzzy subset of X defined by

$$
\mu = \begin{pmatrix} \theta & 1 & a & b & c \\ 0.9 & 0.6 & 0.3 & 0.3 & 0.5 \end{pmatrix}
$$

Then μ is a fuzzy ideal of X. Let ν be a fuzzy subset of X given by

$$
\nu = \begin{pmatrix} \theta & 1 & a & b & c \\ 0.94 & 0.66 & 0.38 & 0.38 & 0.57 \end{pmatrix}.
$$

Then ν is a fuzzy ideal extension of μ . But it is not the fuzzy α -translation μ_{α}^{T} of μ for all $\alpha \in [0, \top]$.

Clearly, the intersection of fuzzy ideal extensions of a fuzzy subset μ of X is a fuzzy ideal extension of μ . But the union of fuzzy ideal extensions of a fuzzy subset μ of X is not a fuzzy ideal extension of μ as seen in the following example.

3.16. Example. Consider a BCI-algebra $X = \{\theta, a, b, c\}$ with Cayley table (Table 3).

Let μ , ν and δ be fuzzy subsets of X defined by

$$
\mu = \begin{pmatrix} \theta & a & b & c \\ 0.7 & 0.3 & 0.5 & 0.3 \end{pmatrix},
$$

$$
\nu = \begin{pmatrix} \theta & a & b & c \\ 0.8 & 0.6 & 0.5 & 0.5 \end{pmatrix},
$$

and

$$
\delta = \begin{pmatrix} \theta & a & b & c \\ 0.9 & 0.4 & 0.6 & 0.4 \end{pmatrix},
$$

respectively. Then ν and δ are fuzzy ideal extensions of μ . Obviously, the union $\nu \cup \delta$ is a fuzzy extension of μ , but it is not a fuzzy ideal extension of μ since

 $(\nu \cup \delta)(c) = 0.5 \ngeq 0.6 = \min\{(\nu \cup \delta)(c * b), (\nu \cup \delta)(b)\}.$

3.17. Definition. Let μ be a fuzzy subset of X and $\gamma \in [0, 1]$. A fuzzy γ -multiplication of μ , denoted by μ_{γ}^{m} , is defined to be a mapping

 $\mu_{\gamma}^{m}: X \to [0,1], x \mapsto \mu(x) \cdot \gamma.$

For any fuzzy subset μ of X, a fuzzy 0-multiplication μ_0^m of μ is clearly a fuzzy ideal of X.

3.18. Theorem. If μ is a fuzzy ideal of X, then the fuzzy γ -multiplication of μ is a fuzzy ideal of X for all $\gamma \in [0,1]$.

Proof. Straightforward. □

3.19. Theorem. For any fuzzy subset μ of X , the following are equivalent:

- (1) μ is a fuzzy ideal of X.
- (2) $(\forall \gamma \in (0,1])$ $(\mu_{\gamma}^{m}$ is a fuzzy ideal of X).

Proof. Necessity follows from Theorem 3.18. Let $\gamma \in (0,1]$ be such that μ_{γ}^{m} is a fuzzy ideal of X. Then $\mu(\theta) \cdot \gamma = \mu_{\gamma}^{m}(\theta) \geq \mu_{\gamma}^{m}(x) = \mu(x) \cdot \gamma$ and

$$
\mu(x) \cdot \gamma = \mu_{\gamma}^{m}(x) \ge \min{\mu_{\gamma}^{m}(x * y), \mu_{\gamma}^{m}(y)}
$$

$$
= \min{\mu(x * y) \cdot \gamma, \mu(y) \cdot \gamma}
$$

$$
= \min{\mu(x * y), \mu(y)} \cdot \gamma
$$

356 Y. B. Jun

for all $x, y \in X$. Since $\gamma \neq 0$, it follows that $\mu(\theta) \geq \mu(x)$ and

 $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}\$

for all $x, y \in X$. Hence μ is a fuzzy ideal of X.

3.20. Theorem. Let μ be a fuzzy subset of X, $\alpha \in [0, \top]$ and $\gamma \in (0, 1]$. Then every fuzzy α -translation μ_{α}^T of μ is a fuzzy ideal extension of the fuzzy γ -multiplication μ_{γ}^m of μ .

Proof. For every $x \in X$, we have

$$
\mu_{\alpha}^{T}(x) = \mu(x) + \alpha \ge \mu(x) \ge \mu(x) \cdot \gamma = \mu_{\gamma}^{m}(x),
$$

and so μ_{α}^T is a fuzzy extension of μ_{γ}^m .

Assume that μ_{γ}^{m} is a fuzzy ideal of X. Then μ is a fuzzy ideal of X by Theorem 3.19. It follows from Theorem 3.2 that the fuzzy α -translation μ_{α}^{T} of μ is a fuzzy ideal of X for all $\alpha \in [0, \top]$. Therefore every fuzzy α -translation μ_{α}^{T} is a fuzzy ideal extension of the fuzzy γ -multiplication μ_{γ}^{m} of μ .

The following example shows that Theorem 3.20 is not valid for $\gamma = 0$.

3.21. Example. Consider a BCI-algebra $(\mathbb{Z},*,0)$ where $\mathbb Z$ is the set of all integers and ∗ is the minus operation. Define a fuzzy subset µ : Z → [0, 1] by

$$
\mu(x) := \begin{cases} \frac{1}{5} & \text{if } x > 3, \\ \frac{1}{3} & \text{if } x \le 3. \end{cases}
$$

Obviously μ_0^m is a fuzzy ideal of $\mathbb Z$. But

$$
\mu_{\alpha}^{T}(4) = \mu(4) + \alpha = \frac{1}{5} + \alpha < \frac{1}{3} + \alpha
$$

= min{ μ (4 * 1), μ (1)} + α
= min{ μ (4 * 1) + α , μ (1) + α }
= min{ μ_{α}^{T} (4 * 1), μ_{α}^{T} (1)}

for all $\alpha \in [0, \frac{2}{3}]$, which shows that μ_{α}^{T} is not a fuzzy ideal of X. Hence μ_{α}^{T} is not a fuzzy ideal extension of μ_0^m for all $\alpha \in [0, \frac{2}{3}].$

The following examples illustrate Theorem 3.20.

3.22. Example. Consider a BCK-algebra $X = \{\theta, a, b, c, d\}$ where the *-multiplication is defined by Table 4.

Table 4. \ast -multiplication table for X

	θ	\overline{a}	b	\overline{c}	
θ_-	θ	θ	θ	θ	θ
\boldsymbol{a}	\boldsymbol{a}	θ	θ_-	$\it a$	\overline{a}
	\boldsymbol{b}	b	θ	b	b
\boldsymbol{c}	\boldsymbol{c}	c	\boldsymbol{c}	θ	\overline{c}
	\boldsymbol{d}	d_{-}	d_{-}		θ

Let μ be a fuzzy subset of X defined by

$$
\mu = \begin{pmatrix} \theta & a & b & c & d \\ 0.7 & 0.4 & 0.2 & 0.5 & 0.1 \end{pmatrix}.
$$

Then μ is a fuzzy ideal of X. If we take $\gamma = 0.2$, then the 0.2-multiplication $\mu_{0.2}^m$ of μ is given by

$$
\mu_{0.2}^m = \begin{pmatrix} \theta & a & b & c & d \\ 0.14 & 0.08 & 0.04 & 0.10 & 0.02 \end{pmatrix}.
$$

Clearly, $\mu_{0.2}^m$ is a fuzzy ideal of X. Also, for any $\alpha \in [0,0.3]$, the fuzzy α -translation μ_{α}^T of μ is given as follows:

$$
\mu_{\alpha}^T = \begin{pmatrix} \theta & a & b & c & d \\ 0.7 + \alpha & 0.4 + \alpha & 0.2 + \alpha & 0.5 + \alpha & 0.1 + \alpha \end{pmatrix}.
$$

Then μ_{α}^T is a fuzzy extension of $\mu_{0.2}^m$ and μ_{α}^T is always a fuzzy ideal of X for all $\alpha \in [0, 0.3]$. Therefore μ_{α}^T is a fuzzy ideal extension of $\mu_{0,2}^m$ for all $\alpha \in [0,0.3]$.

3.23. Example. Consider a BCI-algebra $X = \{\theta, 1, 2, a, b\}$, where the ∗-multiplication is defined by Table 5.

Table 5. $*$ -multiplication table for X

	θ		2	\boldsymbol{a}	
θ	θ	θ	θ	\boldsymbol{a}	\boldsymbol{a}
1		θ	1	b	\boldsymbol{a}
$\overline{2}$	2	2	θ	\boldsymbol{a}	\boldsymbol{a}
\boldsymbol{a}	$\it a$	\boldsymbol{a}	$\it a$	θ	θ
		$\it a$	b		θ

Let μ be a fuzzy subset of X defined by

$$
\mu = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.6 & 0.1 & 0.5 & 0.3 & 0.1 \end{pmatrix}.
$$

Then μ is a fuzzy ideal of X. If we take $\gamma = 0.1$, then the 0.1-multiplication $\mu_{0.1}^m$ of μ is given by

$$
\mu_{0.1}^m = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.06 & 0.01 & 0.05 & 0.03 & 0.01 \end{pmatrix}.
$$

Clearly, $\mu_{0.1}^m$ is a fuzzy ideal of X. Also, for any $\alpha \in [0, 0.4]$, the fuzzy α -translation μ_{α}^T of μ is given as follows:

$$
\mu_{\alpha}^{T} = \begin{pmatrix} \theta & 1 & 2 & a & b \\ 0.6 + \alpha & 0.1 + \alpha & 0.5 + \alpha & 0.3 + \alpha & 0.1 + \alpha \end{pmatrix}.
$$

Then μ_{α}^T is a fuzzy extension of $\mu_{0,1}^m$ and μ_{α}^T is always a fuzzy ideal of X for all $\alpha \in [0,0.4]$. Therefore μ_{α}^T is a fuzzy ideal extension of $\mu_{0,1}^m$ for all $\alpha \in [0, 0.4]$.

Acknowledgement. The author is highly grateful to the referees for their valuable comments and suggestions helpful in improving this paper.

References

- [1] Huang, Y. BCI-algebra (Science Press, Beijing, 2006).
- [2] Jun, Y. B. and Meng, J. Fuzzy commutative ideals in BCI-algebras, Commun. Korean Math. Soc. 9 (1994) (1), 19–25, 1994.
- [3] Jun, Y. B. and Song, S. Z. Fuzzy set theory applied to implicative ideals in BCK-algebras, Bull. Korean Math. Soc. 43 (3), 461–470, 2006.
- [4] Jun, Y. B. and Xin, X. L. Involutory and invertible fuzzy BCK-algebras, Fuzzy Sets and Systems 117, 463–469, 2004.
- [5] Lee, K. J., Jun, Y. B. and Doh, M. I. Fuzzy translations and fuzzy multiplications of BCK/BCI-algebras, Commun. Korean Math. Soc. 24, 353–360, 2009.
- [6] Meng, J. and Jun, Y. B. BCK-algebras (Kyungmoon Sa Co., Seoul, 1994).
- [7] Meng, J., Jun, Y.B. and Kim, H.S. Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems 89, 243–248, 1997.